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Introduction

If £ is a Lie algebra over a field Φ, we consider the lattice of all sub-
algebras of L. A Lie algebra will be called distributive, modular, upper semi-
modular or lower semi-modular if its lattice of subalgebras has the correspond-
ing property. In this paper we investigate the relation between the structure
of the Lie algebra and the structure of its lattice of subalgebras. Analogous
work has been done for groups by many investigators, and Suzuki [7] has
written a comprehensive monograph describing the significant results in this
area.

The Lie algebras considered in this paper will be finite dimensional. Also,
the Lie algebras will, unless otherwise stated, be over a field of characteristic
zero.

In this paper, if L is a Lie algebra [_L, LΓ\ will be denoted by L\ and [_L\
L'~] by L", Also the subalgebra of L generated by eu e2, •••, ek will be denoted
by {eu e2, •••, ek).

In this paper, we 1) characterize upper semi-modular Lie algebras over
fields of characteristic zero, 2) characterize modular Lie algebras over fields of
characteristic zero, 3) characterize lower semi-modular Lie algebras over
algebraically closed fields of characteristic zero, 4) study other properties of
distributive, modular, upper semi-modular, lower semi-modular Lie algebras.

1. Preliminaries and examples

DEFINITION : A Lie algebra L over a field of any characteristic is called
distributive, modular, upper semi-modular or lower semi-modular if its lattice
of all subalgebras has the corresponding property.

If a Lie algebra is distributive, modular, upper semi-modular or lower
semi-modular, then a subalgebra or a factor algebra has the corresponding
property.
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DEFINITION: An n + 1-dimensional (rc>l) Lie algebra, over a field of any
characteristic, is called almost abelian if it has a basis e0, ei, •••, en such that
[>/, βoH^e/ for / > 1 , and [β/, e/] = 0 for ί, 7,

PROPOSITION 1.1 Let Z be an π, + 1-dimensional, 7i]>l, almost abelian Lie
algebra over a field of any characteristic. Then

1) Z," = 0, and thus Z is solvable.
2) The nil radical TV of Z is abelian.
3) Every subspace of L is a subalgebra.

PROOF :

1) Clear.

2) The nil radical N of Z is {eu e2, •••, ew}.
3) Let M be a subspace of Z, and let

α=αoβo + oiβi+•••+o»en, ό = όoeo + 6iβi+ •• +bnem be two elements of
M. Then [α, bj = boa-aob 6 M.

PROPOSITION 1.2 Let Z be an n + 1-dimensional almost abelian or n-
dimensional abelian (/ i>l) Lie algebra, over a field of any characteristic.
Then Z is modular (Z is a projective geometry).

PROOF :

In either case, every subspace is a subalgebra.

PROPOSITION 1.3 Let Z be the nilpotent three-dimensional Lie algebra,
over a field of any characteristic, with basis eu e2, e3 defined by [_eu e2H = e3;
Cβi, e3] = 0; Ce2, e 3 ]=0. Then 1) Z is lower semi-modular; 2) Z is not upper
semi-modular.

PROOF:

1) This follows from Theorem 3.1.
2) Define the following subalgebras of Z:
A = {eu e3}; £ = {ei}; C={e2}. Then both B and C cover {0}, but B\JC=

PROPOSITION 1.4 Let Z be the solvable Lie algebra, over a field of any
characteristic, with basis eu e2, e3 defined by [_eu e2H = 0; [_eχ, ef\ = eλ\ Qe2, e3j =
αe2, α^=l . Then L is not upper semi-modular.

PROOF:

Define the following subalgebras of Z:
^ = {e1 + e 2,e 1}; 5 = {ei + e2}; C={e 3}. Then both ,δ and C cover {0}, but

since ccψl,
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THEOREM 1.1 (Kuranishi) Let L be a semi-simple Lie algebra. Then there
exist elements x, y e L generating L.

PROOF : See [6].

In Theorem 1.1, we may take x in a Cartan subalgebra H of L and y in
the orthogonal complement of H with respect to the Killing form.

The following proposition appears to be known, although the author has
been unable to find any published proof of it.

PROPOSITION 1.5 (Analogue of Ito's Theorem in Group Theory [4]). If L is
a Lie ring, such that L = NλΛ-N2, and Nλ and N2 are abelian subrings, then

PROOF:

Let [α, ft] and [V, ft'] e L\ where α, a e Nu ft, ft' e 7V2. We have, by Jacobi's
identity, [[α', ft'], [α, &]>[>', Ό>\ [α, ft]]]+ [[«', [α, 6J], 6 / > [ α / , [ [ ^ , α], ό]]
+ [[α5 [α', ft]], ft']. Now, since \_b\ o] and [a', ft] 6 Z, we can write [_b\ α] =
α' + ft^ and [α', ft] = α m + ft", where α", αr// 6 Nu and b'\ bf//e N2. Then,
[[α', ft'], [α, 6 ] > [ α / , [α", ft]] + [[α, ft"], ft']-[[ft, α'], α"] + [[α, ft^], δ"]= -
[ft",α"]-[α", δ"] = 0.

Hence, Lx /-0.

Let Z be a simple three-dimensional Lie algebra. Then there exists a basis
ei, e2, e3 for L such that [_eu e2] = e3; [e2, e3] = αβi; [e3, βi] = /9e2; α=^0,
β^OeΦ. The Killing form of L is — 2[j9#iyi + α x 2 j 2 + aβx3γ3j.

The question of when two simple three-dimensional Lie algebras are
isomorphic is answered in [2], p. 133 as follows. Two simple three dimensional
Lie algebras are isomorphic if and only if their repective Killing forms are
equivalent up to a non-zero constant factor.

It is also known that L has no two-dimensional subalgebra if and only if
L is non-split. Moreover, L is non-split if and only if there do not exist αi? α2,
α3 e Φ, not all zero such that βa\

LEMMA 1.1 Let L be a simple three-dimensional Lie algebra. If c =
c2e2 + c3e3 φO e Z, then there exists an element x e L such that c and x generate
L.

PROOF :

Assume the contrary, and let x = xχeι + χ2e2 + X3e3. Then c, x and [c, x~]
are linearly dependent for all x e L. Hence,
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a(c2x3 — c3x2)

β(c3Xι — Ci#3)

C\X2 —' C2X\

KOLMAN

c,

c2

c3

χ2

X3

=0

Since this holds for all x{, we obtain the following relations.

which imply that c~0, a contradiction.

PROPOSITION 1.6 Let L be a simple three dimensional Lie algebra. Then
L is non-split if and only if L is upper semi-modular. Moreover, in this case L
is also modular.

PROOF :

If L is non-split, then it does not contain a two-dimensional subalgebra
and is thus upper semi-modular.

Conversely, suppose L is split. Then L contains a two-dimensional sub-
algebra A = {χ, y). Now by Lemma 1.1, there exists an element z e L such
that x and z generate L. Since Ar\{z}=0, we have a contradiction to the
upper semi-modularity of L.

DEFINITION A simple three-dimensional Lie algebra over a field of char-
acteristic zero, satisfying any of the equivalent properties of Proposition 1.6 is
called a special simple Lie algebra.

2. Upper Semi-modular Lie Algebras

We first establish the following theorem, which characterizes distributive
Lie algebras over fields of any characteristic.

THEOREM 2.1 Let I be a Lie algebra over a field of any characteristic.
Then L is distributive if and only if L is one-dimensional.

PROOF :

If L is one-dimensional, it is of course, distributive. Now suppose
dim L > 2. If L is two-dimensional, then L is abelian or almost abelian, and
the lattice is a protective geometry, which cannot be distributive.

If dim Z>2, let ei, e2 be two linearly independent elements of L, and let
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e3 = [_e^ e j . If e3 is a linear combination of eλ and e2 then {eu e2} is a two-
dimensional subalgebra of L, and thus L is not distributive. If e3 is not a
linear combination of eι and e2, we define the the following subalgebras of L:
A = {e3}, B = {ei}, C={e2}. Then Ar\(B\JC)>A, and (Aί\B)VJ(Aί\C) = O.
Thus, again L is not distributive.

PROPOSITION 2.1 If Z is an upper semi-modular Lie algebra, then either L
is solvable or L/S, where S is the radical of L, is special simple.

PROOF :

Assume that L is upper semi-modular and set Lι—L/S. If rank Lχ^>2,
then dim H^>2, where H is a Cartan subalgebra of Iα. By Theorem 1.1, there
exist x e H, y <r H such that x and y generate Lx. We thus have the following
sublattice of the lattice of all subalgebras of L (Fig. 1)

This implies that L is not upper semi-modular. Hence, rank Zi <,1. If rank
i i = l, and dim Zi=3, since Lλ is upper semi-modular, then Lγ is special simple.
This completes the proof of Proposition 2.1.

COROLLARY 2.1. If L is an upper semi-modular Lie algebra, over an
algebraically closed field, then L is solvable.

THEOREM 2.2 If L is an upper semi-modular nilpotent Lie algebra, over a
field of any characteristic, then L is abelian.

PROOF :

If L is a non-abelian nilpotent Lie algebra then L contains a three-dimen-
sional subalgebra Lx with basis eu e2, e3 such that Oi, e2] = e3; [_eu e3U = 0;
Cβ2, e3] = 0. By Proposition 1.3, we conclude that Lx is not upper semi-modular.
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PROPOSITION 2.2 If L is a solvable upper semi-modular Lie algebra then
Z " = 0 .

PROOF :

Since L is solvable, L=H-\-L\ where H is a Cartan subalgebra of L and
V = [X, LΓ\. Now H and Z/ are both upper semi-modular nilpotent subalgebras
of Z,, and are thus abelian. By Proposition 1.5, we conclude that Lfr — Q.

We now turn to the characterization of upper semi-modular Lie algebras.

LEMMA 2.1 Let L be a Lie algebra of dimension n + 1, ra>l, over a field
of any characteristic. Let N be an abelian ideal of L of dimension n, and
x e Z, x <r N. If Z is an upper semi-modular Lie algebra, then the linear trans-
formation ad x IN is a scalar transformation.

PROOF :

Let f(z) be the minimal polynomial of ad x \ N. Factoring f(z) into its
irreducible factors, we have

where pi(z) are monic irreducible polynomials. If at least one of the pi(z)
(ί = l, 2, • •-,&), say jDyĈ r), is of degree r > l , we write jpy(z)

Now there exists a basis /i, /2, •••,/„ of iV such that ad Λ ; ^ c a n be re-
presented by a matrix in rational canonical form. Since one of the companion
matrices will be the one corresponding to pj(z) we have, by possibly rearrang-
ing the fh

C/r, ^] = Co/l + Ci/2+ + Cr_i/Γ.

We now assert that the subalgebra Lλ generated by /i,/2, ••',fr,x is n ^ t upper
semi-modular. For consider the following subalgebras of Lλ:

Λ = {fuf2}; B^ifi}; c = {x}. Then both B and C cover {0}, but B\JC=
Li^A^B. Hence, all the irreducible factors of f(z) are of degree one.

We now decompose N into its eigenspaces relative to ad x \ N, obtaining

where a, β, are the eigenvalues of ad^|τv. Then there exist eacNa,
eβeNβ such that [eα, xj = aea; [eβ, xj = βeβ; [eα, eβJ = 0. Thus {x, ea, eβ}
is a three-dimensional subalgebra L2 of L. If a—0 and βφO, we show that L2

is not upper semi-modular. For define the following subalgebras of L2:
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x, ea}; B =

Then B\JC=L2^A^B. Hence, either all the eigenvalues are zero or they are

all =£0.
If all the eigenvalues are ^ 0 , we assert that they are all equal. Thus, if

aφβ then the three-dimensional subalgebra L2 just defined is isomorphic to
the Lie algebra defined in Proposition 1.4, which is not upper semi-modular.
Thus, in all cases ad x | N has only one eigenvalue α, which may be zero.

We next show that ad x \ N is a semi-simple linear transformation. Now
f(z)=(z — a)k, and we must show that 4 = 1. Assume £ > 1 . Now there exists
a basis fu f2, •••,/» of TV such that ad x | N can be represented by a matrix in
Jordan normal form, and if &>1 then at least one of the matrices along the
diagonal is of order h. We thus have,

C/i, χj=afi; C/2, ^D=/i + α/2.

Hence, we have a three-dimensional subalgebra Z4 with basis fu /2, x and we
now show that Z4 is not upper semi-modular by defining the following sub-
algebras of L4:

A = {fuf2}; B = {f2}; C={x}. Then

Hence, ad x \ N is a semi-simple transformation, which implies that it is a
scalar transformation. This completes the proof of Lemma 2.1.

THEOREM 2.3 Let I be a solvable Lie algebra. Then L is upper semi-
modular if and only if L is abelian or almost abelian.

PROOF:

Let L be upper semi-modular. If L is not abelian, let TV be the nil radical
of L. By Theorem 2.2, we conclude that TV is abelian. Let x e L, x ξ TV, and
consider ad x\N. Since TV is an ideal, {x, N} is a subalgebra satisfying the
hypotheses of Lemma 2.1. Hence, ad x \ N is a scalar transformation, and thus
Lz> oc~^ — az for z e TV, where a is the unique eigenvalue of ad x | N. If α = 0,
we consider the subspace {x, N}=M of L. Since L is solvable, M^N^>L'.
Hence, M is a nilpotent ideal of L, contradicting the maximality of TV. Thus,
aφO.

We now show that dim L-dim TV = 1.

Let C(N) be the centralizer of TV. Since ad z\N=φ0 for z <r TV, it follows
that C(TV) = TV. Now let y e L, y ξ TV. Then there exists βφOcΦ, such that
[>, y~}=βz for z e TV. Consider the element βx — ay. We have [>, βx —
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for all z e N. Thus, βx-ay e C(N\ and hence dim L/C(N)=dim L/N = l.
We have thus obtained the structure of L. It has a basis e0, eu ..., en

such that

[>,-, eo] = αe/5 tf=^0; [>, e, ] = 0 for ί, ; > 1 .

If we let e'Q — -^- and e = e, for ^ > 1 , we find that L is almost abelian.

The converse follows from Proposition 1.2.
This completes the proof of Theorem 2.3.

COROLLARY 2.2 Let L be a Lie algebra over an algebraically closed field.
Then L is upper semi-modular if and only if L is abelian or almost abelian.

We can now strengthen Proposition 2.1.

THEOREM 2.4 A Lie algebra L is upper semi-modular if and only if L is
abelian, almost abelian, or special simple.

PROOF :

Let L be upper semi-modular. Then Proposition 2.1 implies that L is
solvable or L/S, where S is the radical of Z, is special simple.

If L is solvable, then Theorem 2.3 implies that L is abelian or almost
abelian. Thus, we wish to show that if L is non-solvable then 5 = 0. If L is
non-solvable, then by Levi's Theorem i = 5 φ i i , where Lλ is a semi-simple
subalgebra of L. Then Lι~L/S, and thus Lλ is special simple. Lx then has a
basis ei, e2, e3 such that [>i, β2] = β3; [e2, e^\ = aeι\ [>3, e j = /9e2,

Since 5 is solvable and upper semi-modular, it is abelian or almost abelian.
If S is abelian, let x e Lu x f S. Note that {#, S) is a subalgebra of L and
consider ad # | 5 . From Lemma 2.1, it follows that ad x\s is a scalar trans-
formation. For x e Lu x 6 S, define <P(» = ad x\s. Then ^ is a representation
of Lu and since <?(» is a scalar and Li is semi-simple it follows that φ = 0>
which implies that S = center of L.

If SφO, let eAφ0 e S, and consider the subalgebra L2 = {eu e2, e3? e4} of

Define the following subalgebras of L2: ^ = {ei + e4, e4}; 5
C= {e2}. Then B\JC=L2^A^B, which contradicts the upper semi-modularity
of L. Hence, 5 = 0.

Now, suppose S is almost abelian. Let N be the nil radical of S and
consider N0Zi . It then follows that NQ)Lι is a subalgebra of L and N is its
radical. Moreover, by Proposition 1.2, JV is abelian, and we can thus apply the
preceding proof to conclude that JV=O, which is a contradiction.

The converse follows from Proposition 1.2.
This completes the proof of Theorem 2.4.
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We have thus completely characterized upper semi-modular Lie algebras
over fields of characteristic zero.

REMARK: Since abelian, almost abelian and special simple Lie algebras
are modular, it follows that an upper semi-modular Lie algebra over a field of
characteristic zero is modular.

3. Lower Semi-modular Lie Algebras

THEOREM 3.1 If L is a nilpotent Lie algebra, over a field of any char-
acteristic, then L is lower semi-modular.

PROOF :

Let A and C be subalgebras of L with C^A. Then, since the normalizer
of A in C is φA, there exists a subalgebra Ax of L such that O A{^ A, and
dim Aι—dim A = l. Thus, if A9 B and C are subalgebras of L such that C
covers both A and B, then both A and B cover Ar\B.

LEMMA 3.1 Let L be a split simple three-dimensional Lie algebra over a

field Φ not containing V^T- Then 1) there exists y e L such that L covers the

subalgebra {y} 2) L is not lower semi-modular.

PROOF :

1) As usual, L has a basis eu e2, e3 such that [_eu e 2] = e3; [_e^ e3] = 2ei;
Ce2, 3̂]== — 2β2. Consider the element eλ + e2. We assert that it is not contained
in any two-dimensional subalgebra of L. Suppose there exists α=αiei + α2e2 +
α3e3 e L such that {βi + e2, α} is a two-dimensional subalgebra. Then there
exist λ, β c Φ such that

Hence, the following system of equations has a solution in Φ for

2 = — 2α3

If α2 — αi = 0, then Aα3 = 0, and we need only consider α3 = 0. But in this case

Thus, α2 — α i ^ O , and so α3=τ^0. Solving these equations for λ and A, we
find t h a t t h a t — 4α^ = (α1 — α 2 ) 2 , which is impossible if sj — \ξφ.

2) Consider the following subalgebras of Z: A = {eu e3}, i? = {
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Then L covers both A and B, and Ar\B = 0. However, we also have A ^> {eλ} ^ 0
= Ar\B, which implies that L is not lower semi-modular.

THEOREM 3.2 If L is a split semi-simple Lie algebra over a field Φ not
containing V--ϊ> then L is not lower semi-modular.

P R O O F :

If L is a split semi-simple Lie algebra, then L contains a split simple three-
dimensional Lie algebra.

PROPOSITION 3.1 Let L be a simple three-dimensional Lie algebra. 1) If
L is non-split, then L is lower semi-modular; 2) If Φ is algebraically closed,
then L is lower semi-modular.

PROOF:

1) This follows from Proposition 1.6.
2) If x e L, then either x is a regular element or ad x is a nilpotent

transformation. If ad x is nilpotent it follows that x can be embedded in a
two-dimensional subalgebra of L. If x is regular, then H = {x} is a Cartan
subalgebra of L and L=H+Φea + Φe-a, which implies that # is contained in
H+Φea, a two-dimensional subalgebra.

It then follows that L is lower semi-modular.

LEMMA 3.2 Let Φ be an algebraically closed field, and Li a simple three-
dimensional Lie algebra over Φ. If L=LιQ)Lu then L is not lower semi-
modular.

PROOF :

We set L=Lι@L2, where L2=LU and consider the diagonal subalgebra D
of L, D = {(eu βi), (e2, e2), (e3, e3)}. We assert that D is a maximal subalgebra
of L.

Let M be a four-dimensional subalgebra of Z such that M=^D, and let
i?=radical of M. It then follows that M=Dξ&R, and thus, dimi?-=l. Let
d e D, and define ^ ( d ) = a d d\R. Then <? is a representation of 2) which is one-
dimensional, and hence, Ψ—0. Thus, RC center of M. Let R — Φ{ru r2). Now,
if [(*, *), (n, r2)D=0 for all (#, #) 6 Z> then [>, r/] = 0 for all x e L{ (ί = 1, 2),
which implies that i? = 0. Thus, D is not contained in any four-dimensional
subalgebra of L.

Now let M be a five-dimensional subalgebra of Z such that M^D. Then
dim (MnLi) = 2. Moreover, since Φ is algebraically closed and L is semi-
simple, all maximal solvable subalgebras of L are conjugate to H-\-Φea-\-Φeβ-{-

, where H is a Cartan subalgebra of L and α, /?, are positive roots with
respect to some ordering. Thus, all two-dimensional subalgebras of Lλ are
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conjugate to the subalgebra {βi? e3}.

Hence, we may take M as

?i)? (e2, β2), (e3, β3), (βi, 0), (β3, 0)}.

Since (e2, 0) ί M, it follows that M is not a subalgebra. Hence, Z) is not
contained in any five-dimensional subalgebra of L.

We now show that L is not lower semi-modular. Consider the following
subalgebras of L: A = {(eu 0), (e2, 0), (e3, 0), (0, ex\ (0, e3)}; £ = 2); C={(e1 ? 0),
(0, β l ) , (β3, 0), (0, e3)}. Then i Λ ^ f e , eθ, (e3, β3)}. Also, L covers both A
and 5. However, A^CBAr\B, which implies that L is not lower semi-
modular. This completes the proof of Lemma 3.2.

THEOREM 3.3 Let Φ be an algebraically closed field. If L is a semi-simple
Lie algebra over Φ which is not simple, then L is not lower semi-modular.

PROOF:

If L is semi-simple and not simple, then L = LιQ)L2Q)•• φ L r , where the L{

are ideals of L which are simple Lie algebras. Since Φ is algebraically closed,
I i ) M i , ZOikf2, where Mi and M2 are simple three-dimensional subalgebras
of Li and Z2, respectively. If we let M = MλφM2, it follows that M is a sub-
algebra of L which is not lower semi-modular.

PROPOSITION 3.2 The classical Lie algebra A2, over an algebraically closed
field, is not lower semi-modular.

PROOF :

We consider the usual matrix basis ftj of $3, where /,-_,• is a 3 x 3 matrix
with a 1 in position (&', j) and 0's elsewhere. Then a basis of A2 is given by

eι=fn—/*33 e2=f22—y33 £3—/*i2

eη—fzi es=f32

Then M = {e2, e5, e6, e7, e8} is a subalgebra of ^42. Now consider the following
subalgebras of M: A = {e2, e5, e6, e7} B = {e2, e6, e8} C={β2, e5, e6}. 5 is a
simple three-dimensional Lie algebra, and using essentially the same proof as
that of Lemma 3.2 we can show that B can't be embedded in any four-
dimensional subalgebra of M. Thus, M covers B, and M covers A. We then
have A=^C^-Ar\B, which implies that A2 is not lower semi-modular.

LEMMA 3.3 Let L be a split semi-simple Lie algebra. If there exist two
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roots a and β which are orthogonal and such that ±a±β is not a root then
as a subalgebra.

PROOF :

If we let, as usual, ha = [_ea, e_α] and hβ = [_eβ, e-βJ, then Lι — {ha, ea, e_a}

and L2~{hβ, eβ, e_β} are two subalgebras of L, both of which are isomorphic
to Aι. Since a and β are orthogonal, [ha, e±β^=0. Hence, LXQ)L2 or AλφAι
is a subalgebra of L.

PROPOSITION 3.3 The classical Lie algebra B2, over an algebraically closed
field, is not lower semi-modular.

PROOF :

The root system of B2 is given by the vectors <x = (l, 0), /9 = (1,1), Γ = (0,1),
δ = ( — 1, 1) and their negatives (see van der Waerden [8], p. 450). Since β and
δ satisfy the conditions of Lemma 3.3, B2^>

THEOREM 3.4 Let I be a semi-simple Lie algebra over an algebraically
closed field. L is lower semi-modular if and only if L is of rank one.

PROOF :

Let L be lower semi-modular. We need only consider the simple Lie
algebras. Since A2 and B2 are not lower semi-modular, then An and Bn, for
n>2, are not lower semi-modular. Now since A2CG2 (van der Waerden [ΊΓ],
p. 461, or Dynkin [3], table 11, p. 149) and G2CF4CE6CE7CE8 (Dynkin [3],
p. 192), we conclude that the exceptional Lie algebras are not lower semi-
modular. Moreover, we have A3 C DA and B2 C C3 ([8~], p. 461).

Thus, Cn and Dn are not lower semi-modular. Hence, L is of rank one.
The converse has been proved in Proposition 3.1.

PROPOSITION 3.4 Let L be a Lie algebra over an algebraically closed field.
If L is lower semi-modular then either L is solvable or L/S, where S is the
radical of Z, is of rank one.

PROOF :

If L is non-solvable, then by Levi's Theorem L = S®LU where S is the
radical of L and Lλ is a semi-simple subalgebra of L. If rank L i > l , then L is
not lower semi-modular.

We next consider the question of whether the converse of Proposition 3.4
is true. First, we have the following

THEOREM 3.5 If L is a solvable Lie algebra, over an algebraically closed
field, then L is lower semi-modular.

PROOF :

We proceed by induction on dim L. If dim L = l, then L is obviously
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lower semi-modular. Now let dim L — ny and assume that the result holds for
Lie algebras of dim <n — 1. By Lie's Theorem, L contains a one-dimensional
ideal R. Let A, X, F be subalgebras of L such that A covers both X and Y.
We then show that both X and Y cover XΓ\ Y. We may assume, without loss
of generality that A + R = L. We also note that by induction hypothesis, L/R
is lower semi-modular.

Now if A covers X, it then follows that either A + R covers X+R or
A + R —X+R. Thus, we now consider the following four cases:

1) A + R = X+R, A + R=Y+R.
2) A + R = X+R, A + R covers Y+R.
3) A + R covers X+ R, A + R covers Y+ R.
4) jfH-JR=Γ+/?, 4̂ + # covers X+R.
We first consider case 1). It follows that A = X®R, and A=Y®R. Since

/? is one-dimensional, both X and F cover I Λ F.
Now incase 2) we have A + R = A. Since 4̂ covers F, F + i ? = F , which

implies that RC F. We also have .4 = X©# and Γ = ( l Λ F ) φ i ? , and thus F
covers I n F. Moreover, since A/R covers Y/R, we conclude that X covers
Xr\Y.

In case 3), we first note that if any one of the following equalities, Ar\R
= R, XίΛR = R, Yr\R = R, hold then the other two also hold. Thus, suppose
all three equalities hold. Then A/R covers both X/R and Y/R, and thus, by
induction hypothesis both X/R and Y/R cover (XΓ\ Y)/R. Hence, X and F
both cover Xr\ F. If Xr\R= Yr\R = AΓ\R=0, then since Xand Fare sub-
algebras of A, we conclude, by induction hypothesis that both X and F cover
XΛF.

Case 4) is handled in the same manner as case 2).
This completes the proof of Theorem 3.5.
The following example shows that if L/S is a semi-simple Lie algebra of

rank one, where S is the radical of L, then L need not be lower semi-modular.

EXAMPLE Let LL be the simple Lie algebra of rank one over an algebrai-
cally closed field Φ. Let V be any Zi-module such that the module multiplication
is non-trivial. It then follows that dim V">1.

Now since Lγ is semi-simple V is completely reducible, i.e., V is a direct
sum of subspaces V{ irreducible with respect to Lλ. It then follows that there
exists a F, , say V\ such that Lx acting on VΊ is non-trivial. Hence, dim FΊ>1.
We now define Zf = Z 1 φ F 1 , the split extension of Lx by Vι, and show that Lf
is not lower semi-modular.

Let A = LU a subalgebra of Lf. Since Vx is irreducible, i f covers A. Now
let L2 = {eu e3}, a maximal subalgebra of Lu which is solvable. We also define
B = L2(&Vi, the split extension of L2 by Vx. Note that Lf covers B and that
AΓ\B=L2. Also, L2 is a maximal subalgebra of B if and only if Vι is irreduci-
ble with respect to L2. Since L2 is solvable, we conclude, by Lie's Theorem,
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that if Vι is irreducible with respect to i 2 , then dim Fi = l. Since dim Fi>l ,

it follows that L* is not lower semi-modular.

We can, however, prove the following theorem, which characterizes lower

semi-modular Lie algebras over algebraically closed fields of characteristic

zero.

THEOREM 3.6 Let L be a Lie algebra over an algebraically closed field.

Then L is lower semi-modular if and only if L is solvable, or L is a direct sum

of its radical S and a simple ideal Lλ isomophic to Aλ.

PROOF:

Let L = Sξ$Lι. Since S is solvable, then by Lie's Theorem, 5 contains a

one-dimensional ideal A, which turns out to be an ideal of L. We now proceed

iductively as in the proof of Theorem 3.5, and conclude that L is lower semi-

modular.

We now turn to the converse and proceed by induction on dim L. Thus,

suppose that the result is true if dim L<n — 1. If L is not solvable, then by

Levi's Theorem and Proposition 3.4, £ = 50Li, as a vector space direct sum.

We show that [5, £i] = 0.

Let A be a minimal ideal of L which is contained in S. It then follows

that A is abelian. Also, A is then completely reducible, i.e., ^ = Σ = i 0 ^ f ,

where A{ is an irreducible subspace of A with respect to Lx. Now LλφAh the

split extension of Lλ by A{ is a lower semi-modular subalgebra of L. By the

argument used in the discussion of the preceding example, A{ is one-dimen-

sional. Thus [_A{, Z J = 0 . It also follows that A is the minimal ideal of 5,

which means that A is an irreducible S-module, and hence, A is one-dimensional.

Then by induction hypothesis, L/A = S/A@(L1 + A)/A. Thus, [5, I J c ^ , We

also have [[5, LJ, ί j ^ ^ , Z J = 0. Hence, 0 = [[S, ZJ, £i] = [I£i, i j , S] +

[[5, Lxl i j = : i i , 5] + [[5, LJ, L J = [ i i , S],

This completes the proof of Theorem 3.6.

Theorem 3.5 does not hold over a non-algebraically closed field. An

example is provided by the following

PROPOSITION 3.5 Let L be a solvable three-dimensional Lie algebra with

basis ei, e2, e3 over the field of real numbers defined by

[>i, e2H = 0; [ei, e3] = αei + /2e2; [e2, ei\ = reι + de2

where A = ^ ^ is non-singular. Then Z is lower semi-modular if and only if

the eigenvalues of A are real.

PROOF :

Let the eigenvalues of A be non-real. We now show that e3 is not embed-

dable in any two-dimensional subalgebra of L. Thus, suppose {e3, a} is a two-
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dimensional subalgebra of L, where α=αiei + α2β2. Then there exist real
numbers λ, β such that [>3, aj=λe3 + βa. Thus,

=— aλa — a2ϊ

Hence, — Mv = *Av, where v = \ a i \ and XA is the transpose of A. Thus, β is an
Lα2J

eigenvalue of A, which contradicts the hypothesis that A has only non-real
eigenvalues. Thus, L covers the subalgebras Y—{ez) and X={e\, e2}. How-
ever, X=2 {eι} ϋ {0} = I n F, which implies that L is not lower semi-modular.

Conversely, let A have only real eigenvalues. We prove that each element
of L is embeddable in a two-dimensional subalgebra of L. Since {eu e2} is a
subalgebra of Z, it suffices to show that the element χ = χχeι + χ2e2 + e3 is
contained in some two-dimensional subalgebra of L. The subalgebra {x, a} is
obtained by solving tAv— —βv for a given eigenvalue β of *A and setting a —

aι€ι + a2e2, where v = \ a ι . This completes the proof of Proposition 3.5.
L02J

We also note that all other solvable three-dimensional real Lie algebras
are lower semi-modular. Thus, we have obtained a complete classification of
real three-dimensional lower semi-modular Lie algebras.
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