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Introduction

If L is a Lie algebra over a field @, we consider the lattice of all sub-
algebras of L. A Lie algebra will be called distributive, modular, upper semi-
modular or lower semi-modular if its lattice of subalgebras has the correspond-
ing property. In this paper we investigate the relation between the structure
of the Lie algebra and the structure of its lattice of subalgebras. Analogous
work has been done for groups by many investigators, and Suzuki [7] has
written a comprehensive monograph describing the significant results in this
area.

The Lie algebras considered in this paper will be finite dimensional. Also,
the Lie algebras will, unless otherwise stated, be over a field of characteristic
Z€ro.

In this paper, if L is a Lie algebra [ L, L] will be denoted by L', and [ L/,
L] by L”. Also the subalgebra of L generated by ey, e, ---, e, will be denoted
by {ei, ez, ---, €i}.

In this paper, we 1) characterize upper semi-modular Lie algebras over
fields of characteristic zero, 2) characterize modular Lie algebras over fields of
characteristic zero, 3) characterize lower semi-modular Lie algebras over
algebraically closed fields of characteristic zero, 4) study other properties of
distributive, modular, upper semi-modular, lower semi-modular Lie algebras.

1. Preliminaries and examples

Derinrrion: A Lie algebra L over a field of any characteristic is called
distributive, modular, upper semi-modular or lower semi-modular if its lattice
of all subalgebras has the corresponding property.

If a Lie algebra is distributive, modular, upper semi-modular or lower
semi-modular, then a subalgebra or a factor algebra has the corresponding
property.
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been supported in part by the National Science Foundation under contract NSF 1928.



150 Bernard KoLmAN

DerFinttion: An n+1-dimensional (n>>1) Lie algebra, over a field of any
characteristic, is called almost abelian if it has a basis ey, e}, ---, e, such that
[6,’, eo:]=e,~ for 121, and [8;, ej:|=0 for i, j, 21

Prorosition 1.1 Let L be an n + 1-dimensional, n>>1, almost abelian Lie
algebra over a field of any characteristic. Then

1) L"=0, and thus L is solvable.

2) The nil radical N of L is abelian.

3) Every subspace of L is a subalgebra.

Proor:

1) Clear.

2) The nil radical N of L is {ey, ez, ---, €,}.

3) Let M be a subspace of L, and let
a=apeo+ae,+ .- -+aye,, b=boeq+be,+ -.-+b,e, betwo elements of
M. Then [a, b]=boa—aib € M.

Prorosition 1.2 Let L be an n+1-dimensional almost abelian or n-
dimensional abelian (n>>1) Lie algebra, over a field of any characteristic.
Then L is modular (L is a projective geometry).

Proor:
In either case, every subspace is a subalgebra.

Prorosition 1.3 Let L be the nilpotent three-dimensional Lie algebra,
over a field of any characteristic, with basis e, e;, e; defined by [ey, e; |=e3;
(e, es]=0; [es, e3]=0. Then 1) L is lower semi-modular; 2) L is not upper
semi-modular.

Proor:

1) This follows from Theorem 3.1.

2) Define the following subalgebras of L:

A=/{ey, es}; B={e,}; C={e;}. Then both B and C cover {0}, but BUC=
L=2A4=B.

Prorosition 1.4 Let L be the solvable Lie algebra, over a field of any
characteristic, with basis ey, ez, e; defined by [(ei, e2 |=0; [e1, e3]=e1; [ ez, €3 ]=
ey, a==1. Then L is not upper semi-modular.

Proor:

Define the following subalgebras of L:

A={e,+ez e }; B={e +es}; C={es}. Then both B and C cover {0}, but
since a=*+1, BUC=L=2AZB.
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Turorem 1.1 (Kuranishi) Let L be a semi-simple Lie algebra. Then there
exist elements x, y € L generating L.

Proor: See [6].

In Theorem 1.1, we may take x in a Cartan subalgebra H of L and y in
the orthogonal complement of H with respect to the Killing form.

The following proposition appears to be known, although the author has
been unable to find any published proof of it.

ProrosiTion 1.5 (Analogue of Ito’s Theorem in Group Theory [4]). If L is
a Lie ring, such that L=N,+N,, and N, and N, are abelian subrings, then
L"=0.

Proor:

Let [a,b]and [a’, b’ ] € L', where a,a’ € N1, b, b’ ¢ N.. We have, by Jacobi’s
identity, [[a’, 0], [a, b]]=[a’, [V, [a, bJ]]1+[[a’,[a, 6], 6" J=[a’, [[¥',a], 61]
+[[a,[a, b]], b ]. Now, since [b’,a]and [a, b]€ L, we can write [ b, a ]=
a”+b"" and [d/, b]=a" +b", where a”,a’”" € N, and b”, 5" € N,. Then,
[La', '], La, b]]=[a’, [a”, b]]+[La, "], 6" 1=[[b, "], a" ]+ [[a, b'], b" ]=—
[, a" ]—[a", 5" ]=0.

Hence, L"=0.

Let L be a simple three-dimensional Lie algebra. Then there exists a basis
e1, ez, e3 for L such that [e, e:|=e3; [es, e3]=ae;; [es3, €1 ]=Per; a0,
B0 € @. The Killing form of Lis —2[Bxi1y1+axzy:+aBxsys].

The question of when two simple three-dimensional Lie algebras are
isomorphic is answered in [ 27, p. 133 as follows. Two simple three dimensional
Lie algebras are isomorphic if and only if their repective Killing forms are
equivalent up to a non-zero constant factor.

It is also known that L has no two-dimensional subalgebra if and only if
L is non-split. Moreover, L is non-split if and only if there do not exist ai, az,
a3 € @, not all zero such that Fa?+ aal+ aBa?=0.

Lemya 1.1 Let L be a simple three-dimensional Lie algebra. If c=cie;+
czes+ cze3==0 € L, then there exists an element x € L such that ¢ and x generate
L.

Proor:
Assume the contrary, and let x=x,e;+ x2es+ x3e3. Then ¢, x and [ ¢, x|
are linearly dependent for all ~ € L. Hence,
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i a(cax3—c3xz) ¢ xy |
B(Cséﬁ—clxs) C2 x2 |[=0

1

| C1X2—C2X1 C3 X3 }

Since this holds for all x;, we obtain the following relations.

c3+pBc3=0 2¢1c2=0
c?t+aci=0 2Bc1c3=0
cif+aci=0 2acsc3=0

which imply that ¢=0, a contradiction.

Prorposition 1.6 Let L be a simple three dimensional Lie algebra. Then
L is non-split if and only if L is upper semi-modular. Moreover, in this case L
is also modular.

Proor:

If L is non-split, then it does not contain a two-dimensional subalgebra
and is thus upper semi-modular.

Conversely, suppose L is split. Then L contains a two-dimensional sub-
algebra A={x, y}. Now by Lemma 1.1, there exists an element z € L such
that » and z generate L. Since AN {z} =0, we have a contradiction to the
upper semi-modularity of L.

Derinition A simple three-dimensional Lie algebra over a field of char-
acteristic zero, satisfying any of the equivalent properties of Proposition 1.6 is
called a special simple Lie algebra.

2. Upper Semi-modular Lie Algebras

We first establish the following theorem, which characterizes distributive
Lie algebras over fields of any characteristic.

Tueorem 2.1 Let L be a Lie algebra over a field of any characteristic.
Then L is distributive if and only if L is one-dimensional.

Proor:

If L is one-dimensional, it is of course, distributive. Now suppose
dim L>>2. If L is two-dimensional, then L is abelian or almost abelian, and
the lattice is a projective geometry, which cannot be distributive.

If dim L>2, let e;, e, be two linearly independent elements of L, and let
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es=[ ey, €2 ]. If e;is a linear combination of e, and e; then {e, e;} is a two-
dimensional subalgebra of L, and thus L is not distributive. If e; is not a
linear combination of e; and e,, we define the the following subalgebras of L:
A={es}, B={e;}, C={es}. Then AN(BUC)D A, and (ANB)\J(ANC)=0.
Thus, again L is not distributive.

Prorosition 2.1 If L is an upper semi-modular Lie algebra, then either L
is solvable or L/S, where S is the radical of L, is special simple.

Proor:

Assume that L is upper semi-modular and set L,=L/S. If rank L;>2,
then dim H >>2, where H is a Cartan subalgebra of L,. By Theorem 1.1, there
exist x € H, y ¢ H such that x and y generate L;. We thus have the following
sublattice of the lattice of all subalgebras of L (Fig. 1)

L,

{y}

{0}

Fig. 1

This implies that L is not upper semi-modular. Hence, rank L, <<1. If rank
L;=1, and dim L,=3, since L, is upper semi-modular, then L, is special simple.
This completes the proof of Proposition 2.1.

CororLrary 2.1. If L is an upper semi-modular Lie algebra, over an
algebraically closed field, then L is solvable.

Tueorem 2.2 If L is an upper semi-modular nilpotent Lie algebra, over a
field of any characteristic, then L is abelian.

Proor:

If L is a non-abelian nilpotent Lie algebra then L contains a three-dimen-
sional subalgebra L, with basis e, es, ez such that [e;, ex |=es; [ ey, e3]=0;
[es, e3]=0. By Proposition 1.3, we conclude that L, is not upper semi-modular.



154 Bernard KoLmAN

Prorosition 2.2 If L is a solvable upper semi-modular Lie algebra then
L"=0.

Proor:

Since L is solvable, L=H+ L', where H is a Cartan subalgebra of L and
L'=[L, L]. Now H and L’ are both upper semi-modular nilpotent subalgebras
of L, and are thus abelian. By Proposition 1.5, we conclude that L =0.

We now turn to the characterization of upper semi-modular Lie algebras.

Lemva 2.1 Let L be a Lie algebra of dimension n+1, n>>1, over a field
of any characteristic. Let N be an abelian ideal of L of dimension n, and
x €L, x ¢ N. If Lis an upper semi-modular Lie algebra, then the linear trans-
formation ad x|y is a scalar transformation.

Proor:
Let f(z) be the minimal polynomial of ad x|y. Factoring f(z) into its
irreducible factors, we have

f@=p1(2)1p2(2)2- - pe(2)F,

where p;(z) are monic irreducible polynomials. If at least one of the p;(z)
(i=1,2, ..., k), say p,(z), is of degree r>>1, we write p;(z)=co+c1z+c22*+ - ..
4,127 42

Now there exists a basis fi, fs, ---, f» of N such that ad x|y can be re-
presented by a matrix in rational canonical form. Since one of the companion
matrices will be the one corresponding to p;(z) we have, by possibly rearrang-
ing the f;,

L f1s x]:fz;[fz, x]:fs; ------ ;Efr—l, x]=fr;
Cfr x]=cofit+cifot o +cra fr

We now assert that the subalgebra L, generated by f1, fs, -, f,, « is not upper
semi-modular. For consider the following subalgebras of L;:

A={f1, f2}; B={f1}; c={x}. Then both B and C cover {0}, but BUC=
Li2A4=B. Hence, all the irreducible factors of f(z) are of degree one.

We now decompose N into its eigenspaces relative to ad x|y, obtaining

where «, 8, .- are the eigenvalues of ad x|y. Then there exist e, € N,,
ez € Nz such that [e,, x |=ates: [eg, x ]=Pep; [ea, €5 ]=0. Thus {x, e, eg}
is a three-dimensional subalgebra L, of L. If «=0 and 3=~0, we show that L,
is not upper semi-modular. For define the following subalgebras of L.:
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A={es+x, ea}; B={egt+x}; C={e.+tep}.

Then BUC=L,=2A=B. Hence, either all the eigenvalues are zero or they are
all 0.

If all the eigenvalues are =0, we assert that they are all equal. Thus, if
a = then the three-dimensional subalgebra L, just defined is isomorphic to
the Lie algebra defined in Proposition 1.4, which is not upper semi-modular.
Thus, in all cases ad x|y has only one eigenvalue «, which may be zero.

We next show that ad x|y is a semi-simple linear transformation. Now
f(z)=(z—a)*, and we must show that k=1. Assume k>1. Now there exists
a basis fi, fs, -, f» of N such that ad x|y can be represented by a matrix in
Jordan normal form, and if £>1 then at least one of the matrices along the
diagonal is of order k&. We thus have,

Lfy, x]=afy; [ fo x]=fit+afe.

Hence, we have a three-dimensional subalgebra L, with basis fi, f2, x and we
now show that L, is not upper semi-modular by defining the following sub-
algebras of L;:

A={fi, f2}; B=1{f}; C={x}. Then

BUC=L,ZA=B.

Hence, ad x|y is a semi-simple transformation, which implies that it is a
scalar transformation. This completes the proof of Lemma 2.1.

TueoreMm 2.3 Let L be a solvable Lie algebra. Then L is upper semi-
modular if and only if L is abelian or almost abelian.

Proor:

Let L be upper semi-modular. If L is not abelian, let N be the nil radical
of L. By Theorem 2.2, we conclude that N is abelian. Let x € L, x ¢ N, and
consider ad x|y. Since N is an ideal, {x, N} is a subalgebra satisfying the
hypotheses of Lemma 2.1. Hence, ad x| is a scalar transformation, and thus
[z, x ]J=az for z € N, where « is the unique eigenvalue of ad x|y. If a=0,
we consider the subspace {x, N}=M of L. Since L is solvable, MD>N DL’
Hence, M is a nilpotent ideal of L, contradicting the maximality of N. Thus,

a=+0.

We now show that dim L-dim N=1.

Let C(IV) be the centralizer of N. Since ad z|y=+0 for z ¢ N, it follows
that C(N)=N. Now let y ¢ L, y ¢ N. Then there exists 30 ¢ @, such that
[z, y]=Bz for z € N. Consider the element Sx —y. We have [z, Bx —ay]=0
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forall z¢ N. Thus, fx—ay € C(N), and hence dim L/C(N)=dim L/N =1.
We have thus obtained the structure of L. It has a basis e, ey, -, e,
such that

[e;, eoj=ae,-, CK#O, [:6,', ej]——-O for i, ]21

If we let e(;:% and e;=e; for i>1, we find that L is almost abelian.
The converse follows from Proposition 1.2.
This completes the proof of Theorem 2.3.

CororLrary 2.2 Let L be a Lie algebra over an algebraically closed field.
Then L is upper sgmi-modular if and only if L is abelian or almost abelian.
We can now strengthen Proposition 2.1.

Tueorem 2.4 A Lie algebra L is upper semi-modular if and only if L is
abelian, almost abelian, or special simple.

Proor:

Let L be upper semi-modular. Then Proposition 2.1 implies that L is
solvable or L/S, where S is the radical of L, is special simple.

If L is solvable, then Theorem 2.3 implies that L is abelian or almost
abelian. Thus, we wish to show that if L is non-solvable then S=0. If L is
non-solvable, then by Levi’s Theorem L=S&L,, where L, is a semi-simple
subalgebra of L. Then L;~L/S, and thus L, is special simple. L, then has a
basis e, es, e; such that [e;, es]=es; [e2, es]=aei; [es, e1]=BRes, a0,
B+0¢c0.

Since S is solvable and upper semi-modular, it is abelian or almost abelian.
If S is abelian, let x ¢ L, x ¢ S. Note that {x, S} is a subalgebra of L and
consider ad x|s. From Lemma 2.1, it follows that ad x|s is a scalar trans-
formation. For x € L, x € S, define ¢(x)=ad x|s. Then ¢ is a representation
of L;, and since ¢(x) is a scalar and L, is semi-simple it follows that ¢=0,
which implies that S=center of L.

If S=£0, let e;5~0 € S, and consider the subalgebra L,={e,, es, es, e;} of
L.

Define the following subalgebras of L,: A={e;+es, es}; B={ei+es};
C={e:}. Then B\UC=L,= A= B, which contradicts the upper semi-modularity
of L. Hence, S=0.

Now, suppose S is almost abelian. Let N be the nil radical of S and
consider NL,. It then follows that NPL, is a subalgebra of L and N is its
radical. Moreover, by Proposition 1.2, NV is abelian, and we can thus apply the
preceding proof to conclude that N=0, which is a contradiction.

The converse follows from Proposition 1.2.

This completes the proof of Theorem 2.4.
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We have thus completely characterized upper semi-modular Lie algebras
over fields of characteristic zero.

Remark: Since abelian, almost abelian and special simple Lie algebras
are modular, it follows that an upper semi-modular Lie algebra over a field of
characteristic zero is modular.

3. Lower Semi-modular Lie Algebras

Turorem 3.1 If L is a nilpotent Lie algebra, over a field of any char-
acteristic, then L is lower semi-modular.

Proor:

Let 4 and C be subalgebras of L with C=24. Then, since the normalizer
of Ain Cis == A, there exists a subalgebra A, of L such that €D 4,> 4, and
dim A4;—dim A=1. Thus, if 4, B and C are subalgebras of L such that C
covers both 4 and B, then both 4 and B cover ANB.

Lemma 8.1 Let L be a split simple three-dimensional Lie algebra over a
field @ not containing Y —1. Then 1) there exists y € L such that L covers the
subalgebra {y}; 2) L is not lower semi-modular.

Proor:

1) As usual, L has a basis e, e;, e; such that [e;, ex |=e3; [e1, €3 |=2e1;
Lez, €3 ]=—2e,. Consider the element e, +e,. We assert that it is not contained
in any two-dimensional subalgebra of L. Suppose there exists a =a,e, +aze;+
aze; € L such that {e;+e,, a} is a two-dimensional subalgebra. Then there
exist 1, # € ® such that

[ei+es al=2(e;+ es)+ ta.
Hence, the following system of equations has a solution in @ for 4, «.

l+ﬂa1=2a3
l+//‘612:—2(lg

Uasg :(az —a1>.

If a,—a;=0, then #a;=0, and we need only consider ¢;=0. But in this case
a=a;(e;+ ey).

Thus, a;—a;=+0, and so a3==0. Solving these equations for 1 and %, we
find that that —4e%=(a,—a,)?, which is impossible if 1 ¢ @.

2) Consider the following subalgebras of L: A=/{e, es}, B=1{e;+e;}.
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Then L covers both 4 and B, and AN B=0. However, we also have 4> {e;} D0
=ANB, which implies that L is not lower semi-modular.

Tueorem 3.2 If L is a split semi-simple Lie algebra over a field @ not
containing y—1, then L is not lower semi-modular.

Proor:
If L is a split semi-simple Lie algebra, then L contains a split simple three-
dimensional Lie algebra.

Prorosition 8.1 Let L be a simple three-dimensional Lie algebra. 1) If
L is non-split, then L is lower semi-modular; 2) If @ is algebraically closed,
then L is lower semi-modular.

Proor:

1) This follows from Proposition 1.6.

2) If x €L, then either x is a regular element or ad x is a nilpotent
transformation. If ad x is nilpotent it follows that x can be embedded in a
two-dimensiénal subalgebra of L. If x is regular, then H={x} is a Cartan
subalgebra of L and L=H+®e,+0e_,, which implies that x is contained in
H+®e,, atwo-dimensional subalgebra.

It then follows that L is lower semi-modular.

Lemma 3.2 Let @ be an algebraically closed field, and L, a simple three-
dimensional Lie algebra over @. If L=L,PL,, then L is not lower semi-
modular.

Proor:

We set L=L,6HL,, where L,=L,, and consider the diagonal subalgebra D
of L, D={(ey, 1), (e, e2), (e3, e3)}. We assert that D is a maximal subalgebra
of L.

Let M be a four-dimensional subalgebra of L such that M=2D, and let
R=radical of M. It then follows that M =D®PR, and thus, dim R=1. Let
d € D, and define ¢(d)=ad d|z. Then ¢ is a representation of D which is one-
dimensional, and hence, ¥=0. Thus, R Ccenter of M. Let R=0(r,, r;). Now,
if [(x, x), (r1, r2) ]=0 for all (x, x) € D then [x, r;]=0 for all x € L; (i=1, 2),
which implies that R=0. Thus, D is not contained in any four-dimensional
subalgebra of L.

Now let M be a five-dimensional subalgebra of L such that M =2D. Then
dim (MNL,)=2. Moreover, since @ is algebraically closed and L is semi-
simple, all maximal solvable subalgebras of L are conjugate to H+ @e,+ Pes+
...... , where H is a Cartan subalgebra of L and «, 8, --- are positive roots with
respect to some ordering. Thus, all two-dimensional subalgebras of L, are



Semi-modular Lie Algebras 159

conjugate to the subalgebra {e;, e;}.
Hence, we may take M as

M= {(61, 6‘1), (623 62), (639 63), (61, 0)3 (633 O)}

Since (ez, 0) € M, it follows that M is not a subalgebra. Hence, D is not
contained in any five-dimensional subalgebra of L.

We now show that L is not lower semi-modular. Consider the following
subalgebras of L: A={(e;, 0), (ez, 0), (e3, 0), (0, e)), (0, e3)}; B=D; C={(ey, 0),
(0, ey), (es, 0), (0, €e3)}. Then ANB=1{(ey, e1), (e3, €3)}. Also, L covers both 4
and B. However, 422C2A4NB, which implies that L is not lower semi-
modular. This completes the proof of Lemma 3.2.

TuroreM 3.3 Let @ be an algebraically closed field. If L is a semi-simple
Lie algebra over @ which is not simple, then L is not lower semi-modular.

Proor:

If L is semi-simple and not simple, then L=L,BL,P...HL,, where the L;
are ideals of L which are simple Lie algebras. Since @ is algebraically closed,
Li>M,, L;> M, where M, and M, are simple three-dimensional subalgebras
of L, and L,, respectively. If welet M=M,PM,, it follows that M is a sub-
algebra of L which is not lower semi-modular.

Prorosition 3.2 The classical Lie algebra A, over an algebraically closed
field, is not lower semi-modular.

Proor:
We consider the usual matrix basis f;; of @, where f;; is a 33 matrix
with a 1 in position (7, j) and 0’s elsewhere. Then a basis of 4, is given by

61:f11—f33 ezzfzz-'fzs €3=f12
e4=f13 65=f21 €6=f23
€7=f31 €8=f32

Then M ={es, es, es, €7, e} is a subalgebra of 4,. Now consider the following
subalgebras of M: A={e., es, e, e:}; B={es, es, es}; C={ey, €5, e5}. Bis a
simple three-dimensional Lie algebra, and using essentially the same proof as
that of Lemma 3.2 we can show that B can’t be embedded in any four-
dimensional subalgebra of M. Thus, M covers B, and M covers 4. We then
have 4A=C= AN B, which implies that A4, is not lower semi-modular.

Lema 3.3 Let L be a split semi-simple Lie algebra. If there exist two
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roots « and S which are orthogonal and such that +a -+ is not a root then
L> APA, as a subalgebra.

Proor:

If we let, as usual, h,=[e,, e o] and hg=[egs, €_5 |, then L;={h,, e,, €_o}
and L,={hs, es, e s} are two subalgebras of L, both of which are isomorphic
to 4,. Since « and § are orthogonal, [h,, eis |=0. Hence, L,(BL, or 4,H A4,
is a subalgebra of L.

Prorosition 3.3 The classical Lie algebra B, over an algebraically closed
field, is not lower semi-modular.

Proor:

The root system of B, is given by the vectors a=(1,0), 3=, 1), r=(0, 1),
0=(—1, 1) and their negatives (see van der Waerden [ 8], p. 450). Since 8 and
0 satisfy the conditions of Lemma 3.3, B.D> AP A,.

TaeoreEMm 3.4 Let L be a semi-simple Lie algebra over an algebraically
closed field. L is lower semi-modular if and only if L is of rank one.

Proor:

Let L be lower semi-modular. We need only consider the simple Lie
algebras. Since 4, and B, are not lower semi-modular, then 4, and B,, for
n>2, are not lower semi-modular. Now since 4,CG, (van der Waerden [ 87,
p. 461, or Dynkin [ 37, table 11, p. 149) and G.C F,C E¢C E;C Eg (Dynkin [37],
p. 192), we conclude that the exceptional Lie algebras are not lower semi-
modular. Moreover, we have A;C D, and B,CCs; ([8], p. 461).

Thus, C, and D,, are not lower semi-modular. Hence, L is of rank one.

The converse has been proved in Proposition 3.1.

Prorosition 3.4 Let L be a Lie algebra over an algebraically closed field.
If L is lower semi-modular then either L is solvable or L/S, where S is the
radical of L, is of rank one.

Proor:

If L is non-solvable, then by Levi’s Theorem L=S3PL,, where S is the
radical of L and L, is a semi-simple subalgebra of L. If rank L,>1, then L is
not lower semi-modular.

We next consider the question of whether the converse of Proposition 3.4
is true. First, we have the following

Tureorem 3.5 If L is a solvable Lie algebra, over an algebraically closed
field, then L is lower semi-modular.

Proor:
We proceed by induction on dim L. If dim L=1, then L is obviously
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lower semi-modular. Now let dim L=n, and assume that the result holds for
Lie algebras of dim <n—1. By Lie’s Theorem, L contains a one-dimensional
ideal R. Let 4, X, Y be subalgebras of L such that 4 covers both X and Y.
We then show that both X and Y cover XNY. We may assume, without loss
of generality that 4+ R=L. We also note that by induction hypothesis, L/R
is lower semi-modular.

Now if A covers X, it then follows that either 4+ R covers X+ R or
A+ R=X+R. Thus, we now consider the following four cases:

1) A+R=X+R, A+R=Y+R.

2) A+R=X+R, A-+R covers Y+R.

3) A+R covers X+ R, A+R covers Y+R.

4) A+R=Y+R, A+Rcovers X+R.

We first consider case 1). It follows that A=X@R, and 4=YPR. Since
R is one-dimensional, both X and Y cover XN Y.

Now in case 2) we have 4+ R=4A4. Since A covers Y, Y+ R=Y, which
implies that RC Y. We also have 4=X®PR and Y=(XNY)PR, and thus ¥
covers XNY. Moreover, since 4/R covers Y/R, we conclude that X covers
XNY.

In case 3), we first note that if any one of the following equalities, 4N\ R
=R, X"R=R, Y"NR=R, hold then the other two also hold. Thus, suppose
all three equalities hold. Then 4/R covers both X/R and Y/R, and thus, by
induction hypothesis both X/R and Y/R cover (XN\Y)/R. Hence, X and Y
both cover XN Y. If X"R=YNR=ANR=0, then since X and Y are sub-
algebras of 4, we conclude, by induction hypothesis that both X and Y cover
XNY.

Case 4) is handled in the same manner as case 2).

This completes the proof of Theorem 3.5.

The following example shows that if L/S is a semi-simple Lie algebra of
rank one, where S is the radical of L, then L need not be lower semi-modular.

ExampLe Let L, be the simple Lie algebra of rank one over an algebrai-
cally closed field @. Let 7 be any L,-module such that the module multiplication
is non-trivial. It then follows that dim 7>1.

Now since L, is semi-simple ¥ is completely reducible, i.e., V is a direct
sum of subspaces ¥; irreducible with respect to L,. It then follows that there
exists a V;, say V; such that L, acting on 7, is non-trivial. Hence, dim V;>1.
We now define Li¥=L,HV,, the split extension of L, by 7, and show that L}
is not lower semi-modular.

Let A=L,, a subalgebra of L}. Since V; is irreducible, L} covers 4. Now
let L,={ey, e3}, a maximal subalgebra of L;, which is solvable. We also define
B=L,®V,, the split extension of L, by V. Note that L covers B and that
ANB=L,. Also, L, is a maximal subalgebra of B if and only if 7, is irreduci-
ble with respect to L,. Since L, is solvable, we conclude, by Lie’s Theorem,
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that if 7, is irreducible with respect to L., then dim V;=1. Since dim V;>1,
it follows that L} is not lower semi-modular.

We can, however, prove the following theorem, which characterizes lower
semi-modular Lie algebras over algebraically closed fields of characteristic
Zero.

Turorem 3.6 Let L be a Lie algebra over an algebraically closed field.
Then L is lower semi-modular if and only if L is solvable, or L is a direct sum
of its radical S and a simple ideal L; isomophic to 4.

Proor:

Let L=SPL,. Since S is solvable, then by Lie’s Theorem, S contains a
one-dimensional ideal 4, which turns out to be an ideal of L. We now proceed
iductively as in the proof of Theorem 3.5, and conclude that L is lower semi-
modular.

We now turn to the converse and proceed by induction on dim L. Thus,
suppose that the result is true if dim L <n—1. If L is not solvable, then by
Levi’s Theorem and Proposition 3.4, L=SEL,, as a vector space direct sum.
We show that [ S, L, ]=0.

Let 4 be a minimal ideal of L which is contained in S. It then follows
that A4 is abelian. Also, A is then completely reducible, ie.,, 4=3Y_,H4,;,
where A; is an irreducible subspace of 4 with respect to L;. Now L, A4;, the
split extension of L; by A4; is a lower semi-modular subalgebra of L. By the
argument used in the discussion of the preceding example, A4; is one-dimen-
sional. Thus [ A4;, L, ]=0. It also follows that A is the minimal ideal of S,
which means that A4 is an irreducible S-module, and hence, A is one-dimensional.
Then by induction hypothesis, L/A=S/APL,+ A)/A. Thus, [ S, L, |=4. We
also have [[S, L, |, L, ]<[ 4, L, ]=0. Hence, 0=[[S, L, ], L, |=[[Li, L], S+
(LS, Li], Li=[Ly, S1+[LS, Li], Li]=[Ls, S.

This completes the proof of Theorem 3.6.

Theorem 3.5 does not hold over a non-algebraically closed field. An
example is provided by the following

Prorosrrion 3.6 Let L be a solvable three-dimensional Lie algebra with
basis ei, e,, e3 over the field of real numbers defined by

Lei, e2]=0; [e1, es]=aei+PBez; [ez, es |=Te1+0e;

where A:[? g] is non-singular. Then L is lower semi-modular if and only if
the eigenvalues of A are real.
Proor:

Let the eigenvalues of 4 be non-real. We now show that es is not embed-
dable in any two-dimensional subalgebra of L. Thus, suppose {es, a} is a two-
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dimensional subalgebra of L, where a=a,e,+aze.. Then there exist real
numbers A, # such that [es; a]=2e;+#a. Thus,

2=0
Ha,= —ai & —asl
Har= '-(113—(126

Hence, —u#v="'A4v, where ’“’:[Z;J and ‘4 is the transpose of 4. Thus, # is an

eigenvalue of 4, which contradicts the hypothesis that 4 has only non-real
eigenvalues. Thus, L covers the subalgebras Y=/{es;} and X={ey, e;}. How-
ever, X={e,} 2{0} =XNY, which implies that L is not lower semi-modular.
Conversely, let 4 have only real eigenvalues. We prove that each element
of L is embeddable in a two-dimensional subalgebra of L. Since {e;, ez} is a
subalgebra of L, it suffices to show that the element x=xe;+ xze:+e; is
contained in some two-dimensional subalgebra of L. The subalgebra {x, a} is
obtained by solving ‘4v=—uv for a given eigenvalue # of ‘4 and setting a=

aie;+ases, where U:[Z;J' This completes the proof of Proposition 3.5.

We also note that all other solvable three-dimensional real Lie algebras
are lower semi-modular. Thus, we have obtained a complete classification of
real three-dimensional lower semi-modular Lie algebras.
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