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Introduction

Let X and Y be compact Hausdorff spaces, &(x, y) be a universally
measurable” function on X x Y which is bounded from below, g(x) be any
function on X and f(y) be a universally measurable function which is
bounded from above. We denote by .# the set of all non-negative Radon
measures satisfying the inequality

[0, Dau(N=g on x .

In the case that .# is not empty, the quantity
M= sup{gfdp; ®e ,//}

was considered by Ohtsuka [4] in connection with a generalization of a theo-
rem in the theory of linear programming. In this paper, we consider the
family .#x of measures in .# supported by a compact subset K of Y and
consider a similar quantity

M) = sup| fdps € ]

in the case that .#x is not empty. This quantity has a potential theoretic
meaning. In fact, Fuglede [ 2] considered it in case #>0, g=1 and f=1
and denoted it by cap K. We shall call it Fuglede’s capacity in §11.

For any set 4C Y, we define in §1 an inner quantity M;(4) and an outer
quantity M,(4) from M(K) in the same way as the inner capacity cap, 4 and
the outer capacity cap*4 were defined from cap K in [27]. Ohtsuka orally
raised the question as to when M;(A4) is equal to M,(4). We shall give an
answer to this question in the present paper.

Kishi [ 3] examined this problem in the case that X=7Y, @(x, y)=0(y, x)
>0 for all », y€ X, @ is lower semicontinuous and g=f=1. His main result

1) A function on a compact set is universally measurable if it is measurable with respect to all
Radon measures.
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is that if @ satisfies the continuity principle?, then M;(4) = M,(A) for every
analytic set.

Fuglede [ 2] investigated this problem in case #>0, g=1 and f=1, and
obtained a result which is similar to Kishi’s. However, it is impossible, in
his case, to retain the continuity principle as its original form, because X=£Y
in general, so that he used conditions (4) and (B) (see §6 and §8) instead of
the continuity principle. Fuglede proved cap,4=cap*4 for every analytic
set under conditions (4) and (B).

In §2 we shall give the equality M;(K)=M,(K) for compact sets K under
more general setting than Kishi’s or Fuglede’s. On account of an interest-
ing result of Ohtsuka stated in §3, we can develop our theory from §5 to
§10. There, we consider another quantities 7,(4) and 7.4), and follow the
reasoning in [2]. We shall give in §10 the equality M;,(4)=M,(A) for every
analytic set by applying a useful theorem of Choquet [1]. This contains
the results which are mentioned above. In §4 we shall study the properties
of -My(A) and M,A) as set functions for later application and in §11 we shall
compare our M;(4) and M,(A) with Fuglede’s capacity.

We always assume that @ and g are non-negative from §4 to §11 and
that f is upper semicontinuous from §5 to §10. In case ggo, we remark
that .#x is not empty for any K¢ and that M(K), M, (A) and M,A) are
non-negative. Then we define M(¢)=0 for the empty set ¢.

The author wishes to express his deepest appreciation to Professor
Ohtsuka and Dr. Maeda, who gave him encouragement and many valuable
suggestions.

§1. Definitions

Let X and Y be compact Hausdorff spaces, @(x, y)> —co be a lower
semicontinuous function on Xx Y, g(x) (f(y) resp.) be a function on X (Y
resp.) which is bounded from below (above resp.) and K be a compact subset
of Y. A measure p will be always a non-negative Radon measure and Sp
will be the support of x. For a measure x on Y (v on X resp.) a potential

O(x, 1) (O(v, y) resp.) is defined by Sdi(x, y)du(y) (Sa)(x, y)dy(x) resp.). We

shall consider two classes of measures
Mg =1p; SpCK and O(x, n) < g(x) on X}
and

My =1v; SvyC X and Oy, y)=f(y) on K} .

2) Continuity principle: If a potential S@(x,y)d,u(y) of a positive Radon measure p is finite

and continuous as a function on the support of 4, then it is continuous in X.
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In case f and g are universally measurable, we define
ME) = sup{{fdps pe e} i txtd,
and
M’(K):inf{ggdv;ve.///}{} Ty
where the empty set is denoted by ¢. For simplicity, we put
M(K)= oo it #x=¢ .

But we do not define M(K) for .#x—=¢ except for the special case in §4. By
definition, it is easily seen that M(K)<< M'(K) if #x=~¢. For any set ACY,
we define

M;(A)=sup{M(K); K is compact and K A}
and

M(A)=inf{M;G); G is open and GD A} .

§2. Equality My(K)= M.(K)

First we observe that M(K), M(A) and M/ (A) are increasing set func-
tions, M(K)= MyK) for every compact set K and M;(A)<M,(A4). M(K) is
not necessarily equal to M,(K). This is shown by

ExamprLe 1. Let X=Y be the interval {|x|<2} in the real line, K=
{1y1=1}, 0=0, g=1 and f(y=0 if |y|<1 and =]y —1 if 1<|y|<2.
Then M(K)=0 and M;(G)= o for any open set G D K. Hence M (K)=
00> 0=MK).

We shall define conditions (H,) and (H,) as follows:

(Hy) There is a point xo€ X such that @(x,, y)>0 for all y€Y and g(x,)<
oo,

(Hy) f(y)>0 forall yeY.

Under condition (H,), if .#y=~¢, then the set of total masses {u(Y); p€ Ay}

is bounded. Whence M;(A4) and M,A) are not equal to +oo for any set 4.

As for condition (H,), we have

Lemma 1.9 Assume condition (H,). If 4 x5¢ and M(K) 1s finite, then
the set of total masses {w(K); u € A g} is bounded.

3) cf. [4], Lemma 1.
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Proor. If we deny this, then there is a sequence {u,} in .#x such that
pwK)>n. We put p,= u,/u.(K), and choose a vaguely convergent subse-
quence of {u,}. We shall denote it again by {x,} and let x/ be the limit.
It holds that SujCK, u)(K)=1 and

O(x, pg) Z1im @, py) = U B(x, o)/ (K )] = lim[ (max(g(x), 0))/n] .

n—>o0 n—>o0 n—roo

Therefore O(x, ng) <0 if g(x) is finite. Take p such that SypCK, O0(x, p) <

g(x) on X and S fdu is finite. Then for any positive number , we have 0(x,
ptiu)= g(x) on X and hence p+iuj€ .45 Thus M(K);g fd;w-i—tgfd,u{).
Since S fdui>0 by condition (H), we have M(K)=co. This is a contradic-
tion.

Remark. Consider a class of measures

Ma={p; SpC A and O(x, p) < g(x) on X}

and a set function mi(A)zsup{ S fdusne A A} if #47#¢. It is evident that
m;(K)=M(K) for any compact set K with .#x=~¢ and easy to see that, if .#4
is not empty, then we have

mi(A)=sup{m;(K); K is compact and K 4} =M;(A4) .

The equality M,(K)=M,(K) for compact sets K is given by

Turorem 1. Let f be upper semicontinuous® and g be any function
bounded from below such that # x=~¢. If we assume either condition (H,) or
condition (Hy), then we have M(K)=M/(K).

Proor. We may suppose M (K)> —co. In case —oo <M(K)< oo, there
is an open set G, such that Gy DK and — oo <M(Gy)<oo. Let D, be the set
of all open sets G satisfying KCGCGy. D, is directed by C. We assume
M(K)<M[K), and take a number « in between. For every G < D, there is a

measure uc of .#¢ such that S fduc>a. The set {uc;G€ Do} is a net and

vaguely bounded. In fact, we have on account of condition (H;) or (H,)
sup{uc(Y); GE€ Do} <sup{u(Y); n€ M¢,} <oo (see Lemma 1).

Hence a subnet {u.;w€ D;} converges vaguely to some measure u,. We

4) At the beginning of our paper we assumed that f is bounded from above. If f is upper
semicontinuous and does not take the value + co, then f is bounded from above.
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observe that Sy, is contained in K because N G=K and that O(x, o) < g(x)

GEDo

on X. Therefore yo<€ .#k. Since f is upper semicontinuous,

o =< Tim { fapu, = | fuo = MK .
This contradicts the assumption My(K)<a. Thus M(K)> M(K). Next, we
shall prove that M,(K)=oco implies M(K)=co. Since M, (K)=oo does not
occur under condition (H;), our hypothesis is limited to condition (H.). Let
D be the set of all open sets containing K. D is directed in the same way as
above. Let n be an arbitrarily fixed positive integer and « be an upper
bound of f on Y. For any G&< D, there is a measure p® of .# such that

gfd,ug’>> n. Then p2(Y)>n/a. We put A% =u2/u(Y), and choose a

vaguely convergent subnet {1¢”;we D'} and let n, be the limit. Then we
have Su,CK, p,(K)=1 and

O(x, ) < lim 0(x, %) = - max(g(x), 0) on X .

wED’ n

We choose a vaguely convergent subsequence of {u,}. We shall denote it
again by {u,} and let ] be the limit. It follows that u{(K)=1, Su{CK and

OCx, u§) < lim Oz, u}) <lim[o(max(g(x), 0))/n] on X,

n—o0

and hence O(x, ng) <0 if g(x) is finite. Take any measure p of #x. Then

n+tug belongs to # g for any positive number ¢. Since g fdps>0 by condi-

tion (H,) and M(K)gg fd/w—l—tg fdu;, we conclude M(K)=M(K)=co.

Theorem 1 is not always true if we omit the condition that f is upper
semicontinuous. To see this, we give

Examrere 2. Let X, Y, K and g be the same as in Example 1. Take ¢0=1
and f(y=1if | y[<1 and =2 if 1<|y|<2. Then M(K)=1 and M(G)=2
for any open set GO K. Thus M(K)=2>1=M;(K).

§3. Duality Theorem

If X and Y are discrete spaces, then it is known as duality theorem that
M(K)=M'(K). In the general case as ours, Yoshida [ 5 ] gave an example
such that M(K)#M'(K) even if @, g and f are non-negative and continuous.
Ohtsuka [ 4] proved

Tueorem 2. Let f be an upper semicontinuous function and g be a lower
semicontinuous function with A x=+¢. If we assume M(K)> —oo and either
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condition (H,) or condition (H;), then we have M(K)=M'(K).

Consequently, we need not consider M/ (A)=sup{M'(K); K is compact
and KC 4} and M) (A)=inf{M:(G); G is open and GO A} in this case.

Fuglede [ 27] proved the above theorem in case g=1 and f=1.

§4. Properties of M;(4) and M, (A4) as set functions

We assume hereafter that ® and g are non-negative. On account of this
assumption, .# ¢ is not empty for any compact set K=~¢. It is evident that
M(K), M;(A) and M,A) are non-negative. We define M(¢)=0 for the empty
set ¢. We shall study some properties of M;(4) and M, (A) as set functions.
We remark that, in case 0=>0, g=1 and f=1, we have M(K)=cap K, Mi(A4)=
cap, 4 and M,(A)=cap*4 with the notations of Fuglede [ 27].

LemMA 2. Let f be universally measurable, and K, and K, be compact
sets. Then we have

M(K,\UK,) < M(K,)+ M(K>) .

Proor. We may assume that M(K,\UK_) is positive. Let « be a positive
number with M(K;\UK;)>«a. There is a measure p of .#g x, such that

Sfdp>a. Writing F={y€ Su; f(y)>0}, we see that F is a universally meas-

urable set and wu(F)>0. Let u; be the restriction of x to FNK,(j=1,2).
Then 0(x, p;) <@(x, p) < g(x) on X because @ >0. Since Su; CK;, p; belongs
to #k;. Therefore

a<fan={ fan=fam+ frap=mry+ M) .

By the arbitrariness of «, we obtain the inequality.

LemMa 3. Let f be universally measurable and B, and B; be universally
measurable sets. Then we have

M;(B1\UB3) < My(B1)+ M(B;) .

Proor. We may suppose that M;(B;\UB,) is positive. For any positive
number « smaller than M;(B,\UB;), there is a compact set K such that KC

B1\UB; and M(K)>«a. We can find a measure p of .#x such shat Sfd,u>a.

Write F={y€ Su; f(»)>0}. Given ¢>0, there are compact sets K; and K,
having the following properties:

e
Ki.CKNFNB,, K,CKNFN B, gKnFnBifdﬂ<SK1fd,b+7
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and

e
g}anBzfd,u<gK2fd,u+? )
Denoting the restriction of n to K; by p(j=1,2), we see p;€ #x(j=1,2)
and

fd,u—l—g fdp

KNFNB,

a<(fap=( ran=|

KNFNB,
< pam,+ e = MK+ M) 4o
< Mi(B1)+M(B2)+e .

By the arbitrariness of « and ¢, we obtain the desired inequality.
From Lemma 3, we easily deduce

Tueorem 3.  Assume that f is universally measurable.
(o) For any sequence {B,} of universally measurable sets and for any set A,

we have Mi(\) (BuN A)= 31 Mi(B, A).
n=1 n=1
(B) For any sequence {A,} of sets, we have M O A)< i,‘Me(A,,).
n=1 n=1

CoroLLARY. M (A—N)=M,A) if M,(N)=0.
If we omit the condition @=>0, then it is not always valid that M, (4,
A)=M[A)+ M,Az). In fact, we can construct

Exampre 8. Let X ={x1, x2}, Y={y, »2}, Ki={m}, Ke={y}, glx)=
g(x)=1, fl=f()=1, 0(x1, y)=0(xs, =1, Ox:1, y)=—1 and O(xs, y2)
=1/4. Then M(K;)=M(K;)=1 and M(K:\UK,)=11/5. In fact, let ¢, be the
unit point measure at y and p=ae, +be,, with ¢, 5==0. Then &(x, )< g(x)
on X means that —a+56=<1 and a+56/4<1. We see M(K;)=sup{a}=1,
M(K;)=sup{b}=1 and M(K,\UK,;)=supf{a+b}=3/5+8/6=11/5.

Lemma 4.  Let f be universally measurable. Then we have M:(A:\J A;)<
M{(A)+MAy) for arbitrary sets A, and A,.

Proor. We may suppose that M;(4,\UA.) is positive. For any positive
number « smaller than M;(4,\UA4;), we can find a compact set KC 4, U4,
with M(K)>a. We may assume that M,A4,) is finite. In this case, given
e>0, there is an open set G such that GD 4, and M(G)< M, (Az)+e. Write
F=K—G. Then F is compact and contained in 4, and K = F\U(KNG). By
Lemma 3, it holds that

5) cf. [2], footnote 3.
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a<M(K) < M(F)+ M{(FNG) < Mi(A,)+ M{(G)< Mi(A)+ M(A2)+¢ .

By the arbitrariness of « and ¢, we obtain the desired inequality.

DeriniTioN. We shall say that a property holds n.e.® (g.e. resp.) on A4 if
the M;-value (M,-value resp.) of the exceptional set in A4 is zero.

§5. 7:{(4)and 7.(A)

We shall define two more classes of measures
I'i={v; SyCX and @@y, y)= f(y) n.e. on 4}
and
I's={v; SvCX and O(», y) = f(y) q.e. on A} .

Fuglede [ 2] considered these classes in case g=1 and f=1. From now on,
we assume that g is universally measurable. We set

1) = inf{g gdv; »er;} if T
and

7i(A4) = oo if I'i=¢ .

For I'¢, we define 7,(4) similarly. In case 7{(4)=r1.A4), we shall simply write
7(4) for the common value.

In what follows, except in §11, we assume that f is upper semicon-
tinuous. First we have

TuEOREM 4. Assume either condition (H,) or condition (H;). Then it is
valid that 7(A)=r1.4) for any K,-set.

Proor. Let 4 be a K,-set. It suffices to show that if @(v, y)=> f(y) n.e.
on 4, then @y, y)=>f(y) q.e. on 4. Write N={y€ 4; 0, y)<f(y)}. Since
A is a K,-set and f is upper semicontinuous, we see by the relation

N=n\:)j1 {ye 4; o, y)é(l——,lb—)ﬂy)}

that NV is also a K,-set, i.e. NV can be expressed as OK,, with compact sets

n=1

{K,}. By Theorem 1, we have

6) “n.e.” (“g.e.” resp.) is an abbreviation of “nearly everywhere” (“quasi-everywhere” resp.).
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0<M/(K,)= M(K,) <M(N)=0 for each n .
It follows from Theorem 3 (8) that 0 < M, (N)<< i M/(K,)=0.
n=1

Turorem 5. Let g be a lower semicontinuous function. If we assume
etther condition (H,) or condition (H,), then it holds that M(K)=71(K) for every
compact set K.

Proor. Since #% CI'%, it follows from Theorem 2 that 07(K) < M'(K)
=M(K). It suffices to show the converse inequality in case M(K)>0. Let

be a measure of .# 5 with S fdup>0 and vy be any measure of ';;. Write

N={yeK; 0@, p<f(y}

and
F={yeK; f(y»>0} .

Then NCF, M{N)=0 and wx(F)>0. It is valid that x(N)=0. In fact, for
any compact set HC N, the restriction of n to H belongs to .#y and we have
M y=1{0}, because f(y)>0 for all ye H. Thus pu(H)=0. Since N is a Borel
set, we conclude u(IN)=0. Consequently

(ran={ ran={ 06, pduy =006, pduy

(K~N)AF
- g@(x, W) dv(x) < Sgdv :

Thus M(K)=<7(K).

CoroLLARY. M{A)<71{A).
We remark that M(K) is not necessarily equal to 7(K) without condition
(H,) or (H;). Yoshida [5] gave an example such that M'(K)=7(K)>M(K).

TueoreMm 6. If we assume either condition (H,) or condition (H,), then it
holds that M,(A)<7.(A).

Proor. It suffices to show that @(v, )= f(y) q.e. on 4 implies M, (A4)=
Sgdv. Let N={y€ 4; &, y)< f(y»)}. Then M(N)=0. Assume condition

(H,) and let y;=v+te,, with a positive number ¢. Writing G, = {y€ Y; 0(v,
¥)> f(¥)}, G; is open and contains 4—N. By the Corollary of Theorem 5,
we see
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M(A—N)= M(G)=TAG)= | gave = gdv+tg(x)

Letting t—0, on account of the Corollary of Theorem 3, we obtain M, (4)=
MA—N)< Sgdv. In case condition (H>) is assumed, we consider G,={y¢€

Y; 0y, y)>sf(y)} with 0<s<1 instead of G,. Then G is open and contains
A—N. The rest of the proof is carried out in the same way as above.

§6. Relation between 7,(4) and M;(A)

In this section, we shall discuss when M;(4) is equal to 7.(4). We define
condition (A) as follows:
(4) For any compact set KCY with M(K)>0, there is a nonzero measure
w supported by K such that @(x, u) ts finite and continuous in X.
Fuglede [ 27] defined this condition in case g=1 and f=1. In the special
case that X=7Y, g=1 and f=1, it is well-known that condition (4) is verified
for any kernel which satisfies the continuity principle. Even if X=1Y and
O(x, y)=0(y, x) for all x, y€ X, our condition (4) is different from Fuglede’s.
In fact we give

ExampLe 4. Let X =Y be the interval {|x|<1} in the real line, K =
{x=0}, f=1, g(x)=1/|x| and @(x, y)=1/(|x|+ | y|). Then we see My(K)=
1. But condition (A4) is not satisfied. On the other hand, it is easily seen
that Fuglede’s condition (4) is fulfilled.

Like in the classical case, we have

LemMa 5.7 Let {v,} be a sequence of measures on X which converges
vaguely to vo. Then, under condition (A), we have

lim @(v,, y) <0, y) n.e.on Y .

n—oo

Proor. Write N={y€ Y; lim @(v,, y)>®0(v,, y)} and suppose M;(N)>0.

n—>o

Then there is a compact set KC N with M;(K)>0. By condition (4), we can
find a nonzero measure p supported by K such that @(x, n) is finite and con-
tinuous in X. It follows from Fatou’s lemma that

(005, () < (lim 06,, ydju( »=Lim{00,, pdu(y)

n—o n—o0

_ I,EES@("’ @) dva(x) = S@(x, Wdve(y) .

This is a contradiction. Hence M;(N)=0.

7) cf. [2], Lemme 2.1.
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Tueorem 7. Suppose that g is a positive and lower semicontinuous func-
tion and that condition (A) is satisfied. If 7:(K) is finite, then there exists a
measure v, such that

T,(K):g gdve  and vl .

(This measure v, is called the optimal measure for v(K).)
Proor. Let t be a positive number larger than 7(K). We can find a

sequence {v,} CI'% such that Sgdvn tends to 7(K). Since s=inf{g(x); » € X}

>0, we see sv,,(X)§Sgdv,,<t for large n. We can find a subsequence {v,}

which converges vaguely to some measure v,. By Lemma 5, @(v,, yv) = f()
n.e. on K and hence vy, I"i. It follows that

70 = Tim{ gdv,, = { gavo =74 .
e

We can not omit either condition (4) or the condition g>0 in this
theorem. In fact, an example in [ 5] shows that it happens that there is no
measure in /"% which attains 7(K) if we allow g(x)=0. In this example, @
is finite and continuous. Therefore condition (A4) is valid and M'(K)=71(K).
Fuglede [ 27] gave an example such that g>0 but condition (A4) is not valid
and there is no optimal measure in /"% for 7,(K).

TurorEM 8. Assume that g is positive and lower semicontinuous and that
condition (A) is satisfied. If we assume either condition (Hy) or condition (H>),
then 1{(A)=M(A). In case M{A) is finite, there is a measure vy, of I'%; such

that 7:(A)= g gdvs.
Proor. It is enough to show that M;(4)>7:(A4) in case M;(A) is finite.

The set D of all compact sets contained in A is directed by C. For any
K e D, there exists a measure vg such that

[ gavic = 7(5) = M) < M) < oo

and
Ok, y) = f(y) n.e.on K

because of Theorems 5 and 7. Since s=inf{g(x); x € X} >0, {vx(X); K<€ D}
is bounded. We can find a subnet {v,; ®€ D'} which converges vaguely to
some vo. Let N={y¢€ 4; 0(v, y)<f(y)} and suppose that M;(/N)>0. Then
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there is a compact set K, C N with My(K,)>0. By condition (4), there exists
a nonzero measure u, supported by K, such that @(x, u,) is finite and contin-

uous in X. Consequently Sa)(vo, Y dpo( y)< S fduo. Write Ng={yeK; O(v,

<Ay}t and F={yeY; f(y)>0}. Then NxCF, Nx is a Borel measurable
set and M;(Ng)=0. We see by the same reasoning as in the proof of Theo-
rem 5 that

uoN) =0  and g fdmggm@,{, Vauoly) -
We have
[ o= Bim (00, s ) = lim (00, o) o)
= 0z, noydvia) < fap

This is absurd. Thus M;(N)=0. Namely @(vo, y)— f(y) n.e. on 4. Therefore
voe ', and

M(A) = lim Sgdyw =~ g gdvo=7:(4) .

weD’

This completes the proof.

§7. Relation between 7.(4) and M,(A)

In this section, we shall discuss when 7;(G)=7,G) for every open set G. If
we assume either condition (H,) or condition (H>) and that any open set in Y
is a K,-set, then the equality is guaranteed by Theorem 4. On the other
hand, even if we do not assume these, by following the method of Fuglede
[27], we can obtain the equality under some different conditions.

DeriniTiON. A real-valued function A on Y is called quasi-continuous if,
for any ¢>0, there is an open set G. such that M;(G.)<e and the restriction
of h to Y—G, is finite and continuous.

We define condition (B) as follows:

(B) @y, y) 1s quasi-continuous on Y for every measure v on X.
Fuglede [ 2] defined condition (B) in case g=1 and f=1. First we shall
prove

Levmma 6.2 Let A be any set. If we assume that, for any ¢ >0, there is a
set B, such that M,B.)=M(B.), M(A—B,)<e¢ and M,(B.— A)<e, then it is

8) cf. [2], Lemme 4.3.
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valid that M;(A)= M/A).

Proor. On account of Theorem 3 and Lemma 4, we have
MA) < M(B)+MS(A—B:)<M(Bs)+ ¢
and
M;(B) = M{(A)+M(B:—A)<M(A)+¢ .

Therefore M,(A)<M;(A)+2¢. By the arbitrariness of ¢, we have M, (A4)<
M{(A4). Thus M(A)=M,(A).

Lemma 7. Assume condition (B) and that f is quasi-continuous and let G
be an open set. If O(v, y)= f(y) n.e. on G, then we have (v, y)= f(y) q.e. on G.

Proor. It is enough to show that the M,-value of N={ycG; 0@, <
f(y} is zero. Given ¢ >0, by condition (B) and the quasi-continuity of f,
there is an open set G. such that M;(G:)<e and both @(y, y) and f are finite
and continuous as functions on Y—G.. Write

N:={ye Y—G;; 0(v, »<f(y)} and B.=(N:\UGHONG .

Then NCB:CNUG: and N.\UG; is open, because Y —(N:UG.)={yc€ Y—GC;;
O(v, v)= f(y)} is closed. It follows that B, is open, M, (N—B.)=M,($)=0 and
M(B:—N)<XM(G:)<e. Evidently M(B.)=M,B;). By Lemma 6, we obtain
M,(N)=M{(N)=0.

Now we can easily prove

Tureorem 9. If ome of the following conditions (a) and (b) is satisfied,
then 17,(G)=7,G) for every open set G
(a) FKEither condition (H,) or condition (H,) s satisfied and any open set in Y
s a K,-set.
(b) Condition (B) is satisfied and f is quasi-continuous.

§8. Summary from §5 to §7

We shall sum up our results.

TureoreMm 10. We have the relation
M1<A) = Ti<A) §T6<A) = Me<A)

under the following hypotheses:

(1) Condition (A).

(2) FEither condition (H,) or condition (Hy).
(3) g1s positive and lower semicontinuous.
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(4) Either (4-1) any open set in Y is a K,-set or (4-2) condition (B) and
f 18 quasi-continuous.

Proor. By means of Theorems 6, 8 and 9, we have
M T(A)=T/C) =7(6) = Mi(G)

for any open set GO 4. Thus M, (A4)=7,A4).

§9. Convergence theorem
We shall give

Tueorem 11.9  Assume conditions (A) and (B) and either condition (H:)
or condition (H;). If {v.} is a sequence of measures on X which converges
vaguely to vy, then we have

lim @, y) <00, y) ge.on Y .

n—oo

Proor. Write h,(y) = inf{@(;, y); k=n}. Then h,(y) increases to lim

n—o0

O(v,, ). Given >0, for each n (n=1,2,...), we can find, by condition (B),
an open set G& such that M;(G¢”) <2 "¢ and the restriction of @(v,, y) to Y—

G¢ is finite and continuous. If we set G.= OG@"’, then G. is open, M;(G,)<e
n=1

and the restriction of @(v,, y) to Y—G; is finite and continuous for each n.
For a positive number ¢, we put

E()={y€Y; hy)—0o, y) =1t}
and
E(e, 1) = {y€ Y—G¢; h( ) —O(vo, y) =1} .

Since the restriction of 4,(y)—®(, y) to Y—G. is upper semicontinuous, E,(e,
t) is a compact set. We recall M;(E,(s,¢)) = MJ(E.(s,¢t)) by Theorem 1. If
M;(E.(e, t)) were positive, by means of condition (4), we could find a unit
measure p such that Sy CE,(e, t) and @(x, u) is finite and continuous in X. It
would follow that

t = (T )~ 060, Y1diu( )= (i (000, ()

<004, (060, Dduty)

9) cf. [2], Théoréme 7.3.
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= {0, mwano— (0, was() (k=n),

and the right side tends to 0 as k—oo. This is a contradiction. Consequent-
ly

Me(En<89 t)) = Mi(En(sa t)) =0 .
It is valid that

0 = MAE, (1)) < MAE\(e, 1)\ JGe) =< M(E, (e, 1))+ MGe)
= M,(Gg) <e .

Thus M.(E.(¢))=0. By the relation

N={ye ¥; lim a(,, y)—0(,, 3)>0} = O k:\)lEna/k)

n—o0

and by Theorem 3 we see M, (N)=0. This completes the proof.

Turorem 12.  Assume conditions (A) and (B) and either condition (H,) or
condition (Hy). Further assume that g is positive and lower semicontinuous
and either that f is quasi-continuous or that any open set in Y is a K,-set. If
M A) 1s finite, then there exists a measure v, such that

O, Y)= f(y) qe.on A  and Mg(A):S gdv, .

Proor. We can find a sequence {G,} of open sets such that lim M;(G,)=

n—oo

M(A), M(G,) is finite and G,>G,.1 > A. On account of Theorem 8, we can
find a measure v, on X such that O(v,, )= f(y) ne. on G,> 4 and M;G,)=

Sgdv,,. It is valid that @(v,, v)= f(y) q.e. on G, (see Lemma 7 and the proof

of Theorem 4). Since s=inf{g(x); x€ X} >0, the total masses v,(X) are
bounded. The rest of the proof is carried out in the same way as that of
Theorem 7. We have only to note that we use Theorem 11 instead of Lem-
ma 5.

Turorem 13. Let {A4,} be an increasing sequence of arbitrary sets and

A= C/A,,. Then, under the same assumptions as in Theorem 12, we have
n=1

M(A)=1lim M,(4,) .

n—oo

Proor. Since M(A,)=M(A,.1)==MA), it holds that lim M.(4,)=M.(4).

n—o0
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It is enough to show the converse inequality in the case that lim M,(4,) is

n—so0

finite. For each n, by Theorem 12, we can find a measure v, such that

M(A4,) = S gdv, and O, Y= f(y) qe. on 4, .

Since s = inf{g(x); x€ X} >0 and svn(X)gggdvnglim M,(A4,)< o, the total

masses v,(X) are bounded. We choose a subsequence of {v,} which converges
vaguely to a measure y,. We shall denote it again by {v,}. By means of
Theorem 11, we deduce @(vo, )= f(y) q.e. on 4 and hence yo€I'4. Since g is
lower semicontinuous, we have by Theorem 10

M,(4) = 7.(4) < | gavo < lim| gy, <lim M(,) .

n—ro0

§10. Equality M;(4)=M,(A4) for analytic sets

Because of Theorems 1 and 13 we can apply Choquet’s theorem.'?
Thus we have

Tueorem 14.1Y  Under the same assumptions as in Theorem 12, it is valid
that M(A)= M, A) for every analytic set.

Fuglede proved this theorem in case g=1 and f=1.

§11. Comparison with Fuglede’s capacity

We shall mention the relation between M;(4) (M.(4) resp.) and cap, 4
(cap*4 resp.). In this section, we assume that f is a universally measurable
function. First, we remark that there is no general relation between them.
In fact, M(K)=0<oco=cap K in Example 1 and M(K)=1>0=cap K in Ex-
ample 4.

However we obtain

Tueorem 15.  Assume that g is bounded from above and let a (S resp.) be
a positive upper bound of g (f resp.). Then we have

M(A4) < ap(cap,A) and M,(A) < ap(cap*4) .
Proor. It is enough to show M(K)<ap(cap K). By the relation

MrgC{p; SpCK and O(x, p) = on X} = Fg,

10) [1], Théoréeme 30.1.
11) cf. [2], Théoréme 7.8.



On a Capacitability Problem Raised in Connection with Linear Programming 73

we have
MO < sup! | fdps pe Ficf <8 suplu(V); we # ) = aileap K) .

Turorem 16.  Let s =inf{g(x); x € X} and ¢ =inf{f(y); y€ Y} be posi-
tive. Then we have

st{capse A) < M(4) and  st(cap*A4)<M,(A4) .

Proor. It is sufficient to prove si(cap K)<< M(K). For any measure
such that Sy C K and @(x, )<<1 on X, we have @(x, spu)<s=< g(x) on X and
hence

M) = { fdsp)Z stV

Thus we have M(K)Z=st(cap K).

Tueorem 17. Let s=inf{g(x); x€ X}>0 and f>0. Then M(A)=0
implies cap, A=0.

Proor. For any measure such that SuC 4 and @(x, x)<<1 on X, we have

O(x, sp) < s = g(x) on X

and hence
Mi(A) gsg fdp .
Since >0, Mi(A4)=0 implies ;=0. Thus caps4=0.

References

[1] G.Choquet: Theory of capacities, Ann. Inst. Fourier, 5 (1955), pp. 131-295.

[2] B.Fuglede: Le théoréme du minimax et la théorie fine du potentiel, ibid., 15 (1965), pp. 65-87.

[3] M. Kishi: Capacitability of analytic sets, Nagoya Math. J., 16 (1960), pp. 91-109.

[4] M.Ohtsuka: A generalization of duality theorem in the theory of linear programming, this
journal.

[5] M. Yoshida: Some examples related to duality theorem in linear programming, this journal.

Department of Mathematics,
Faculty of Science,
Hiroshima University








