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We consider an m x n matrix (a;;), a vector b with components b1, ---, bx
and a vector ¢ with components ¢y, ..., c,. We denote by .# the set of vec-

tors u having non-negative components u, ---, u, and satisfying ﬁ‘,a”u i< b;
j=1
(i=1, .-, m), and by .#’ the set of vectors v having non-negative components

v, ---, vy, and satisfying ia,‘jl]iz c;(j=1,...,n). Weset
i=1

M = sup c-u’ = sup écju,- if #=+¢ (the empty set)
uE A usH j=1
and
M = inf bv' = inf 3)bv; if =g
vEH’ vEX i=1

The well-known duality theorem in the theory of linear programming asserts
that, if #5=g and M<oo, then #'~<¢ and M=M.

We shall generalize this theorem in the present paper. Let X and Y be
compact Hausdorff spaces and @(x, y) a universally measurable” function on
X x Y which is bounded below. Let g(x) be a universally measurable func-
tion on X which is bounded below and f(y) a universally measurable function
on Y which is bounded above.

Under these general circumstances let .# be the class of all non-negative
Radon measures? n on Y satisfying

[ oG, D)= g on X.

Such a measure is called feasible. In case .# is not empty, we set

M =sup f(pdu(y) -

1) A function in a compact space is universally measurable if it is measurable with respect to all
Radon measures.
2) A measure means a non-negative Radon measure in this paper unless otherwise stated.
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If there is a measure of .# which attains the maximum, it is called optimal.
Similarly, we define the class .#’ of (dually) feasible measures v satisfying

S(Il(x, ydv(x)=f(y) on Y, and set

M = inf/gg(x)dv(x)

if #'=~#. This is the dual problem. An element p of .#(.#' resp.) is called
extreme if there are no distinet g, ps € # (4’ resp.) such that 2u=u; + u2.
As in the discrete case we obtain

Turorem 1. Assume 4=+ & and 4’5~ &. Then M<M'. If p€ M, vE M’
and S fdu= S gdv, then both 1 and v are optimal.

Proor. Suppose S(lldu < gand Smug f. Then

g fdp=< ngl)dvdu - Sg(Pdp,dvg g gdy

and M<<M’ is derived. If the equality S fdp= S gdv holds, then S fdp=M=

M’=S gdv. Thus both x and v are optimal.

Next we prove

Lemma 1Y Assume 4+ g, —co <M< oo and either (i) f(y)>0 on Y or
(ii) there is xo € X such that @(xo, y)>0 on Y and g(xo)<oco. Assume also that
@ 18 lower semicontinuous.” Let D={«} be a directed set. Let {®,; k€ D} be
a net of lower semicontinuous functions increasing to @, and {X,; « € D} be an

increasing net of sets in X. If g(x)=co on X—lim X, and S(ﬁ,c(x, Ndpl Y=
D

&(x)+const. (independent of x) on X, for every k€ D, then there is xo such that
{1 Y); k=ro} are bounded.

Proor. It is easy to obtain the conclusion under (ii). Hence assume (i).
Suppose that u(Y)—> oo along a subnet {u,;«€ D’} of {u.}. We set p.=
e/ pY), and choose a vaguely convergent subnet of {u.; x€ D'}. We shall
denote it again by {u.; x€ D’} and let u§ be the limit. Let g(x)<oco. For
some x=rx,, x€ X, and it holds that

3) This very useful lemma and some improvements in Theorem 3 were suggested orally by
M. Yoshida, a colleague of the author. In the first manuscript, =0 was assumed in condition (i) of
this theorem and g=0 was assumed at some place.

4) A lower (upper resp.) semicontinuous function is assumed to be bounded below (above resp.) in
this paper.
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fe, i ) =tim 0 Cx, i )= lim lim{o.Cx, Pauid )

, ’, <1 w: .
g(/zk (2, y)dm(y>=lg,n Ped) 0

<lim
e
Take a p€ .# such that S fdp is finite. Then

S(ﬂ(x, Yd(u+Nuf)= g(x)  everywhere on X

for any N>0, or u+ Nug € #. On the other hand, since f >0 on Y and
ui(Y)=1, we see that g fdu,>0 and

g Fd(p+ Nuf) = S fd,L—l—Ng Fduh—> oo as N—>oo .

Thus M= oo, which is contrary to our assumption.
LemMA 2. Assume 4=+~ @, —co < M< oo and sup @< 0. Let x) bea
XxY

Sunction on X, and p be a measure in Y with finite S fdp. If g(l)(x, ydu( =
h(x) on X, then we can find a measure p'<p such that p'(Y)<<—(inf h)~/sup &,
X XY

g fdﬂgg Fdu' and S(l)(x, PVdu'( P=h(x) on X, where (inf k)~ =max(—inf h, 0).
Proor. We may assume p==0. Suppose that there is a point x,€ S,

with f(x%0)>0. If o is a large number, ag(ll(x, ydu( )= g(x) on X because

sup #<0 and g is bounded below on X. The measure ap+ Ne,, belongs to
# for any N>0, where ¢, is the unit point measure at x,. It holds that

M= fatap+ Ne.,) = ag Fdu+Nf(x)—>oo  as N->oo,
contrary to our assumption. Therefore f<<0 on S,. If 2=>0 on X, then p'=0
satisfies the required conditions. Otherwise, we set m,=infh. If supg(/)dp,g

X X
my, then m;, <sup@-u(Y) and p itself satisfies the conditions. If supg¢d,u<
X
m;, we consider p'= p,mh/supg(/)d,u. It holds that /' <p, ' (Y)<m,/sup @ and
X XxY

g(/)d,/g my=h on X. Since f=0 on S,, Sfdug gfd,u’. Thus ' satisfies all

the required conditions.
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Let us prove

THEOREM 2. Assume 4 5 &, M<co and the lower semicontinuity of @
and —f. Assume also one of the following conditions: (i) f(y)>0 on Y, (ii)
there is xo€ X such that @(xo, y)>0 on Y and g(xe)<oo, (iii) f(y) <0 on Y,
(iv) ;ug @(x, )<0. Then there is an extreme optimal measure p,< A.

Proor. If M= —oo, every feasible measure is optimal. Therefore we
assume —oo < M < oo. Choose u,€ .# such that Sfd,u,,—»M as n—co. By

Lemma 1, x,(Y) is bounded under (i) or (ii). It is easy to obtain the same
conclusion under (iii). If we assume (iv), then we can find {u)} in .# by

Lemma 2 such that p/(Y) is bounded and g fdu,— M. Therefore we may

assume from the beginning that .,(Y) is bounded in all cases. We can ex-
tract a subsequence {u,,} of {z.} which converges vaguely to a measure u,.
It holds that- e

[odpo<tim(odu,<g and M= lims = fdno .
—— oo
Thus po€ # and it is optimal.

We choose a sequence {u™} in .#, such that ™ (K) tends to m,=inf {u(K);
n€ #o. A subsequence converges vaguely to some measure which lies in
. Consequently, #¥={ue€ #,; (K)=m,} is convex and vaguely compact.
As a convex compact set in the locally convex linear Hausdorff space of meas-
ures of general sign with vague topology, .#F has an extreme point; see [ 1]
for instance. If p€.#F is not extreme in .#, there exist distinct u, uz € #

such that 2u=p,+ s, Since M= g fdp=2‘1<g fdu+ g fduz)<M, both i, and

e lie in .#¥. Consequently an extreme point of .#7} is extreme as a point
of #.

Remark 1. M. Yoshida [ 2] gave an example in which all @, g, f are
continuous non-negative and M< oo but in which no optimal measure exists.

Remark 2. The existence of x,€ X such that inf @(x,, y)<0 is not suffi-
Y

cient to obtain the above conclusion. Let X={1,2} and Y=1{1,2, ..., o},
where n is supposed to tend to the point . We set @(1, y)=—1 on Y, #(2,
n)=—1/n and @2, »)=0. Let g(x)=—1, f(n)=—1/n* and f(w)=0. Then

the point measure u, at x =n with total mass n satisfies g(//(x, MdpN=—1

on X and S fdp,=—1/n. Thus M=0 but there is no optimal measure in .#.

Next we ask if the duality theorem holds, i.e. if the assumptions .#=~ &
and —oco<M< oo imply 4’4 and M = M. This is not true in general.
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Actually there is an example in which @, g, f are continuous non-negative
and an optimal measure exists in .#, but in which .#’= &; see [2]. Another
example in [27] shows that even if @, g, f are continuous non-negative and
if € # and ve .#’ are optimal, M may be strictly smaller than M'.

Our main result is the following duality theorem:

Tueorem 3. Assume that 4+ & and —oo <M< oo, and that @, g and
—f are lower semicontinuous. Assume at least one of the following condi-
tions: (1) f(»>0 on Y, (ii) there s xo€ X such that &(x,, y)>0 on Y and
g(xp)< oo, (iii) f(y<0on Y, (iv) glxlg(/)<0. Then 4'=+3 and M=M .

Proor. First we consider the case where @ is continuous and g is bound-
ed. We denote by (k, a) the couple of a bounded function A on X and a finite
number a. Let E be the linear space consisting of all such couples (&, a).
We regard it as a metric space by introducing the distance

d((hb ay), (ha, az)) = max(fg}l? | () —ho(x)|, |a1—a; |) .

Let F be the set of all couples (A, a)€ E such that there is a measure p
which satisfies g(ﬁd,ugh and S fdp=a. Itis certainly a convex cone in E.

We shall show that the closure F* of F does not contain any point of the form
(g, M+38) with §>0. Suppose that there is a sequence {(h,, a,)} in F tending

to (g, M+38). Then there exists a sequence {u.} such that S(ﬁdp,,ghn and

dpn=a, for each n and such that A,— g uniformly and a,—> M+ 5. By
8

Lemma 1, 1,(Y) is bounded under (i) or (ii). It is easy to have the same con-
clusion under (iii). Under (iv) we apply Lemma 2 and find {4/} such that

1 Z iy u(Y)<X —(inf h,)"/sup® and g(lldp,’zgh,, on X. Certainly {u,(Y)} are

bounded. The inequality S fdp,=a, remains true. Consequently, we may

assume from the beginning that u,(Y) is bounded under (iv) too. We extract
a subsequence {u,,} of {x,} which converges vaguely to a measure p,. It fol-
lows that

limg(l/d,umk - g(/)dm and an Fdpn, =< g Fduo,
koo

koo
and hence g(ﬁdp,ogg and Sfdp,ogMnL 5. This is impossible because M=

supgfd,u,.

HEML

By Theorem 2 there is p satisfying Kwdpgg and Sfdp,zM. Hence g*=
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(g, M)e F. Let us write e* for (0,1). On account of the fact that F* is a
closed convex set and g*+3e* is outside F“, there exists a hyperplane in E
separating F° and g*+38e*; see [1]. Namely, there exists a linear functional
@ on E such that o =>a on F* and @(g*+3e*)<a. Since F* is a cone, ¢ =0
on F* and ¢(0)=0. Hence we may take o =0. In particular, o(g*)=0.
Hence 0>@(g*)+3p(e*)=38p(e*). We may assume @(e™)=—1 without loss
of generality. The inequality =0 on F* implies that @((h, 0))=0 for any
h=0. If @((h,0)) is regarded as a linear functional on the family of continu-
ous fnnctions in X, it is a positive functional. By Riesz’s theorem, there is a

measure » such that ¢((4, 0)) = ghd;x for continuous A. The couple (#(-, y),

() belongs to F if f(y)>—co, and hence @((¢(-, y), f(¥))=0 holds. It fol-
lows that

0=p((@C, y), f()

= p((@C, ), )+ Dple®) = |0x, D) —f(),

whence
o, pasn = fp if f()>—oo .

This is evidently true if f(y)=—co. Hence ve .#'.
Let h be any continuous function satisfying A< g. We have

8> p(g*) = p((g M) = p((g, 0)+ Mp(e*)

= g((h, 0))+ Mp(e*) = ghdu+M<p(e*) - Shd; M,

or Shdu<M +38. On account of the arbitrariness of 4, we have M’gggd»g

M+, whence M'<<M. This yields M= M in virtue of Theorem 1.
Secondly we consider the case where @ is continuous but g may not be
bounded. It is not necessary to discuss the case subject to (iii). Under (iv),

A is equal to {M; S(//(x, Vdp(y) =— g‘(x)}, where g~ =max(—g,0). As we
saw above, .#’ is not empty and M= inf{ — S g dv;v€E J(’}. Naturally M' >
inf{— S g dv;ve J/’}. Let us show the inverse inequality. Take any v € .#’
and denote by v~ its restriction to the set {x; g(x)=<0}. As a measure in X,

v~ belongs to .#’ because @ <0, and it holds that — S g“du=g gd»"=M'. Thus

we obtain M=M'. Next, assuming (i) or (ii), we set
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Xo={x€X; glx)<n} and X.={xc€X; g(x)=o00}.

We see that X, is a closed set and X, " X— X, as n—o. By Lemma 1 there
exists no with the property that the inequality S(D(x, ydu(y) = g(x) on any
X, (n>>n,) implies the boundedness of x(Y). Hence there is a finite number

co such that g(ﬁ(x, y)du(y)<co on X whenever S(ﬁ(x, y)du(y) < g(x) on some
X, (n=n4). For ni;>max(co, no) we have S(ﬁ(x, y)du( y)= g(x) on X whenever

S(ﬁ(x, ydp( y)=g(x) is true on X, . Since g(x) is bounded on X, ,

sup{{ s [0, pau(p= g(x) on X,.}

=inf{g gdv; San(//(x, D)= f(5) on Y} .

We shall denote both sides by M; and M, respectively. We observe readily
that M= M,. We take v which satisfies gx ?(x, y)dv(x)=f(y) on Y, and

regard it as a measure in X. Then ve .#’ and M'<M;. Since M\i=M<M
by Theorem 1 and M,=M;, M=M is concluded.

Finally we consider the general case where @ may not be continuous.
We consider the directed set D of continuous functions not greater than @,
and use the notations .#,, .#,, M, and M; when ¥ € D is taken as kernel.
If ¥, '€ D and ¥ <<¥’', then Ay DMy D#. Hence Mpy>, along D and
lilr)n My=>M. If M= oo, lim My = M. Suppose next M< o and lim My > M.

We choose 8, 0<8<lim My — M, and uy € #y for each ¥ € D such that gfd,u,yr

>M+38. First we assume (i) or (ii). By Lemma 1 there exists #,€ D such
that {uw(Y); &€ D, ¥=",} are bounded under any one of (i) and (ii). Since
M+8<sup f-ue(Y) for every ¥ €D, {us(Y); ¥ € D} are bounded under (iii).
We do not need pay attention to (iv). We choose a subnet {uy; ¥ €D’}
vaguely convergent to uo, and have

Swdﬂoglimgwwg g .
5
Thus uo€ #. On the other hand
M= g fduo= 1’i‘mg Fdur=M+5 .
D

This is impossible. Thus lim My=M. We know that .#;5~g and M, =M,
D
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for each ¥ € D. Since 4y M', M7 and My=M. Hence by Theorem 1

M=1lim My =lim Meg=M =M
D D

and M=M' is derived. Our theorem is completely proved.
Finally we prove

TueoreM 4. We have the same result as in Theorem 3 if the lower semi-
continuity of g is replaced by the condition that g is upper semicontinuous and
bounded above®, while the other assumptions are kept.

Proor. Let D={h} be the directed set of continuous functions satitfy-
ing h—=g. We use the notations .#,, .#;, M,, M, in an obvious manner.
Evidently .#,=.#' for every he D. Since 4, D> My >4 if h, V€D and h>
k', M, decreases along D and IiDm M,= M. The same relation is true for M;

and M. Assume that lim M,> M and choose § >0 such that lim M,>M-+38.
D D

We select u,€ .#, for each h€ D such that gfdpth—l— 5. If (i) or (ii) is as-

sumed, then by Lemma 1 there exists ho€ D with the property that {u,(Y);

he D, h<h,} are bounded. The same is true under (iii). Let us assume (iv).

By Lemma 2 we may assume px(Y)< —(inf g)~/sup @ for every he D. Thus
X XXY

we may assume that {u,(Y); h€ D} are bounded in all cases.

We choose a subnet {u,; h€ D’} which converges vaguely to some meas-
ure uo. We have

g=lim hglimS(I)d,uhg Swdﬂo .
nh2lim

D

Namely, uo€ #. Consequently
M+8§Iimgfd/u, < Sfdm <M,
b

which is impossible. Accordingly lim M, = M. On the other hand, we see
D
M=M=+ & on account of Theorem 3 and obtain

M=lim M, =lim M,>M>M
D D

by Theorems 1 and 3. We have now M= M.

5) Since .#+9, there is p satisfying S@d,u, =< g. This shows that g is bounded. Thus the assump-

tion on g made at the beginning holds.
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