A Generalization of Duality Theorem in the Theory of Linear Programming

Makoto Ohtsuka (Received March 15, 1966)

We consider an $m \times n$ matrix (a_{ij}) , a vector \boldsymbol{b} with components b_1, \dots, b_m and a vector \boldsymbol{c} with components c_1, \dots, c_n . We denote by \mathscr{M} the set of vectors \boldsymbol{u} having non-negative components u_1, \dots, u_n and satisfying $\sum_{j=1}^n a_{ij}u_j \leq b_i$ $(i=1,\dots,m)$, and by \mathscr{M}' the set of vectors \boldsymbol{v} having non-negative components v_1,\dots,v_m and satisfying $\sum_{j=1}^m a_{ij}v_j \geq c_j$ $(j=1,\dots,n)$. We set

$$M = \sup_{\boldsymbol{u} \in \mathscr{M}} \boldsymbol{c} \cdot \boldsymbol{u}' = \sup_{\boldsymbol{u} \in \mathscr{M}} \sum_{j=1}^{n} c_{j} u_{j}$$
 if $\mathscr{M} \neq \emptyset$ (the empty set)

and

$$M' = \inf_{\boldsymbol{v} \in \mathscr{M}'} \boldsymbol{b} \cdot \boldsymbol{v}' = \inf_{\boldsymbol{v} \in \mathscr{M}'} \sum_{i=1}^{m} b_i v_i$$
 if $\mathscr{M}' \neq \varnothing$.

The well-known duality theorem in the theory of linear programming asserts that, if $\mathcal{M} \neq \emptyset$ and $M < \infty$, then $\mathcal{M}' \neq \emptyset$ and M = M'.

We shall generalize this theorem in the present paper. Let X and Y be compact Hausdorff spaces and $\Phi(x, y)$ a universally measurable function on $X \times Y$ which is bounded below. Let g(x) be a universally measurable function on X which is bounded below and f(y) a universally measurable function on Y which is bounded above.

Under these general circumstances let \mathcal{M} be the class of all non-negative Radon measures²⁾ μ on Y satisfying

$$\int_{Y} \Phi(x, y) d\mu(y) \leq g(x) \qquad \text{on } X.$$

Such a measure is called *feasible*. In case \mathcal{M} is not empty, we set

$$M = \sup_{\mu \in \mathcal{M}} \int f(y) d\mu(y) .$$

¹⁾ A function in a compact space is universally measurable if it is measurable with respect to all Radon measures.

²⁾ A measure means a non-negative Radon measure in this paper unless otherwise stated.

$$M' = \inf_{\nu \in \mathscr{M}} \int g(x) d\nu(x)$$

if $\mathscr{M}' \neq \emptyset$. This is the dual problem. An element μ of $\mathscr{M}(\mathscr{M}' \operatorname{resp.})$ is called extreme if there are no distinct $\mu_1, \mu_2 \in \mathscr{M}(\mathscr{M}' \operatorname{resp.})$ such that $2\mu = \mu_1 + \mu_2$.

As in the discrete case we obtain

Theorem 1. Assume $\mathscr{M} \neq \emptyset$ and $\mathscr{M}' \neq \emptyset$. Then $M \leq M'$. If $\mu \in \mathscr{M}$, $\nu \in \mathscr{M}'$ and $\int f d\mu = \int g d\nu$, then both μ and ν are optimal.

and $M \le M'$ is derived. If the equality $\int f d\mu = \int g d\nu$ holds, then $\int f d\mu = M = M' = \int g d\nu$. Thus both μ and ν are optimal.

Next we prove

Lemma 1.3) Assume $\mathcal{M} \neq \emptyset$, $-\infty < M < \infty$ and either (i) f(y) > 0 on Y or (ii) there is $x_0 \in X$ such that $\theta(x_0, y) > 0$ on Y and $g(x_0) < \infty$. Assume also that θ is lower semicontinuous.⁴⁾ Let $D = \{\kappa\}$ be a directed set. Let $\{\theta_\kappa; \kappa \in D\}$ be a net of lower semicontinuous functions increasing to θ , and $\{X_\kappa; \kappa \in D\}$ be an increasing net of sets in X. If $g(x) = \infty$ on $X - \lim_D X_\kappa$ and $\int_D \theta_\kappa(x, y) d\mu_\kappa(y) \le g(x) + \text{const.}$ (independent of κ) on X_κ for every $\kappa \in D$, then there is κ_0 such that $\{\mu_\kappa(Y); \kappa \ge \kappa_0\}$ are bounded.

PROOF. It is easy to obtain the conclusion under (ii). Hence assume (i). Suppose that $\mu_{\kappa}(Y) \to \infty$ along a subnet $\{\mu_{\kappa}; \kappa \in D'\}$ of $\{\mu_{\kappa}\}$. We set $\mu_{\kappa}' = \mu_{\kappa}/\mu_{\kappa}(Y)$, and choose a vaguely convergent subnet of $\{\mu_{\kappa}'; \kappa \in D'\}$. We shall denote it again by $\{\mu_{\kappa}'; \kappa \in D'\}$ and let μ_{0}' be the limit. Let $g(x) < \infty$. For some $\kappa = \kappa_{\kappa}$, $x \in X_{\kappa_{\kappa}}$ and it holds that

³⁾ This very useful lemma and some improvements in Theorem 3 were suggested orally by M. Yoshida, a colleague of the author. In the first manuscript, $\Phi \ge 0$ was assumed in condition (i) of this theorem and $g \ge 0$ was assumed at some place.

⁴⁾ A lower (upper resp.) semicontinuous function is assumed to be bounded below (above resp.) in this paper.

$$\begin{split} \int & \phi(x, y) d\mu_0'(y) = \lim_{D} \int & \phi_{\kappa}(x, y) d\mu_0'(y) \leq \lim_{D} \lim_{D'} \int & \phi_{\kappa}(x, y) d\mu_{\kappa'}(y) \\ & \leq \lim_{D'} \int & \phi_{\kappa'}(x, y) d\mu_{\kappa'}(y) \leq \lim_{D'} \frac{g(x) + \text{const.}}{\mu_{\kappa'}(Y)} = 0 \ . \end{split}$$

Take a $\mu \in \mathscr{M}$ such that $\int f d\mu$ is finite. Then

$$\int \!\! arPhi(x,\,y) d(\mu + N\mu_0') \leq g(x)$$
 everywhere on X

for any N>0, or $\mu+N\mu_0'\in \mathcal{M}$. On the other hand, since f>0 on Y and $\mu_0'(Y)=1$, we see that $\int f d\mu_0'>0$ and

$$\int\!\! f d(\mu + N\mu_0') = \int\!\! f d\mu + N \!\!\int\!\! f d\mu_0' \!\to \!\infty \qquad \text{as } N\!\to\!\infty \ .$$

Thus $M = \infty$, which is contrary to our assumption.

Lemma 2. Assume $\mathcal{M} \neq \emptyset$, $-\infty < M < \infty$ and $\sup_{X \times Y} \emptyset < 0$. Let h(x) be a function on X, and μ be a measure in Y with finite $\int f d\mu$. If $\int \phi(x, y) d\mu(y) \leq h(x)$ on X, then we can find a measure $\mu' \leq \mu$ such that $\mu'(Y) \leq -(\inf_X h)^-/\sup_{X \times Y} \emptyset$, $\int f d\mu \leq \int f d\mu'$ and $\int \phi(x, y) d\mu'(y) \leq h(x)$ on X, where $(\inf_X h)^- = \max(-\inf_X h, 0)$.

$$M {\ge} \int \!\! f d(a\mu + N \varepsilon_{x_0}) = a \!\! \int \!\! f d\mu + N \!\! f(x_0) \! o \infty \quad \text{as } N \! o \infty \; ,$$

Let us prove

THEOREM 2. Assume $\mathscr{M} \neq \emptyset$, $M < \infty$ and the lower semicontinuity of Φ and -f. Assume also one of the following conditions: (i) f(y) > 0 on Y, (ii) there is $x_0 \in X$ such that $\Phi(x_0, y) > 0$ on Y and $g(x_0) < \infty$, (iii) f(y) < 0 on Y, (iv) $\sup_{X \times Y} \Phi(x, y) < 0$. Then there is an extreme optimal measure $\mu_0 \in \mathscr{M}$.

PROOF. If $M=-\infty$, every feasible measure is optimal. Therefore we assume $-\infty < M < \infty$. Choose $\mu_n \in \mathscr{M}$ such that $\int f d\mu_n \to M$ as $n \to \infty$. By Lemma 1, $\mu_n(Y)$ is bounded under (i) or (ii). It is easy to obtain the same conclusion under (iii). If we assume (iv), then we can find $\{\mu_n'\}$ in \mathscr{M} by Lemma 2 such that $\mu_n'(Y)$ is bounded and $\int f d\mu_n' \to M$. Therefore we may assume from the beginning that $\mu_n(Y)$ is bounded in all cases. We can extract a subsequence $\{\mu_{n_k}\}$ of $\{\mu_n\}$ which converges vaguely to a measure μ_0 . It holds that

Thus $\mu_0 \in \mathcal{M}$ and it is optimal.

We choose a sequence $\{\mu^{(n)}\}$ in \mathscr{M}_0 such that $\mu^{(n)}(K)$ tends to $m_0=\inf\{\mu(K); \mu\in\mathscr{M}_0\}$. A subsequence converges vaguely to some measure which lies in \mathscr{M}_0 . Consequently, $\mathscr{M}_0^*=\{\mu\in\mathscr{M}_0; \mu(K)=m_0\}$ is convex and vaguely compact. As a convex compact set in the locally convex linear Hausdorff space of measures of general sign with vague topology, \mathscr{M}_0^* has an extreme point; see [1] for instance. If $\mu\in\mathscr{M}_0^*$ is not extreme in \mathscr{M} , there exist distinct $\mu_1,\mu_2\in\mathscr{M}$ such that $2\mu=\mu_1+\mu_2$. Since $M=\int fd\mu=2^{-1}\Big(\int fd\mu_1+\int fd\mu_2\Big)\leqq M$, both μ_1 and μ_2 lie in \mathscr{M}_0^* . Consequently an extreme point of \mathscr{M}_0^* is extreme as a point of \mathscr{M} .

Remark 1. M. Yoshida [2] gave an example in which all ϕ , g, f are continuous non-negative and $M < \infty$ but in which no optimal measure exists.

Remark 2. The existence of $x_0 \in X$ such that $\inf_Y \theta(x_0, y) < 0$ is not sufficient to obtain the above conclusion. Let $X = \{1, 2\}$ and $Y = \{1, 2, ..., \omega\}$, where n is supposed to tend to the point ω . We set $\theta(1, y) = -1$ on Y, $\theta(2, n) = -1/n$ and $\theta(2, \omega) = 0$. Let $g(x) \equiv -1$, $f(n) = -1/n^2$ and $f(\omega) = 0$. Then the point measure μ_n at x = n with total mass n satisfies $\int \theta(x, y) d\mu_n(y) \le -1$ on X and $\int f d\mu_n = -1/n$. Thus M = 0 but there is no optimal measure in M.

Next we ask if the duality theorem holds, i.e. if the assumptions $\mathcal{M} \neq \emptyset$ and $-\infty < M < \infty$ imply $\mathcal{M}' \neq \emptyset$ and M' = M. This is not true in general.

Actually there is an example in which \emptyset , g, f are continuous non-negative and an optimal measure exists in \mathscr{M} , but in which $\mathscr{M}' = \emptyset$; see [2]. Another example in [2] shows that even if \emptyset , g, f are continuous non-negative and if $\mu \in \mathscr{M}$ and $\nu \in \mathscr{M}'$ are optimal, M may be strictly smaller than M'.

Our main result is the following duality theorem:

THEOREM 3. Assume that $\mathscr{M} \neq \emptyset$ and $-\infty < M < \infty$, and that \emptyset , g and -f are lower semicontinuous. Assume at least one of the following conditions: (i) f(y) > 0 on Y, (ii) there is $x_0 \in X$ such that $\emptyset(x_0, y) > 0$ on Y and $g(x_0) < \infty$, (iii) f(y) < 0 on Y, (iv) $\sup_{X \times Y} \emptyset < 0$. Then $\mathscr{M}' \neq \emptyset$ and M = M'.

PROOF. First we consider the case where θ is continuous and g is bounded. We denote by (h, a) the couple of a bounded function h on X and a finite number a. Let E be the linear space consisting of all such couples (h, a). We regard it as a metric space by introducing the distance

$$d((h_1, a_1), (h_2, a_2)) = \max(\sup_{x \in X} |h_1(x) - h_2(x)|, |a_1 - a_2|).$$

$$\lim_{k o \infty} \oint \!\! arphi d\mu_{n_k} = \oint \!\! arphi d\mu_0 \quad ext{ and } \quad \overline{\lim_{k o \infty}} \oint \!\! f d\mu_{n_k} \! \leqq \oint \!\! f d\mu_0 \, ,$$

and hence $\int \!\!\!/ \!\!\!/ d\mu_0 \! \le g$ and $\int \!\!\!/ \!\!\!/ f d\mu_0 \! \ge M + \delta$. This is impossible because $M \! = \! \sup_{\mu \in \mathscr{M}} \!\!\!\! \int \!\!\!\!/ f d\mu$.

 $(g,M){\in} F$. Let us write e^* for (0,1). On account of the fact that F^a is a closed convex set and $g^*+\delta e^*$ is outside F^a , there exists a hyperplane in E separating F^a and $g^*+\delta e^*$; see [1]. Namely, there exists a linear functional φ on E such that $\varphi \geq \alpha$ on F^a and $\varphi(g^*+\delta e^*){<}\alpha$. Since F^a is a cone, $\varphi \geq 0$ on F^a and $\varphi(0)=0$. Hence we may take $\alpha=0$. In particular, $\varphi(g^*)\geq 0$. Hence $0>\varphi(g^*)+\delta\varphi(e^*)\geq \delta\varphi(e^*)$. We may assume $\varphi(e^*)=-1$ without loss of generality. The inequality $\varphi\geq 0$ on F^a implies that $\varphi((h,0))\geq 0$ for any $h\geq 0$. If $\varphi((h,0))$ is regarded as a linear functional on the family of continuous functions in X, it is a positive functional. By Riesz's theorem, there is a measure φ such that $\varphi((h,0))=\int h d\varphi$ for continuous $\varphi((h,0))\geq 0$ holds. It follows that

$$\begin{split} 0 & \leq \varphi \big((\theta(\cdot, y), f(y)) \big) \\ & = \varphi \big((\theta(\cdot, y), 0) \big) + f(y) \varphi(e^*) = \Big(\theta(x, y) dy(x) - f(y) , \Big) \end{split}$$

whence

This is evidently true if $f(y) = -\infty$. Hence $y \in \mathcal{M}'$.

Let h be any continuous function satisfying $h \leq g$. We have

$$\begin{split} \delta > & \varphi(g^*) = \varphi((g, M)) = \varphi((g, 0)) + M\varphi(e^*) \\ & \ge \varphi((h, 0)) + M\varphi(e^*) = \int h d\nu + M\varphi(e^*) = \int h d\nu - M, \end{split}$$

or $\int h d\nu < M + \delta$. On account of the arbitrariness of h, we have $M' \le \int g d\nu \le M + \delta$, whence $M' \le M$. This yields M = M' in virtue of Theorem 1.

$$X_n = \{x \in X; g(x) \le n\}$$
 and $X_\infty = \{x \in X; g(x) = \infty\}$.

$$\begin{split} \sup & \Big\{ \int \! f d\mu \, ; \, \int \! \! \varPhi(x, \, y) d\mu(\, y) \! \le g(x) \, \text{ on } \, X_{n_1} \Big\} \\ & = \inf \Big\{ \int \! g d\nu \, ; \, \int_{X_{n_1}} \! \! \varPhi(x, \, y) d\nu(x) \! \ge \! f(\, y) \, \text{ on } \, Y \Big\} \, \, . \end{split}$$

We shall denote both sides by M_1 and M_1' respectively. We observe readily that $M=M_1$. We take ν which satisfies $\int_{X_{n_1}} \Phi(x, y) d\nu(x) \ge f(y)$ on Y, and regard it as a measure in X. Then $\nu \in \mathscr{M}'$ and $M' \le M_1'$. Since $M_1 = M \le M'$ by Theorem 1 and $M_1 = M_1'$, M = M' is concluded.

Finally we consider the general case where \emptyset may not be continuous. We consider the directed set D of continuous functions not greater than \emptyset , and use the notations $\mathcal{M}_{\mathbb{F}}$, $\mathcal{M}_{\mathbb{F}}$, $M_{\mathbb{F}}$ and $M_{\mathbb{F}}$ when $\mathbb{F} \in D$ is taken as kernel. If \mathbb{F} , $\mathbb{F}' \in D$ and $\mathbb{F} \subseteq \mathbb{F}'$, then $\mathbb{F} \subseteq \mathbb{F}$, then $\mathbb{F} \subseteq \mathbb{F}$. Hence $\mathbb{F} \subseteq \mathbb{F}$ along D and $\mathbb{F} \subseteq \mathbb{F}$. If $\mathbb{F} \subseteq \mathbb{F}$, $\mathbb{F} \subseteq \mathbb{F}$. Suppose next $\mathbb{F} \subseteq \mathbb{F}$ and $\mathbb{F} \subseteq \mathbb{F}$.

We choose δ , $0 < \delta < \lim M_{\varPsi} - M$, and $\mu_{\varPsi} \in \mathscr{M}_{\varPsi}$ for each $\varPsi \in D$ such that $\int f d\mu_{\varPsi} > M + \delta$. First we assume (i) or (ii). By Lemma 1 there exists $\varPsi_0 \in D$ such that $\{\mu_{\varPsi}(Y); \varPsi \in D, \varPsi \geq \varPsi_0\}$ are bounded under any one of (i) and (ii). Since $M + \delta < \sup f \cdot \mu_{\varPsi}(Y)$ for every $\varPsi \in D$, $\{\mu_{\varPsi}(Y); \varPsi \in D\}$ are bounded under (iii). We do not need pay attention to (iv). We choose a subnet $\{\mu_{\varPsi}; \varPsi \in D'\}$ vaguely convergent to μ_0 , and have

$$\int\!\! arPhi d\mu_0 \! \le \! \lim_{\overline{D'}}\!\! \int\!\! arPhi \, d\mu_{arPhi} \! \le \! g$$
 .

Thus $\mu_0 \in \mathcal{M}$. On the other hand

$$M \ge \int f d\mu_0 \ge \overline{\lim}_{D'} \int f d\mu_{\Psi} \ge M + \delta$$
.

This is impossible. Thus $\lim_{D} M_{\mathscr{V}} = M$. We know that $\mathscr{M}'_{\mathscr{V}} \neq \emptyset$ and $M_{\mathscr{V}} = M'_{\mathscr{V}}$

for each $\Psi \in D$. Since $\mathscr{M}'_{\Psi} \subset \mathscr{M}'$, $\mathscr{M}' \neq \emptyset$ and $M'_{\Psi} \geq M'$. Hence by Theorem 1

$$M = \lim_{D} M_{\Psi} = \lim_{D} M'_{\Psi} \geq M' \geq M$$

and M=M' is derived. Our theorem is completely proved.

Finally we prove

THEOREM 4. We have the same result as in Theorem 3 if the lower semicontinuity of g is replaced by the condition that g is upper semicontinuous and bounded above⁵⁾, while the other assumptions are kept.

PROOF. Let $D=\{h\}$ be the directed set of continuous functions satisfying $h \geq g$. We use the notations \mathcal{M}_h , \mathcal{M}'_h , M_h , M'_h in an obvious manner. Evidently $\mathcal{M}'_h = \mathcal{M}'$ for every $h \in D$. Since $\mathcal{M}_h \supset \mathcal{M}_{h'} \supset \mathcal{M}$ if $h, h' \in D$ and $h \geq h'$, M_h decreases along D and $\lim_{D} M_h \geq M$. The same relation is true for M'_h and M'. Assume that $\lim_{D} M_h > M$ and choose $\delta > 0$ such that $\lim_{D} M_h > M + \delta$.

We select $\mu_h \in \mathcal{M}_h$ for each $h \in D$ such that $\int f d\mu_h \geq M + \delta$. If (i) or (ii) is assumed, then by Lemma 1 there exists $h_0 \in D$ with the property that $\{\mu_h(Y); h \in D, h \leq h_0\}$ are bounded. The same is true under (iii). Let us assume (iv). By Lemma 2 we may assume $\mu_h(Y) \leq -(\inf_X g)^-/\sup_{X \times Y} \emptyset$ for every $h \in D$. Thus we may assume that $\{\mu_h(Y); h \in D\}$ are bounded in all cases.

We choose a subnet $\{\mu_h; h \in D'\}$ which converges vaguely to some measure μ_0 . We have

$$g = \lim_{n'} h \ge \lim_{n'} \oint \Phi d\mu_h \ge \oint \Phi d\mu_0$$
.

Namely, $\mu_0 \in \mathcal{M}$. Consequently

$$M+\delta \leq \overline{\lim}_{D'} \int f d\mu_h \leq \int f d\mu_0 \leq M$$
,

which is impossible. Accordingly $\lim_{D} M_h = M$. On the other hand, we see $\mathcal{M}' = \mathcal{M}'_h \neq \emptyset$ on account of Theorem 3 and obtain

$$M = \lim_{D} M_h = \lim_{D} M'_h \ge M' \ge M$$

by Theorems 1 and 3. We have now M=M'.

⁵⁾ Since $\mathcal{M} \neq \emptyset$, there is μ satisfying $\int \Phi d\mu \leq g$. This shows that g is bounded. Thus the assumption on g made at the beginning holds.

References

- [1] N. Bourbaki: Espaces vectoriels topologiques, Chap. I-II, Paris, 1953.
- [2] M. Yoshida: Some examples related to duality theorem in linear programming, this journal.

Department of Mathematics, Faculty of Science, Hiroshima University