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Consider the space H,(R"), R being an N-dimensional Enclidean space,
composed of temperate distributions z defined in R" such that the Fourier
transform #(¢€) is a locally integrable function satisfying

[ la@a+ e de<e.

1

5 and ! the largest integer such that

Let m be a positive number >

I <m— i It is known that the trace mapping

2
4 l
1 € Hy(R™)—>(u(,0), -y -0 u(x’,0)) € Tl Hpj1 (R¥)
axN ji=0 2
is an epimorphism, where x" stands for (xy, x2, ---, xx_1).

H,(RY) is a particular instance of the spaces H*(R"), # being a temper-
ate weight function defined in ZV. The discussion on the spaces H*(R") is
given in full detail in L. Hérmander [ 1] and in L.R. Volevi¢ and B.P. Paneyah
[5]. As a result of J. L. Lions’ theorems on the Hilbert spaces [ 27], the
trace theorem as mentioned above remains valid for H*(RY) when «(¢) is
equivalent to

28N+ |En |2 1y(E)

where #,(¢'), #,(¢') are temperate weight functions in V!,

Recently M. Pagni has shown the theorem for a special H*(RY), to which
Lions’ theorem is not applicable [ 3.

Our main aim of this paper is to investigate the trace theorem of the
above type for general H*(R"). We have obtained the necessary and suffi-
cient conditions for the validity of the theorem (cf. Theorem 1 below). It is
to be noticed that a sufficient condition to the effect that x«(¢', 2&y)>
Cu(€', éx), C being a constant, seems convenient to guarantee the theorem in
most cases as enumerated above.

1. Notations and Terminologies. Let RY be an N-dimensional Eu-
clidean space and let ZY be its dual space. For x=(xy, .-, xy) € RY and
&=(&, -, &n) € EY, the scalar product <x, &> and the length of the vector
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N N
x are defined by <«,&>=>1x;&;, | x| =(2|x,-[2)‘§‘, and similarly for |&].
i=1 i=1
We shall use the multi-indices notation. If « is an N-tuple (ay, ---, an) of
N
non-negative integers, the sum >3«; will be denoted by |«| and the product
ji=1

a!...ay!by a!. With D=(Ds, ..., Dy), D,-=%%
j

and similarly &*=¢&¢...6§5v. For a polynomial P(¢)=>la,£&% in &, we put
P(D)=Sla, D% P(¢)=3la.£* and P(&)={> IP(“)(E‘)IZ}%, where @, is the
la| =0
complex conjugate of a, and P® means :'“'D*P.
Let us denote by D(RY), or D, the space of all C*-functions in RY with
compact supports with usual topology of L. Schwartz [4] and by &’ its strong
dual, whose elements are called distributions. Also by #(RY), or &, we

denote the space of all rapidly decreasing C~-functions ¢ in RY with the
semi-norms sup|x*D?3| and by &’ its strong dual, whose elements are called

temperate distributions. For ¢ €D, u e D (or ¢ € &, u € &), <u, > means
the scalar product between them. For any ¢ € &, its Fourier transform ¢,
or ¢ is defined by the formula

, we set D*=D%...Dg~

Foxe) =@ = | Hare < da.

If u e, the Fourier transform # is defined by
<i, > =<u, >, "des.

A positive-valued continuous function #(&) defined in E¥ is called a tem-
perate weight function [ 1] if there exist positive constants C and % such
that

wWE+m < C(1+ &), Y& 1eEN.

For temperate weight functions #,(&) and #y(£), £,(&)+ #x(E), 11(E) 15(8)
and #,(¢)"! are also temperate weight functions. If there exist positive con-
stants C;, C; such that

)
< 1 <
(o 6 Gy,

then we shall call that #,(§) and #,(¢) are equivalent and write #,(&)~ #5(§).
By H*(R"), or H*, we shall understand the space of u € #(R") such that &
is a function satisfying

lullz = (g )| 16 @) ds <oo

that is, & € L2:(E~), the space of square integrable functions with respect to
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u:de. H*(RM) is a Hilbert space with the inner product
N .
@)= (5 ) |, a@iEmwed.

Its strong dual space is H ;lT(RN ) where for any u € H*(RY) and we H}T(RN ),
we have

<w =g )| a@icd.

Let N=n-+m. It will be convenient to employ the notations:

x:<x/a t)} x,:(xh Ee) xﬂ)) t:(tla Tty tm),
5 = (5/’ f), 5/ = (51, Tty Sﬂ)) T= (Tla Tty fm))
D= D%DY, D% =D%..D% DY = Dius.. Din,

The scalar product then takes the form <x,&>=<x',&>+ <t,t>.

By R%,, or R”, we shall denote the subspace of all the points (x’,0) and
by R”, or R™, the subspace of all the points (0, ¢) in R”. The partial Fourier
transforms are defined as follows: Let ¢ € &, then

@@, 0= b 0= g, e da,

@B, 0=, 0= g, et ar
For u €%, we define i, , i, by the relations

Ly §> = <, $p>, <, ¢> = <u, >, ¢peF.

For a temperate weight function «(&) in R**", the integral S_m/x(é’, T)dr

-n

diverges for every point & € 5", or converges for every point & ¢ 5" and it
is a temperate weight function in 5* ([ 5], p. 10).

For any function u(x) € D(R"™™), the trace u(x’, 0) on R” clearly belongs
to D(R™). D(R™™) is dense in H*(R"*™). If the mapping u—u(x’, 0) can be
continuously extended from H*(R"*™) into D’'(R"), then the extended mapping
is called a trace mapping on R”. The trace u(«x’,0) on R” exists for every

1

u € H*(R"™) if and only if 0. € L? ([ 57, p. 86), and we can write

ul, 0@ = (5 ) |2, ode.

2. Preliminary Discussions. Let P(D) be a differential operator,
where P(&)=P(£,7) is a non-trivial polynomial in the vector (¢',7), i.e. P(&)
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#=0. For any u(x) € D(R™™), P(D)u(x’,0) belongs to D(R"). If the mapp-
ing u—P(D)u(x’,0) can be continuously extended from H*(R"*™) into D'(R"),
then we shall say that the trace P(D)u(x’,0) on R" exists for every ue€
H*(R™™). We start with making an improvement of a result of L.R. Volevi¢
and B.P. Paneyah ([ 57, p. 39).

Prorosition 1. Let #(§) be a temperate weight function inm R™™. In
order that the trace P(D)u(x’,0) on R" may exist for every u € H*(R"™), it is
necessary and sufficient that either of the following conditions (1), (2) is satis- -
fied:

D2/ &

(1) ﬂ%%é’) - Ssmi_zgf% dr<eo for some ¢ €E";

(2) ng% dr<oco for every &€ 5",
and then P(D)u(x’,0)€ H*B(R").

In addition, P(D)u(x’, 0) belongs to H(R") for every u € H*(R"™) if and
only if either of (1), (2) holds:

(1) &) Cus(g) with a constant C;

’ 2
(2y pz(gf)ggm%% dr < C, with a constant C,.

Proor: For any 7€ E"*™, the mapping u—e'<*””u of H*(R"™) into
H*(R"™) is continuous. If the trace P(D)u(x’,0) is defined for every
u € H*(R"™™), then P(D)e’<*"u(x)= e’ *"”P(D+7)u(x) has the trace
< 7">P(D+7)u(x’,0) on R". Therefore the mapping

u— P(D+7)u(x’, 0)
of H*(R™™) into @'(R") is continuous. That is,
P(D+7)($R0) € (H"Y =H*, “pe DR,

where ¢ is the Dirac measure in R”. This means that

PEe+ndE)e Ly  for every 7€ Brm,
/‘2
Consequently we have for every 7 e E"*™

@(5')15(6-1- 7) =| EoZK_O; $(§/)p(a)($) € sz—z(‘E”M) )

alz
{7°} being linearly independent, we can conclude that $(&)P@(&) € L’ (&™),
/"2

which implies

~ D2/ &/
SE" |91 stlgsmrz—zgﬁ% drsee
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As a result,

P¥g, o) I
S_m E ) dr<co ae. in 5",

Since P(¢) and #(¢) are temperate weight functions, it follows that the inte-
gral is finite at every point of E” ([57], p. 10).

Clearly the condition (1) implies (2).

Now suppose (2) holds. For any u € D(R"™™), we have

PO, O = (5 ) | POME.

Then we have for any ¢ € D(R")

| <P, 0,6> 1=(5) 1], PO
(o) "([L (], B0  ac)ae )3 ([ la@w@deyt

= (37 ([,eenn(, LA dr)dé-‘) ull,

D(R"*™) being dense in H*(R"™™), in order to prove the existence of the trace
| P(&)|°
am UA(E)
increasing function in &. Taking into account the formula P(&,7)=
£ pay | P70, )| ®
WEO 4 P@0, ), we see that g 0D
tive constants C, k such that #(0,7) < C(1+|€|Hu, ), it follows that
S Wdf<oo . We can therefore conclude that S | P(E)|* dr is a
e MEE,T) zm MA(E)
slowly increasing function in &’.
If the trace P(D)u(x’, 0) exists for every u € H*(R"*™), then we have for
any u € D(R"™)

under consideration, it is sufficient to show that S dr is a slowly

dr<oo. Since there exist posi-

|P(D) u(x', O)IIFP=<§17;)MS ﬂp(é)ig P(&)a(8)de |2de’
=(55)" e, '552)'2 a )(|_ @l d)de

§<%>Mmggn”%@’><g o izg; a )| @ a2 ae

= (g5 ) etz -
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Therefore, D(R"*™) being dense in H*(R"*™), the trace P(D)u(x’,0) € H*#(R").

Thus the proof of the first part of Proposition 1 is complete. Along the
same line as above, if P(D)u(x’, 0) belongs to H'(R") for every u € H*(R"*™),
then

P(D+7)(¢0) € (HYY =H®,  Ype (HY =HV

for any 7€ E”*”. This implies that $(&)P(¢) € Lil‘_z(.E”*"’). That is,

(B (| L ae)ag<oo .

g V¥(E) zm f3(E)
Then for some constant € >0
D2
VZ(E')XEM zzgg dr < C? a.e.

Since #5(¢") and y(¢") are temperate weight functions, we have for every &' €

on
H

W(EN=Cux§’) .

Thus (1) follows.

Clearly (1) implies (2)'.

Suppose (2) holds. After calculation, as in the proof of the first part,
we have for some constant C;

IPDYu(x, QL < Gillull,,  Yue DER™™ .

D(R™™) is dense in H*(R"™*™). Therefore, for every u € H*(R"*™), the trace
P(D)u(x’,0) exists and belongs to H*(R").
Thus the proof is complete.

Remark 1. Let Q be a non-trivial polynomial weaker than P, that is,
Q&)X CP(¢), ¢ € B**™ with a constant C. Then ((&)<<CP(¢) with a constant
C (1], p. 73). Proposition 1 shows that if the trace P(D)u(x’,0) exists for
every u € H*(R"™™), then Q(D)u(x’, 0) exists, too.

ProrposiTioN 2. Suppose 1 =S EZ(L’T)—df<<><>. The trace mapping
7 Ven &)

0: u—>P(D)u(x',0) of H(R™™) into H'?(R") 18 an epimorphism if and only
if each of the following conditions is satisfied:

(1) the range of the transposed mapping *0 is closed in H %(1’2"+ ™);

1 _( |PE¢, 0

(8) f f&HPE) e LZ_,}T(E”“”), where f(&') 1s locally integrable, then

dr s a temperate weight function;
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fe L 1 ("”)
If each of these conditions is satisfied, then v(&")~ us(€").

Proor: Consider the transposed mapping *0 of H FIE(R”) into H %(R"“”).
We note that

Du@)=o(&)PE), veHmHR .

Indeed, it is sufficient to verify this relation when v e D(R”). Let f be any
element of D(R"*™). Then the relations

<Tf,0> = (5 ) | PO, 0XEENde

=(L)™(_ (. Pof@ @)

~(55) V... 0@ P@fEE
and

<o, f> = (g ) |, T@fEa

show our assertion.
The mapping 0 is injective. In fact, let “0Ov=0, that is, ”/@;(E)zo, then

feoto@ ([, GG ac)as =0

’ 2
Since the polynominal P(&’, ) is non-trivial, S 1PE,II° dr does not identi-

en /()
cally vanish in any relatively compact open subset of Z”. Thus #(¢)=0 a.e.
in &”, which implies that v=0.

Consequently the mapping 0 is an epimorphism if and only if the range

of ‘G is closed in H# (R™*™).
Suppose the range of ‘0 is closed, then there is a constant € >0 such

that o]+ < C|Tu||1 for every ve H#(R"). That is,
P

SE |11($ )'2 Entm ﬂz(f)

P(S )

of ) e
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Consequently

1 | P&, )|
< C? B Il B
ae) =¢ S 2@ &

’P(Sl,f)lz de <

we have
n 12(E ) ’

Since trivially g 7 %5/)

1 1 1 1
= < < .
C up(&) = vE) = us&)

Consequently »(&') is a temperate weight function equivalent to #5(¢). Thus
(1) implies (2).

Suppose v(¢’) is a temperate weight function. First we show that v(&")~
215(€"). For any 7€ B**™ with |7|<1, we can find positive constants C;, C.
such that

C, 1 B | P(E+7)|* |P(E+7)|?
&Y = & 7 _Ssm 2E 1) dszzS_m_ G R

Taking into account the formula P(é+7)= >} Z—TP(“)({-‘), we have for a posi-
| .

al=0

tive constant C;

1 | P, )|
= LI O 7
v¥(§') :ngs” EGRY a

It follows therefore that v(&)~up(&). Now let f(¢) be a locally integrable
function such that f(£)P(¢) € Li%. Then

a1 u_( LFEPIPE DI .
gsnlf(s)lz yz(s./) ds Sgnﬂ”" ﬂZ(S/, T) d$< *

This together with the relation v(¢)~ #5(¢") shows that fe Lzl_, Thus (2)
implies (3). K

Suppose (3) holds. We note that the integral SSW%?TIZ dr does not
vanish in B”. Let &) be any point in 5”, and B the closed unit ball with
center §;. Consider the set E of all integrable functions f(¢) such that

supp fC B and

[ (PO oo)ae <oo

E is a Banach space with the norm || f]|s:
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2 N e ae(( 1PE, DI )
It =L, Lo ag e+ ([, 128D ac)as
Owing to the closed graph theorem the injection E—>H WIE(R") is continuous.

Let B, be the closed ball with center ¢; and radius ¢, 0<e<1. Taking f=
xs,, the characteristic function of B., we have for a positive constant C

c=iBd+ S, (L ae)ee

where | B.| stands for the Lebesgue measure of B.. Now, passing to the
limit e— 0, we have

P&
ng TG dt=C .

Let us now show that the range of ‘0 is closed in H %(an). Let {v/(&")}
be any sequence of H #l_p(R”) such that {¥0Ov’} converges in H%(R”*’”) to u.
Then /(¢)P(¢) converges in Lz_li(E"“”) to . It follows that
o
;s / 2 —— . - . / 2
ﬁj(sl)[gsm%% dr]é is a Cauchy sequence in L%(E"). Since gin% dr
>0, we see that ?/(¢") converges in L}, (E") to a function f(¢'). Consequently
we can write a(&)=f(¢")P(¢). The condition (3) implies that f¢ Lzl_‘(E”), S0
“p
that u belongs to the range of *0. Therefore (3) implies (1).
Thus the proof is complete.

Remark 2. If P(D) is a polynomial in D, and

1 _( [POI> .
) = e ey T

then it is clear that v(¢') is a temperate weight function. By virtue of Prop-
osition 2, the mapping u — P(Dy)u(x’,0) of H*(R"*™) into H**(R") is an epi-
morphism.

Remark 3. If the differential operator P(D) is elliptic or more generally
hypoelliptic (1], p. 75, p. 100), then the mapping u—P(D)u(x’, 0) of H*(R**™)
into H*?(R") is an epimorphism. In fact, there exist constants C, K such
that

[P(I=CIP®)| for [§]>K .
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s

P@(g’ 0)=0, there is a P“7(¢, 0), not identically vanish-

If PE)= 31 .

ing. We can therefore find 0, € 5", 1<"j<s, such that, for any |¢| <K, we
have for a constant C,

| PO ZCo(| P@| + | PE,t+0) + -+ | PE, T+0))]) .
Consequently we have for a constant C’
[POO|=C(|P®|+|PE,c+a)|+- -+ |PE,t+0,)]), £e€F™".

Since #(¢&) is a temperate weight function, we have for some constant C;

P, c+0)” _( |PEDI* _—nf |PE D
Lm —aE " Ssmﬂ?(é@r—o» d’=cfgsm G R

Consequently we have for a constant C”

[POE Nl 1PE DI
Ss"' HAE T) dr=C Xsm LHE T) de .

By virtue of Proposition 2, the trace mapping © is an epimorphism.

RemaArk 4. Let n=m=1. If we put #¢,c)=1+7? and P(D)= D, D;.

Then we have P(&,7)=¢&r, PA&,0)=1+&%)1+7?) and #;~ 1+ 5’2)"%‘. On
the other hand

= [PE O (T
S_w 2@, ) dr=¢ g;w a1y dr .

This is not a temperate weight function. Thus the mapping u—D,.D;u(x’, 0)
of H*(R? into H"P(R") is not an epimorphism.
3. Trace Theorems. Let (&)= u¢&,t)=u(¢, - -, &, 1) be a temperate

weight function in F**!. We assume that

1 S * ¥

S S e
@) ow EE ) T

where [ is a non-negative integer. We put

1 S” aid
- <p<l.
D G I I o I R

Let us consider the trace mapping 0:

u(x,) t)—_)(u(x/, O)a Dtu(xl5 0)) ] Dﬁu(x', 0))
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!
of H*(R*') into 1l H’»(R"). In this section, we discuss the conditions in
=0

order that © may be an epimorphism.

21

Tuaeorem 1. A necessary and sufficient condition in order that the trace

!
mapping 0 of H*(R™') into H= II H'»(R") may be an epimorphism 1is that
=0

each of the following conditions is satisfied :
(1) the range of the transposed mapping ‘0 is closed in H %(R””);
(2) there is a positive constant C such that
Ko K1 RNy 71 {
K1 K2 BNy ] i , ol ?
N = Choky - Ky, where K (&)= S_w—p‘?é*,,;)— dr

ki Kiyr ---By

(8) if we HE(R™) and (€)= fu(&)+f1& )+ -+ fi(§)', then f,&)e

L3 (&) for p=0,1, .-, ;
vp

(4) if we HFR™Y) and a€) = fo&)+ fuld)+ - + file),
u<$ %) € b (8",

1
Proor: Consider the transposed mapping ‘O of H'=1(H %(R”) into
=0

H#(R™Y). Then

Bi(e) = gm@'w, 5= {0o(x"), -, vi(x)} €H'

b

Indeed, it is sufficient to verify this relation when v, € D(R"), p=0,1, ...

Let f be any element of D(R**"). Then the relations

<Tf,o> = (5 ) 2] DI 0@ @)a

(
(

If

T>n+1>1] ﬂn{glf‘(g)z-bdr}md&

3,
S

1
1 >n+ l‘
271' p=0J 5"t

If

DE &) de

and

<Bo, s> =(o) |, B

then
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show our assertion.
l
The mapping ‘0 is injective. In fact, let “G3=0, that is, S19,(&")?=0.
=0

Since {c*}, p=0,1, ..., 1, is linearly independent, it follows that %=0.
Consequently the mapping O is an epimorphism if and only if the range
of ' is closed in H#(R™*).
Suppose the range of ‘0O is closed, there is a constant C>0 such that
[15]|g=C]||"®3||1 for every % € H. That is,
~

110,82
»=0

LGOI

l\ |1A)p(sl)|2 /< 2
Eagsn'»g(w &' =

e [ e eEe
=ct 3y (| DERCES e

If we put gy(&")= ii’gg € L?, then

ggsnlgp@’ﬂzdééczpi WGP RCILES

,q=0JE™"

This inequality holds for any g, € L%E"). Let & be a point in E”, and B,
the closed ball with center &; and radius ¢ > 0. Taking g,=a,xps,, Where a,
is a real number and x5, the characteristic function of B.,

! !
Bl as P CP 3 agag| By i€ wi€)dE”
»=0 p,9=0 Bg
Now passing to the limit ¢ >0, we have
! . i
pz‘él ay| 2 = Czp20ai)aq/cﬂq(é(l))’)p(fé)vq(sé) .
- =
Therefore we have for a positive constant C’

detl’cp+q($/)yp($,)l)q(5/) | =, &geEr".

That is, det|£,,,| =Ckoks---£2;. Thus (1) implies (2).
Suppose (2) holds. Let u be any element of H%(R”“) such that o=

FAEV AN+ + (&), Tf we put fv(é)=7%, then w e H*(R™Y), h,=

YIRS 2
D?w(x’,0) € L:(E"), and

1

Dol v 0)
hy= D', 0) = o

Slf%(e)dr
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1 qu(é )Tq 1 1 , ,
:%—S ¢ _q_OﬂzT r:—z_n.‘%(:)fq(g )’%u(é) .

Thus we have

2:"’ fq((é)) Ko EWHEWLE) = 2mh ("W (§) € L2 .

Since det| £y, %| = C: >0 and |r,.,| <1, we have -/ ,,((?')) ¢ L7, that is,
q
fi€ L 1. Thus (2) implies (3).

S

Suppose (3) holds. Let u be any element of H L(R"“) such that a(é)=
élfp(S/)rp. By our assumption, f,(&")e€ L 1 (J), that is, fy(&)x?€ L 1 1 (E".
»=0

Therefore ﬁ(é , T) € L%(E"“). Thus (3) implies (4).

Suppose (4) holds. We shall show that the range of ‘@ is closed in
H%(R”“). Let {#’} be any sequence of H’ such that {¥@%’} converges in
H%(R”“) to u. That is, p}'__,v (& )c? converges in L 1 1 (B") to a. Since /()

is continuous and positive, it converges in Lj,, to i. We can write a=

1 1
2]131,(5 Y? with 9,(&) e L},,. Indeed, }]S (®4(&")? —a(&)?dr—0 in Lj,, a
!
j—>oo for ¢g=0,1,...,I. Therefore }_. e )g t?*4dc converges in Lj,.. Since
. =
det] Sor’“"dr] >, ?% converges in Lj,. to a #, and we can write 4 = Z HENTP.

From our assumption it follows that u<5 ,7> p" D& )<—> €L 1 (W”“)

for j=0,1,...,1. Therefore 9,&)? € L (E"*Y), that is, v, € H75(R"), p=0, 1,
J e b p

.., 1, so that u belongs to the range of “@. Therefore (4) implies (1).
Thus the proof is complete.
When [=0, the mapping 0 is always an epimorphism since the condition
(2) of Theorem 1 is satisfied.

Remark 5. The mapping @ is not always an epimorphism. Let n=1.
Consider the differential operator P(D)= (D, —D,? Put #(&) = P¥&)~
1+ (¢’—7)?. Here we can take [ =1.

=1 = dr
Ko = g_w7£—2‘ dTZ g_,,—(]_—kz‘z)z = CO,
(7 (7 & — . dt . ’
"“Sw Iz dr = S ,,(1+r2)2 de 58 « (14722 =G
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xzzg” idr—&“ & +$’ZS At e,
o 12 e (1 F2)2 w(1+72)2

Ko
Then '

= CyCy, Koky=C,C,+C2¢"*. Therefore the condition (2) of
K1 K

Theorem 1 is not satisfied, so that the mapping @ is not an epimorphism.
CororLrLary. If #(¢) is a temperate weight function in Z"*! such that
HE', 2r) = CuE', )
for a constant C, the trace mapping O is an epimorphism.

Proor: It is known that H*(R"*') C H'(R"*Y) if and only if v <<Cx, C
being a constant ((57], p. 33). One can easily verify that the condition

MmE, 20)=>Cu(e’, 7) is equivalent to saying that &(6, %) belongs to Lzl__(E”“)
,"l

for every ue H 71“(R”+1). It follows therefore from the condition (4) of the
preceding proposition that @ is an epimorphism.

Prorosition 3. Let f ={fo(x"), ---, filx")} be an arbitrary element of
Il
1L H'*(R™) and ¢ € D(RY) be equal to 1 in a neighbourhood of (. Suppose there
=0
exist a positive continuous 1,(&) in E” and a slowly increasing continuous
SJunction 0,(c) in E* for p=0,1,...,1 such that

WE 250) < 2 (@ wAEN0) -

If we put

~ / — I-\ 7 ’ (it)p
@:(&'s 1) =23 (&) ———(4st)
=0 p!
then u belongs to H*(R"*) and Diu(x’, 0)=f,(x") for p=0,1,...,1.

Proor: We can write

g, o) }:_, fﬁ(é)( df>pgl¢(lpt)6‘”’dt

ll

11 (= 1') fp(ée) /117+1 d,(ﬁ)( fp) .

After a change of variable r— 4,7 and using the fact that gj [§P(T)| 2| @ (7) | *dr

< oo, we have
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(... la@ e

SAHDR[ A1 10|, 1,0)ds

12p+1(5) S I
! N hed ~
S e I O MR CIRLYOIR A
which implies v € H(R"*"). Clearly Diu(x’, 0)=fy(x") for p=0,1,...,1. Thus

the proof is complete.
Here we note that if 1, exists, then

la(é O) 2P+1 /
(B )" =ene,

where C is a constant.

Exampre 1. Let #(£) be written in the form
H(¢, ) = th(E)+ ]2,

where (&), #,(¢') are temperate weight function and a is a real number

>%. Let I be the largest integer such that l<a—%. Then vy(&)~

1

ﬂ{‘%ﬁ%wg%@*%’, 0=p=1 and 2, may be chosen as <—Zi>7. Putting

2

8,0 = 317 Y ¢((—§)?) L e T,

then u belongs to H*(R**") and D?u(x’,0)=f,(x") for p=0,1,...,1
In fact, we have

—i— = gx e dr
vi(E) oo (128N [ | 25(€7)?)

2

1 g‘”
= dr
ﬂ%—%@wnﬂz—;—(zwn o (L4 |7]9)?

1
1 1 1 1 . s
Hence y,~/1~a 271, "2, Putting lﬁ:<%>a , we have
2

(&' Agr) = t(E)+ [ At |28 = 1 (ENA + [

~ AT WEN L+ [ 7]
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Consequently our assertion follows from Proposition 3.
We note that the result also follows from theorems on Hilbert spaces
due to Lions ([ 27], p. 422, p. 426).

ExampLE 2. Consider the temperate weight function # given by the fol-
lowing formula [ 3 :

A&, M) = A+ |17+ 7],
where ¢=(&y, .-, &), ¥=(71, ---,%5) and p;, q; are positive integers. We may

assume that .1;-’1—31;’_2 <. g{]’L. We use the notations: 7=(7,7c), 7 =
1 2 n

(M -5 Ws-1), T=7s. Let Z=ﬁq,~—1, go=0. Calculation shows that for any p,
1
0<p=<lI, we have

m
24i-p

L
e, 1)~ (L [l 7/ D T [ 171719,

where m is chosen as
?‘lqé})é%qi—l :
We can take 2,=(1+ Iélq%ﬁ- [7']), because we have
27, )~ TIA+ |64 7| 4y | )

R L ER LA A CER P
~ A2y (¢8, )

m

BT Il 7))

m by |4 ai
Nzg%»i,(e,??')llll“gl +|;Z,~| FIA
)4

L LEIEIP |7 %4 | A | %
S PRI W ATy

n
24

<€ T T+ DT,
where C is a positive constant.
Suppose there exists j such that Pi < Pi1  We can show that # is not

qi qi+1
equivalent to a temperate weight function as considered in the preceding
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example. In fact, if the contrary is assumed, it will be equivalent to

o8, ) =TI+ (£ 17+ |79+ | 5

” U L
Spi >2pi pi
. . . . 1

In view of the inequality ——>——, putting o= L, we have
21'1‘]" 2;4‘]1‘ ;tﬁ

i 7 n

agp,-+¥q,~>azl}pf, and

7+

e, 0,0) —  |elbe B

#0(59 0; T) - ﬁqi

M+ g1+ et

Putting |£| =|r|%, and passing to the limit v — oo, we have

1 'a($> 0, T) — oo
lim 2(2, 0, 7) ’

which is a contradiction.
Thus this example is a case to which we can not apply the results of
Lions ([ 2], p. 422, p. 426).

4. Extension to the Case m > 1. Let #(&)=u(¢,7v) be a temperate
weight function defined in E**™, where &' =(&,, .--,&,) and t=(t1, .-, 7,). We
shall assume that for a non-negative integer [

2 p
Ssm——ﬂz(fl, = T < oo .

For any p=(p1, p2, ---, pm), p; being a non-negative integer, such that |p| </,
we put

1 2t
&y Ssmﬂ?(e’, kil

Let us consider the trace mapping 0:

w € H'(R™™) > {Dlux', O} =i € T1 HAR?) .

The results established in Section 3 will remain valid for the mapping ©
with necessary modifications. They can be proved along the same line as in
Section 3, so we shall only enumerate them without proof.
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Taeorem 1'. A necessary and sufficient condition in order that the mapp-
ing © may be an epimorphism is that each of the following conditions is sat-
18fied :

(1) the range of the transposed mapping ‘0 is closed in H %(R””");
(2) there exists a positive constant C such that det|t,,,|=C I ki,
Ipi=1

where K (S’)=S Lal
’ S A GCN)
(3) if ue HF(R"™™), and &)= 3 f,&)*, then f, ¢ L1 (8" for |p| <I;
1pl =1 v
(4) if ue H¥(R™™) and A(©)= 3 f& ", then
| =1
ﬁ<$/) T1y o Tty _1'-2];, Tjsls oo Tm> € L;lz-(En'Fm)a for ]:]-a 23 e, m

Cororrary. If #(&' 7y, -yt 1,205, Tty -y Tm) == CU(E), C being a constant,
for j=1,2, ..., m, then the mapping © is an epimorphism.

Prorposition 8'.  Let f {f5(x)} 5 =1 be an arbitrary element of 11 H'»(R")

lpl=1
and ¢ € D(R™) be equal to 1 in a neighbourhood of 0. Suppose there exist a
positive continuous A,(&") in E" and a slowly increasing continuous function
D4(x) in E™ for every |p| <1 such that

ME, D) ZUPT W E0,0)
Then, if we put
18,0 = 33 74 a0,
then u belongs to H*(R™*™) and Diu(x’,0)=f,(x") for |p|<I.
ExampLe 8.  Let #(€) be written, as in Example 1, in the form
ME' ) = () |7| 18,

where #,(8), #,(¢") are temperate weight function, and o is a real number

>% and t=(ty, ..., 7). Let I be the largest integer such that [ <a —%.
Then we shall have vp(é’)wﬂ}‘}z—“ﬂ"f‘?"ﬂzflﬁ'l’”zi’, |p|<!, and 1, may be

1

“ 1>“ , which is independent of p. Putting @.(&,¢) =

chosen as <—
U
1

Lf &) (n) ¢<< ) > f € TI H», we can see that u belongs to H*(R"*™)

15151
and Df’u(x 0) =f,(x") for |p|<{. In fact, these assertions may be verified
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as in Example 1.
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