On a Trace Theorem for the Space $H^{\mu}\left(R^{\boldsymbol{N}}\right)$

Mitsuyuki Itano

(Received February 22, 1966)

Consider the space $H_{m}\left(R^{N}\right), R^{N}$ being an N-dimensional Enclidean space, composed of temperate distributions u defined in R^{N} such that the Fourier transform $\hat{u}(\xi)$ is a locally integrable function satisfying

$$
\int_{\xi^{N}}|\hat{u}(\xi)|^{2}\left(1+|\xi|^{2}\right)^{m} d \xi<\infty
$$

Let m be a positive number $>\frac{1}{2}$ and l the largest integer such that $l<m-\frac{1}{2}$. It is known that the trace mapping

$$
u \in H_{m}\left(R^{N}\right) \rightarrow\left(u\left(x^{\prime}, 0\right), \cdots, \frac{\partial^{l}}{\partial x_{N}^{l}} u\left(x^{\prime}, 0\right)\right) \epsilon \prod_{j=0}^{l} H_{m-j-\frac{1}{2}}\left(R^{N-1}\right)
$$

is an epimorphism, where x^{\prime} stands for ($x_{1}, x_{2}, \cdots, x_{N-1}$).
$H_{m}\left(R^{N}\right)$ is a particular instance of the spaces $H^{\mu}\left(R^{N}\right), \mu$ being a temperate weight function defined in Ξ^{N}. The discussion on the spaces $H^{\mu}\left(R^{N}\right)$ is given in full detail in L. Hörmander [1] and in L.R. Volevič and B.P. Paneyah [5]. As a result of J. L. Lions' theorems on the Hilbert spaces [2], the trace theorem as mentioned above remains valid for $H^{\mu}\left(R^{N}\right)$ when $\mu(\xi)$ is equivalent to

$$
\mu_{1}\left(\xi^{\prime}\right)+\left|\xi_{N}\right|^{a} \mu_{2}\left(\xi^{\prime}\right)
$$

where $\mu_{1}\left(\xi^{\prime}\right), \mu_{2}\left(\xi^{\prime}\right)$ are temperate weight functions in Ξ^{N-1}.
Recently M. Pagni has shown the theorem for a special $H^{\mu}\left(R^{N}\right)$, to which Lions' theorem is not applicable [3].

Our main aim of this paper is to investigate the trace theorem of the above type for general $H^{\mu}\left(R^{N}\right)$. We have obtained the necessary and sufficient conditions for the validity of the theorem (cf. Theorem 1 below). It is to be noticed that a sufficient condition to the effect that $\mu\left(\xi^{\prime}, 2 \xi_{N}\right) \geqq$ $C \mu\left(\xi^{\prime}, \xi_{N}\right), C$ being a constant, seems convenient to guarantee the theorem in most cases as enumerated above.

1. Notations and Terminologies. Let R^{N} be an N-dimensional Euclidean space and let Ξ^{N} be its dual space. For $x=\left(x_{1}, \ldots, x_{N}\right) \in R^{N}$ and $\xi=\left(\xi_{1}, \cdots, \xi_{N}\right) \in \Xi^{N}$, the scalar product $\langle x, \xi\rangle$ and the length of the vector
x are defined by $\langle x, \xi\rangle=\sum_{j=1}^{N} x_{j} \xi_{j},|x|=\left(\sum_{j=1}^{N}\left|x_{j}\right|^{2}\right)^{\frac{1}{2}}$, and similarly for $|\xi|$. We shall use the multi-indices notation. If α is an N-tuple ($\alpha_{1}, \ldots, \alpha_{N}$) of non-negative integers, the sum $\sum_{j=1}^{N} \alpha_{j}$ will be denoted by $|\alpha|$ and the product $\alpha_{1}!\ldots \alpha_{N}$! by $\alpha!$. With $D=\left(D_{1}, \ldots, D_{N}\right), D_{j}=\frac{1}{i} \frac{\partial}{\partial x_{j}}$, we set $D^{\alpha}=D_{1}^{\alpha_{1} \ldots D_{N}}{ }^{\alpha_{N}}$ and similarly $\xi^{\alpha}=\xi_{1}^{\alpha_{1}} \ldots \xi_{N}^{\alpha_{N}}$. For a polynomial $P(\xi)=\sum a_{\alpha} \xi^{\alpha}$ in ξ, we put $P(D)=\sum a_{\alpha} D^{\alpha}, \bar{P}(\xi)=\sum \overline{a_{\alpha}} \xi^{\alpha}$ and $\tilde{P}(\xi)=\left\{\sum_{|\alpha|=0}\left|P^{(\alpha)}(\xi)\right|^{2}\right\}^{\frac{1}{2}}$, where $\overline{a_{\alpha}}$ is the complex conjugate of a_{α} and $P^{(\alpha)}$ means $i^{|\alpha|} D^{\alpha} P$.

Let us denote by $\mathscr{D}\left(R^{N}\right)$, or \mathscr{D}, the space of all C^{∞}-functions in R^{N} with compact supports with usual topology of L. Schwartz [4] and by \mathscr{D}^{\prime} its strong dual, whose elements are called distributions. Also by $\mathscr{S}\left(R^{N}\right)$, or \mathscr{S}, we denote the space of all rapidly decreasing C^{∞}-functions ϕ in R^{N} with the semi-norms $\sup _{x}\left|x^{\alpha} D^{\beta} \phi\right|$ and by \mathscr{S}^{\prime} its strong dual, whose elements are called temperate distributions. For $\phi \in \mathscr{D}, u \in \mathscr{D}^{\prime}\left(\right.$ or $\left.\phi \in \mathscr{S}, u \in \mathscr{S}^{\prime}\right),<u, \phi>$ means the scalar product between them. For any $\phi \in \mathscr{S}$, its Fourier transform $\mathcal{F} \phi$, or $\hat{\phi}$ is defined by the formula

$$
(\mathcal{F} \phi)(\xi)=\hat{\phi}(\xi)=\int_{R^{N}} \phi(x) e^{-i<x, \xi\rangle} d x .
$$

If $u \in \mathscr{S}^{\prime}$, the Fourier transform \hat{u} is defined by

$$
<\hat{u}, \phi>=<u, \hat{\phi}>, \quad \forall \phi \in \mathscr{S} .
$$

A positive-valued continuous function $\mu(\xi)$ defined in Ξ^{N} is called a temperate weight function [1] if there exist positive constants C and k such that

$$
\mu(\xi+\eta) \leqq C\left(1+|\xi|^{k}\right) \mu(\eta), \quad \forall \xi, \eta \in \Xi^{N} .
$$

For temperate weight functions $\mu_{1}(\xi)$ and $\mu_{2}(\xi), \mu_{1}(\xi)+\mu_{2}(\xi), \mu_{1}(\xi) \mu_{2}(\xi)$ and $\mu_{1}(\xi)^{-1}$ are also temperate weight functions. If there exist positive constants C_{1}, C_{2} such that

$$
C_{1} \leqq \frac{\mu_{1}(\xi)}{\mu_{2}(\xi)} \leqq C_{2}
$$

then we shall call that $\mu_{1}(\xi)$ and $\mu_{2}(\xi)$ are equivalent and write $\mu_{1}(\xi) \sim \mu_{2}(\xi)$. By $H^{\mu}\left(R^{N}\right)$, or H^{μ}, we shall understand the space of $u \in \mathscr{S}^{\prime}\left(R^{N}\right)$ such that \hat{u} is a function satisfying

$$
\|u\|_{\mu}^{2}=\left(\frac{1}{2 \pi}\right)^{N} \int_{\Xi^{N}}|\hat{u}(\xi)|^{2} \mu^{2}(\xi) d \xi<\infty
$$

that is, $\hat{u} \in L_{\mu^{2}}^{2}\left(\Xi^{N}\right)$, the space of square integrable functions with respect to
$\mu^{2} d \xi . \quad H^{\mu}\left(R^{N}\right)$ is a Hilbert space with the inner product

$$
(u \mid v)=\left(\frac{1}{2 \pi}\right)^{N} \int_{\Xi^{N}} \hat{u}(\xi) \overline{\hat{v}(\xi)} \mu^{2}(\xi) d \xi
$$

Its strong dual space is $H^{\frac{1}{\mu}}\left(R^{N}\right)$ where for any $u \in H^{\mu}\left(R^{N}\right)$ and $w \in H^{\frac{1}{\mu}}\left(R^{N}\right)$, we have

$$
<w, \bar{u}>=\left(\frac{1}{2 \pi}\right)^{N} \int_{\Xi^{N}} \hat{w}(\xi) \overline{\hat{u}(\xi)} d \xi
$$

Let $N=n+m$. It will be convenient to employ the notations:

$$
\begin{array}{rlrl}
x & =\left(x^{\prime}, t\right), & x^{\prime} & =\left(x_{1}, \cdots, x_{n}\right), \\
\xi & =\left(\xi^{\prime}, \tau\right), & \xi^{\prime} & =\left(\xi_{1}, \ldots, \xi_{n}\right), \\
& \tau & \left.=\left(t_{1}, \cdots, t_{m}\right), \ldots, \tau_{m}\right), \\
D^{\alpha} & =D_{x^{\prime}}^{\alpha^{\prime}} D_{t}^{\alpha^{\prime \prime}}, & D_{x^{\prime}}^{\alpha^{\prime}} & =D_{1}^{\alpha_{1}} \ldots D_{n}^{\alpha_{n}},
\end{array} D_{t}^{\alpha^{\prime \prime}}=D_{n+1}^{\alpha_{n+1} \ldots D_{N}^{\alpha_{n+m}} .} \begin{aligned}
\end{aligned}
$$

The scalar product then takes the form $\langle x, \xi\rangle=\left\langle x^{\prime}, \xi^{\prime}\right\rangle+\langle t, \tau\rangle$.
By $R_{x^{\prime}}^{n}$, or R^{n}, we shall denote the subspace of all the points ($x^{\prime}, 0$) and by R_{t}^{m}, or R^{m}, the subspace of all the points $(0, t)$ in R^{N}. The partial Fourier transforms are defined as follows: Let $\phi \in \mathscr{S}$, then

$$
\begin{gathered}
\left(\mathcal{F}_{x^{\prime}} \phi\right)\left(\xi^{\prime}, t\right)=\hat{\phi}_{x^{\prime}}\left(\xi^{\prime}, t\right)=\int_{R^{n}} \phi\left(x^{\prime}, t\right) e^{-i<x^{\prime}, \xi^{\prime}>} d x^{\prime}, \\
\left(\mathcal{F}_{t} \phi\right)\left(x^{\prime}, \tau\right)=\hat{\phi}_{t}\left(x^{\prime}, \tau\right)=\int_{R^{m}} \phi\left(x^{\prime}, t\right) e^{-i<t, \tau\rangle} d t
\end{gathered}
$$

For $u \in \mathscr{S}^{\prime}$, we define $\hat{u}_{x^{\prime}}, \hat{u}_{t}$ by the relations

$$
<\hat{u}_{x^{\prime}}, \phi>=<u, \hat{\phi}_{x^{\prime}}>, \quad<\hat{u}_{t}, \phi>=<u, \hat{\phi}_{t}>, \quad \phi \in \mathscr{S} .
$$

For a temperate weight function $\mu(\xi)$ in R^{n+m}, the integral $\int_{\Sigma^{m}} \mu\left(\xi^{\prime}, \tau\right) d \tau$ diverges for every point $\xi^{\prime} \in \Xi^{n}$, or converges for every point $\xi^{\prime} \in \Xi^{n}$ and it is a temperate weight function in $\Xi^{n}([5], p .10)$.

For any function $u(x) \in \mathscr{D}\left(R^{n+m}\right)$, the trace $u\left(x^{\prime}, 0\right)$ on R^{n} clearly belongs to $\mathscr{D}\left(R^{n}\right)$. $\mathscr{D}\left(R^{n+m}\right)$ is dense in $H^{\mu}\left(R^{n+m}\right)$. If the mapping $u \rightarrow u\left(x^{\prime}, 0\right)$ can be continuously extended from $H^{\mu}\left(R^{n+m}\right)$ into $D^{\prime}\left(R^{n}\right)$, then the extended mapping is called a trace mapping on R^{n}. The trace $u\left(x^{\prime}, 0\right)$ on R^{n} exists for every $u \in H^{\mu}\left(R^{n+m}\right)$ if and only if $\frac{1}{\mu(0, \tau)} \in L^{2}([5]$, p. 36), and we can write

$$
\widehat{u\left(x^{\prime}, 0\right)}\left(\xi^{\prime}\right)=\left(\frac{1}{2 \pi}\right)^{m} \int_{\xi^{m}} \hat{u}\left(\xi^{\prime}, \tau\right) d \tau
$$

2. Preliminary Discussions. Let $P(D)$ be a differential operator, where $P(\xi)=P\left(\xi^{\prime}, \tau\right)$ is a non-trivial polynomial in the vector $\left(\xi^{\prime}, \tau\right)$, i.e. $P(\xi)$

三 0 . For any $u(x) \in \mathscr{D}\left(R^{n+m}\right), P(D) u\left(x^{\prime}, 0\right)$ belongs to $\mathscr{D}\left(R^{n}\right)$. If the mapping $u \rightarrow P(D) u\left(x^{\prime}, 0\right)$ can be continuously extended from $H^{\mu}\left(R^{n+m}\right)$ into $\mathscr{D}^{\prime}\left(R^{n}\right)$, then we shall say that the trace $P(D) u\left(x^{\prime}, 0\right)$ on R^{n} exists for every $u \epsilon$ $H^{\mu}\left(R^{n+m}\right)$. We start with making an improvement of a result of L.R. Volevič and B.P. Paneyah ([5], p. 39).

Proposition 1. Let $\mu(\xi)$ be a temperate weight function in R^{n+m}. In order that the trace $P(D) u\left(x^{\prime}, 0\right)$ on R^{n} may exist for every $u \in H^{\mu}\left(R^{n+m}\right)$, it is necessary and sufficient that either of the following conditions (1), (2) is satisfied:
(1) $\frac{1}{\mu_{P}^{2}\left(\xi^{\prime}\right)}=\int_{\Xi^{m}} \frac{\tilde{P}^{2}\left(\xi^{\prime}, \tau\right)}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau<\infty$ for some $\quad \xi^{\prime} \in \Xi^{n}$;
(2) $\int_{\Xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau<\infty$ for every $\quad \xi^{\prime} \in \Xi^{n}$;
and then $P(D) u\left(x^{\prime}, 0\right) \in H^{\mu_{\vec{P}}}\left(R^{n}\right)$.
In addition, $P(D) u\left(x^{\prime}, 0\right)$ belongs to $H^{\nu}\left(R^{n}\right)$ for every $u \in H^{\mu}\left(R^{n+m}\right)$ if and only if either of (1)', (2) holds:
(1) $\quad \nu\left(\xi^{\prime}\right) \leqq C_{1} \mu_{\bar{P}}\left(\xi^{\prime}\right)$ with a constant C_{1};
(2) $)^{\prime} \nu^{2}\left(\xi^{\prime}\right) \int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau \leqq C_{2}$ with a constant C_{2}.

Proof: For any $\eta \in \Xi^{n+m}$, the mapping $u \rightarrow e^{i<x, \eta\rangle} u$ of $H^{\mu}\left(R^{n+m}\right)$ into $H^{\mu}\left(R^{n+m}\right)$ is continuous. If the trace $P(D) u\left(x^{\prime}, 0\right)$ is defined for every $u \in H^{\mu}\left(R^{n+m}\right)$, then $P(D) e^{i<x, \eta>} u(x)=e^{i<x, \eta>} P(D+\eta) u(x)$ has the trace $e^{i<x^{\prime}, \eta^{\prime}>} P(D+\eta) u\left(x^{\prime}, 0\right)$ on R^{n}. Therefore the mapping

$$
u \rightarrow P(D+\eta) u\left(x^{\prime}, 0\right)
$$

of $H^{\mu}\left(R^{n+m}\right)$ into $\mathscr{D}^{\prime}\left(R^{n}\right)$ is continuous. That is,

$$
\bar{P}(D+\eta)(\phi \otimes \delta) \epsilon\left(H^{\mu}\right)^{\prime}=H^{\frac{1}{\mu}}, \quad{ }^{\forall} \phi \in \mathscr{D}\left(R^{n}\right)
$$

where δ is the Dirac measure in R^{m}. This means that

$$
\bar{P}(\xi+\eta) \hat{\phi}\left(\xi^{\prime}\right) \epsilon L_{\frac{1}{\mu^{2}}}^{2} \quad \text { for every } \eta \in \Xi^{n+m}
$$

Consequently we have for every $\eta \in \Xi^{n+m}$

$$
\hat{\phi}\left(\xi^{\prime}\right) \bar{P}(\xi+\eta)=\sum_{|\alpha|=0} \frac{\eta^{\alpha}}{\alpha!} \hat{\phi}\left(\xi^{\prime}\right) \bar{P}^{(\alpha)}(\xi) \epsilon L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+m}\right) .
$$

$\left\{\eta^{\alpha}\right\}$ being linearly independent, we can conclude that $\hat{\phi}\left(\xi^{\prime}\right) \bar{P}^{(\alpha)}(\xi) \in L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+m}\right)$, which implies

$$
\int_{\xi^{n}}\left|\hat{\phi}\left(\xi^{\prime}\right)\right|^{2} d \xi^{\prime} \int_{\Xi^{m}} \frac{\tilde{P}^{2}\left(\xi^{\prime}, \tau\right)}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau<\infty
$$

As a result,

$$
\int_{\Xi^{m}} \frac{\tilde{P}^{2}\left(\xi^{\prime}, \tau\right)}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau<\infty \quad \text { a.e. } \quad \text { in } \Xi^{n}
$$

Since $\tilde{P}(\xi)$ and $\mu(\xi)$ are temperate weight functions, it follows that the integral is finite at every point of $\Xi^{n}([5]$, p. 10).

Clearly the condition (1) implies (2).
Now suppose (2) holds. For any $u \in \mathscr{D}\left(R^{n+m}\right)$, we have

$$
\left(\widehat{P(D) u\left(x^{\prime}, 0\right)}\right)\left(\xi^{\prime}\right)=\left(\frac{1}{2 \pi}\right)^{m} \int_{z^{m}} P(\xi) \hat{u}(\xi) d \tau
$$

Then we have for any $\phi \in \mathscr{D}\left(R^{n}\right)$

$$
\begin{aligned}
\mid & <P(D) u\left(x^{\prime}, 0\right), \left.\bar{\phi}>\left|=\left(\frac{1}{2 \pi}\right)^{n+m}\right| \int_{\Xi^{n+m}} P(\xi) \hat{u}(\xi) \overline{\hat{\phi}\left(\xi^{\prime}\right)} d \xi \right\rvert\, \\
& \leqq\left(\frac{1}{2 \pi}\right)^{n+m}\left(\int_{\xi^{n}}\left|\hat{\phi}\left(\xi^{\prime}\right)\right|^{2}\left(\int_{\bar{\Xi}^{m}} \frac{|P(\xi)|^{2}}{\mu^{2}(\xi)} d \tau\right) d \xi^{\prime}\right)^{\frac{1}{2}}\left(\int_{\Xi^{n+m}}|\hat{u}(\xi)|^{2} \mu^{2}(\xi) d \xi\right)^{\frac{1}{2}} \\
& =\left(\frac{1}{2 \pi}\right)^{\frac{n+m}{2}}\left(\int_{\Xi^{n}}\left|\hat{\phi}\left(\xi^{\prime}\right)\right|^{2}\left(\int_{\bar{\xi}^{m}} \frac{|P(\xi)|^{2}}{\mu^{2}(\xi)} d \tau\right) d \xi^{\prime}\right)^{\frac{1}{2}}\|u\|_{\mu} .
\end{aligned}
$$

$\mathscr{D}\left(R^{n+m}\right)$ being dense in $H^{\mu}\left(R^{n+m}\right)$, in order to prove the existence of the trace under consideration, it is sufficient to show that $\int_{\Xi^{m}} \frac{|P(\xi)|^{2}}{\mu^{2}(\xi)} d \tau$ is a slowly increasing function in ξ^{\prime}. Taking into account the formula $P\left(\xi^{\prime}, \tau\right)=$ $\sum_{|\alpha| \leqq 0} \frac{\xi^{\prime \alpha^{\prime}}}{\alpha^{\prime}!} P^{\left(\alpha^{\prime}\right)}(0, \tau)$, we see that $\int_{\Xi^{m}} \frac{\left|P^{\left(\alpha^{\prime}\right)}(0, \tau)\right|^{2}}{\mu^{2}(0, \tau)} d \tau<\infty$. Since there exist positive constants C, k such that $\mu(0, \tau) \leqq C\left(1+\left|\xi^{\prime}\right|^{k}\right) \mu\left(\xi^{\prime}, \tau\right)$, it follows that $\int_{\Xi^{m}} \frac{\left|P^{\left(\alpha^{\prime}\right)}(0, \tau)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau<\infty$. We can therefore conclude that $\int_{\Xi^{m}} \frac{|P(\xi)|^{2}}{\mu^{2}(\xi)} d \tau$ is a slowly increasing function in ξ^{\prime}.

If the trace $P(D) u\left(x^{\prime}, 0\right)$ exists for every $u \in H^{\mu}\left(R^{n+m}\right)$, then we have for any $u \in \mathscr{D}\left(R^{n+m}\right)$

$$
\begin{aligned}
\| P(D) & u\left(x^{\prime}, 0\right) \|_{\mu_{\tilde{P}}}^{2}=\left(\frac{1}{2 \pi}\right)^{n+2 m} \int_{\Xi^{n}} \mu_{\tilde{P}}^{2}\left(\xi^{\prime}\right)\left|\int_{\Xi^{m}} P(\xi) \hat{u}(\xi) d \tau\right|^{2} d \xi^{\prime} \\
& =\left(\frac{1}{2 \pi}\right)^{n+2 m} \int_{\Xi^{n}} \mu_{\tilde{P}}^{2}\left(\xi^{\prime}\right)\left(\int_{\Xi^{m}} \frac{|P(\xi)|^{2}}{\mu^{2}(\xi)} d \tau\right)\left(\int_{\xi^{m}} \mu^{2}(\xi)|\hat{u}(\xi)|^{2} d \tau\right) d \xi^{\prime} \\
& \leqq\left(\frac{1}{2 \pi}\right)^{n+2 m} \int_{\Xi^{n}} \mu_{\tilde{P}}^{2}\left(\xi^{\prime}\right)\left(\int_{\Xi^{m}} \frac{\tilde{P}^{2}(\xi)}{\mu^{2}(\xi)} d \tau\right)\left(\int_{\xi^{m}} \mu^{2}(\xi)|\hat{u}(\xi)|^{2} d \tau\right) d \xi^{\prime} \\
& =\left(\frac{1}{2 \pi}\right)^{m}\|u\|_{\mu}^{2} .
\end{aligned}
$$

Therefore, $\mathscr{D}\left(R^{n+m}\right)$ being dense in $H^{\mu}\left(R^{n+m}\right)$, the trace $P(D) u\left(x^{\prime}, 0\right) \in H^{\mu}\left(R^{n}\right)$.
Thus the proof of the first part of Proposition 1 is complete. Along the same line as above, if $P(D) u\left(x^{\prime}, 0\right)$ belongs to $H^{\nu}\left(R^{n}\right)$ for every $u \in H^{\mu}\left(R^{n+m}\right)$, then

$$
\bar{P}(D+\eta)(\phi \otimes \delta) \epsilon\left(H^{\mu}\right)^{\prime}=H^{\frac{1}{\mu}}, \quad{ }^{\forall} \phi \in\left(H^{\nu}\right)^{\prime}=H^{\frac{1}{\nu}}
$$

for any $\eta \in \Xi^{n+m}$. This implies that $\hat{\phi}\left(\xi^{\prime}\right) \tilde{P}(\xi) \in L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+m}\right)$. That is,

$$
\int_{\xi^{n}} \frac{\left|\hat{\phi}\left(\xi^{\prime}\right)\right|^{2}}{\nu^{2}\left(\xi^{\prime}\right)}\left(\nu^{2}\left(\xi^{\prime}\right) \int_{\xi^{m}} \frac{\tilde{P}^{2}(\xi)}{\mu^{2}(\xi)} d \tau\right) d \xi^{\prime}<\infty
$$

Then for some constant $C>0$

$$
\nu^{2}\left(\xi^{\prime}\right) \int_{\xi^{m}} \frac{\tilde{P}^{2}(\xi)}{\mu^{2}(\xi)} d \tau \leqq C^{2} \quad \text { a.e. }
$$

Since $\mu_{\hat{P}}\left(\xi^{\prime}\right)$ and $\nu\left(\xi^{\prime}\right)$ are temperate weight functions, we have for every $\xi^{\prime} \epsilon$ E^{n}

$$
\nu\left(\xi^{\prime}\right) \leqq C \mu_{\tilde{P}}\left(\xi^{\prime}\right)
$$

Thus (1)' follows.
Clearly (1)' implies (2)'.
Suppose (2)' holds. After calculation, as in the proof of the first part, we have for some constant C_{1}

$$
\left\|P(D) u\left(x^{\prime}, 0\right)\right\|_{\nu} \leqq C_{1}\|u\|_{\mu}, \quad{ }^{\forall} u \in \mathscr{D}\left(R^{n+m}\right)
$$

$\mathscr{D}\left(R^{n+m}\right)$ is dense in $H^{\mu}\left(R^{n+m}\right)$. Therefore, for every $u \in H^{\mu}\left(R^{n+m}\right)$, the trace $P(D) u\left(x^{\prime}, 0\right)$ exists and belongs to $H^{\nu}\left(R^{n}\right)$.

Thus the proof is complete.
Remark 1. Let Q be a non-trivial polynomial weaker than P, that is, $Q(\xi) \leqq C \tilde{P}(\xi), \xi \in \Xi^{n+m}$ with a constant C. Then $\tilde{Q}(\xi) \leqq C \tilde{P}(\xi)$ with a constant C ([1], p. 73). Proposition 1 shows that if the trace $P(D) u\left(x^{\prime}, 0\right)$ exists for every $u \in H^{\mu}\left(R^{n+m}\right)$, then $Q(D) u\left(x^{\prime}, 0\right)$ exists, too.

Proposition 2. Suppose $\frac{1}{\mu_{P}^{2}}=\int_{\Xi^{m}} \frac{\tilde{P}^{2}\left(\xi^{\prime}, \tau\right)}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau<\infty$. The trace mapping $\mathfrak{T}: u \rightarrow P(D) u\left(x^{\prime}, 0\right)$ of $H^{\mu}\left(R^{n+m}\right)$ into $H^{\mu_{\tilde{P}}}\left(R^{n}\right)$ is an epimorphism if and only if each of the following conditions is satisfied:
(1) the range of the transposed mapping ${ }^{t} \mathcal{T}$ is closed in $H^{\frac{1}{\mu}}\left(R^{n+m}\right)$;
(2) $\frac{1}{\nu^{2}\left(\xi^{\prime}\right)}=\int_{z^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau$ is a temperate weight function;
(3) if $f\left(\xi^{\prime}\right) \bar{P}(\xi) \in L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+m}\right)$, where $f\left(\xi^{\prime}\right)$ is locally integrable, then

$$
f \in L_{\bar{\mu}_{\vec{P}}^{2}}^{2}\left(\Xi^{n}\right) .
$$

If each of these conditions is satisfied, then $\nu\left(\xi^{\prime}\right) \sim \mu_{\tilde{p}}\left(\xi^{\prime}\right)$.
Proof: Consider the transposed mapping ${ }^{t} \mathbb{G}$ of $H^{\frac{1}{\mu_{\tilde{P}}}}\left(R^{n}\right)$ into $H^{\frac{1}{\mu}}\left(R^{n+m}\right)$. We note that

$$
\widehat{{ }^{\mathscr{T}} \widetilde{\sigma} v}(\xi)=\hat{v}\left(\xi^{\prime}\right) \bar{P}(\xi), \quad v \in H^{\frac{1}{\mu_{\bar{P}}}\left(R^{n}\right) .}
$$

Indeed, it is sufficient to verify this relation when $v \in \mathscr{D}\left(R^{n}\right)$. Let f be any element of $\mathscr{D}\left(R^{n+m}\right)$. Then the relations

$$
\begin{aligned}
<\overparen{\emptyset} f, \bar{v}> & =\left(\frac{1}{2 \pi}\right)^{n} \int_{\Xi^{n}} \widehat{P(D) f\left(x^{\prime}, 0\right)}\left(\xi^{\prime}\right) \overline{\hat{v}\left(\xi^{\prime}\right)} d \xi^{\prime} \\
& =\left(\frac{1}{2 \pi}\right)^{n+m} \int_{\Xi^{n}}\left(\int_{\Xi^{n}} P(\xi) \hat{f}(\xi) d \tau\right) \overline{\hat{v}\left(\xi^{\prime}\right)} d \xi^{\prime} \\
& =\left(\frac{1}{2 \pi}\right)^{n+m} \int_{\Xi^{n+m}} \overline{\hat{v}\left(\xi^{\prime}\right)} P(\xi) \hat{f}\left(\xi^{\prime}\right) d \xi
\end{aligned}
$$

and

$$
\left\langle^{\bar{t} \overparen{O} v}, f\right\rangle=\left(\frac{1}{2 \pi}\right)^{n+m} \int_{\Xi^{n+m}} \overline{\bar{t} \overparen{\vartheta} v(\xi)} \hat{f}\left(\xi^{\prime}\right) d \xi
$$

show our assertion.
The mapping ${ }^{t} \mathbb{O}$ is injective. In fact, let ${ }^{t} \mathbb{O} v=0$, that is, ${ }^{t} \overparen{\mathscr{O} v}(\xi)=0$, then

$$
\int_{\Xi^{n}}\left|\hat{v}\left(\xi^{\prime}\right)\right|^{2}\left(\int_{\Xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau\right) d \xi^{\prime}=0 .
$$

Since the polynominal $P\left(\xi^{\prime}, \tau\right)$ is non-trivial, $\iint_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau$ does not identically vanish in any relatively compact open subset of Ξ^{n}. Thus $\hat{v}\left(\xi^{\prime}\right)=0$ a.e. in Ξ^{n}, which implies that $v=0$.

Consequently the mapping \mathcal{T} is an epimorphism if and only if the range of ${ }^{t} \overparen{6}$ is closed in $H^{\frac{1}{\mu}}\left(R^{n+m}\right)$.

Suppose the range of ${ }^{t} \mathbb{G}$ is closed, then there is a constant $C>0$ such that $\|v\|_{\bar{\mu}_{\bar{P}}} \leqq C\left\|^{t} \widetilde{O} v\right\|_{\frac{1}{\mu}}$ for every $v \in H^{\frac{1}{\mu_{\bar{P}}}}\left(R^{n}\right)$. That is,

$$
\begin{gathered}
\int_{\xi^{n}}\left|\hat{v}\left(\xi^{\prime}\right)\right|^{2} \frac{1}{\mu_{\hat{P}}^{2}\left(\xi^{\prime}\right)} d \xi^{\prime} \leqq C^{2} \int_{\xi^{n+m}} \frac{\left|\hat{v}\left(\xi^{\prime}\right)\right|^{2}|P(\xi)|^{2}}{\mu^{2}(\xi)} d \xi \\
\quad=C^{2} \int_{\Xi^{n}}\left|\hat{v}\left(\xi^{\prime}\right)\right|^{2}\left(\int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau\right) d \xi^{\prime}
\end{gathered}
$$

Consequently

$$
\frac{1}{\mu_{P}^{2}\left(\xi^{\prime}\right)} \leqq C^{2} \int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau
$$

Since trivially $\int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau \leqq \frac{1}{\mu_{P}^{2}\left(\xi^{\prime}\right)}$, we have

$$
\frac{1}{C} \frac{1}{\mu_{\bar{p}}\left(\xi^{\prime}\right)} \leqq \frac{1}{\nu\left(\xi^{\prime}\right)} \leqq \frac{1}{\mu_{\vec{P}}\left(\xi^{\prime}\right)} .
$$

Consequently $\nu\left(\xi^{\prime}\right)$ is a temperate weight function equivalent to $\mu_{\bar{p}}\left(\xi^{\prime}\right)$. Thus (1) implies (2).

Suppose $\nu\left(\xi^{\prime}\right)$ is a temperate weight function. First we show that $\nu\left(\xi^{\prime}\right) \sim$ $\mu_{\bar{\rho}}\left(\xi^{\prime}\right)$. For any $\eta \in \Xi^{n+m}$ with $|\eta| \leqq 1$, we can find positive constants C_{1}, C_{2} such that

$$
\frac{C_{1}}{\nu^{2}\left(\xi^{\prime}\right)} \geqq \frac{1}{\nu^{2}\left(\xi^{\prime}+\eta^{\prime}\right)}=\int_{\xi^{m}} \frac{|P(\xi+\eta)|^{2}}{\mu^{2}(\xi+\eta)} d \tau \geqq C_{2} \int_{\Xi^{m}} \frac{|P(\xi+\eta)|^{2}}{\mu^{2}(\xi)} d \tau
$$

Taking into account the formula $P(\xi+\eta)=\sum_{|\alpha| \leq 0} \frac{\eta^{\alpha}}{\alpha!} P^{(\alpha)}(\xi)$, we have for a positive constant C_{3}

$$
\frac{1}{\nu^{2}\left(\xi^{\prime}\right)} \geqq C_{3} \int_{\xi^{m}} \frac{\left|P^{(\alpha)}\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau
$$

It follows therefore that $\nu\left(\xi^{\prime}\right) \sim \mu_{\bar{P}}\left(\xi^{\prime}\right)$. Now let $f\left(\xi^{\prime}\right)$ be a locally integrable function such that $f\left(\xi^{\prime}\right) \bar{P}(\xi) \in L_{\frac{1}{\mu^{2}}}^{2}$. Then

$$
\int_{\Xi^{n}}\left|f\left(\xi^{\prime}\right)\right|^{2} \frac{1}{\nu^{2}\left(\xi^{\prime}\right)} d \xi^{\prime}=\int_{\Xi^{n+m}} \frac{\left|f\left(\xi^{\prime}\right)\right|^{2}\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \xi<\infty .
$$

This together with the relation $\nu\left(\xi^{\prime}\right) \sim \mu_{\bar{p}}\left(\xi^{\prime}\right)$ shows that $f \in L_{\frac{1}{\mu_{\tilde{p}}}}^{2}$. Thus (2) implies (3).

Suppose (3) holds. We note that the integral $\int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau$ does not vanish in Ξ^{n}. Let ξ_{0}^{\prime} be any point in Ξ^{n}, and B the closed unit ball with center ξ_{0}^{\prime}. Consider the set E of all integrable functions $f\left(\xi^{\prime}\right)$ such that $\operatorname{supp} f \subset B$ and

$$
\int_{\xi^{n}}\left|f\left(\xi^{\prime}\right)\right|^{2}\left(\int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau\right) d \xi^{\prime}<\infty .
$$

E is a Banach space with the norm $\|f\|_{E}$:

$$
\|f\|_{E}^{2}=\left[\int_{B}\left|f\left(\xi^{\prime}\right)\right| d \xi^{\prime}\right]^{2}+\int_{B}\left|f\left(\xi^{\prime}\right)\right|^{2}\left(\int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau\right) d \xi^{\prime} .
$$

Owing to the closed graph theorem the injection $E \rightarrow H^{\frac{1}{\mu_{\bar{P}}}}\left(R^{n}\right)$ is continuous. Let B_{ε} be the closed ball with center ξ_{0}^{\prime} and radius $\varepsilon, 0<\varepsilon<1$. Taking $f=$ $x_{B_{\varepsilon}}$, the characteristic function of B_{ε}, we have for a positive constant C

$$
\begin{aligned}
& C\left|B_{\varepsilon}\right| \leqq\left|B_{\varepsilon}\right|^{2}+\int_{B_{\varepsilon}}\left(\int_{\Xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau\right) d \xi^{\prime} \\
& C \leqq\left|B_{\varepsilon}\right|+\frac{1}{\left|B_{\varepsilon}\right|} \int_{B_{\varepsilon}}\left(\int_{\Xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau\right) d \xi^{\prime}
\end{aligned}
$$

where $\left|B_{\varepsilon}\right|$ stands for the Lebesgue measure of B_{ε}. Now, passing to the limit $\varepsilon \rightarrow 0$, we have

$$
\int_{\Xi^{m}} \frac{\left|P\left(\xi_{0}^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi_{0}^{\prime}, \tau\right)} d \tau \geqq C .
$$

Let us now show that the range of ${ }^{t} \mathbb{\overparen { C }}$ is closed in $H^{\frac{1}{\mu}}\left(R^{n+m}\right)$. Let $\left\{v^{j}\left(\xi^{\prime}\right)\right\}$ be any sequence of $H^{\frac{1}{\mu_{\tilde{P}}}}\left(R^{n}\right)$ such that $\left\{{ }^{t} \overparen{\oslash} v^{j}\right\}$ converges in $H^{\frac{1}{\mu}}\left(R^{n+m}\right)$ to u. Then $\hat{v}^{j}\left(\xi^{\prime}\right) \bar{P}(\xi)$ converges in $L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+m}\right)$ to \hat{u}. It follows that $\hat{v}^{j}\left(\xi^{\prime}\right)\left[\int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau\right]^{\frac{1}{2}}$ is a Cauchy sequence in $L^{2}\left(\Xi^{n}\right)$. Since $\int_{\Xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau$ >0, we see that $\hat{v}^{j}\left(\xi^{\prime}\right)$ converges in $L_{l o c}^{1}\left(\Xi^{n}\right)$ to a function $f\left(\xi^{\prime}\right)$. Consequently we can write $\hat{u}(\xi)=f\left(\xi^{\prime}\right) \bar{P}(\xi)$. The condition (3) implies that $f \in L_{\mu_{\hat{P}}^{2}}^{2}\left(\Xi^{n}\right)$, so that u belongs to the range of ${ }^{t} \not{\square}$. Therefore (3) implies (1).

Thus the proof is complete.
Remark 2. If $P(D)$ is a polynomial in D_{t} and

$$
\frac{1}{\nu^{2}\left(\xi^{\prime}\right)}=\int_{\xi^{m}} \frac{|P(\tau)|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau<\infty
$$

then it is clear that $\nu\left(\xi^{\prime}\right)$ is a temperate weight function. By virtue of Proposition 2, the mapping $u \rightarrow P\left(D_{t}\right) u\left(x^{\prime}, 0\right)$ of $H^{\mu}\left(R^{n+m}\right)$ into $\left.H^{\mu_{\bar{P}}(} R^{n}\right)$ is an epimorphism.

Remark 3. If the differential operator $P(D)$ is elliptic or more generally hypoelliptic ($[1]$, p. $75, \mathrm{p} .100$), then the mapping $u \rightarrow P(D) u\left(x^{\prime}, 0\right)$ of $H^{\mu}\left(R^{n+m}\right)$ into $H^{\mu_{\tilde{p}}}\left(R^{n}\right)$ is an epimorphism. In fact, there exist constants C, K such that

$$
\left|P^{(\alpha)}(\xi)\right| \leqq C|P(\xi)| \quad \text { for } \quad|\xi|>K .
$$

If $P(\xi)=\sum_{\left|\alpha^{\prime \prime}\right| \geq 0} \frac{\tau^{\alpha^{\prime \prime}}}{\alpha^{\prime \prime}!} P^{\left(\alpha^{\prime \prime}\right)}\left(\xi^{\prime}, 0\right)=0$, there is a $P^{\left(\alpha^{\prime \prime}\right)}\left(\xi^{\prime}, 0\right)$, not identically vanishing. We can therefore find $\sigma_{j} \in \Xi^{m}, 1 \leqq j \leqq s$, such that, for any $|\xi| \leqq K$, we have for a constant C_{0}

$$
\left|P^{(\alpha)}(\xi)\right| \leqq C_{0}\left(|P(\xi)|+\left|P\left(\xi^{\prime}, \tau+\sigma_{1}\right)+\ldots+\left|P\left(\xi^{\prime}, \tau+\sigma_{s}\right)\right|\right) .\right.
$$

Consequently we have for a constant C^{\prime}

$$
\left|P^{(\alpha)}(\xi)\right| \leqq C^{\prime}\left(|P(\xi)|+\left|P\left(\xi^{\prime}, \tau+\sigma_{1}\right)\right|+\cdots+\left|P\left(\xi^{\prime}, \tau+\sigma_{s}\right)\right|\right), \quad \xi \in \Xi^{n+m} .
$$

Since $\mu(\xi)$ is a temperate weight function, we have for some constant C_{j}

$$
\int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau+\sigma_{j}\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau=\int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau-\sigma_{j}\right)} d \tau \leqq C_{j} \int_{\xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau .
$$

Consequently we have for a constant $C^{\prime \prime}$

$$
\int_{\xi^{m}} \frac{\left|P^{(\alpha)}\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau \leqq C^{\prime \prime} \int_{\Xi^{m}} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau .
$$

By virtue of Proposition 2, the trace mapping \mathcal{T} is an epimorphism.
Remark 4. Let $n=m=1$. If we put $\mu\left(\xi^{\prime}, \tau\right)=1+\tau^{2}$ and $P(D)=D_{x^{\prime}} D_{t}$. Then we have $P\left(\xi^{\prime}, \tau\right)=\xi^{\prime} \tau, \tilde{P}^{2}\left(\xi^{\prime}, \tau\right)=\left(1+\xi^{\prime 2}\right)\left(1+\tau^{2}\right)$ and $\mu_{\tilde{P}} \sim\left(1+\xi^{\prime 2}\right)^{-\frac{1}{2}}$. On the other hand

$$
\int_{-\infty}^{\infty} \frac{\left|P\left(\xi^{\prime}, \tau\right)\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau=\xi^{\prime 2} \int_{-\infty}^{\infty} \frac{\tau^{2}}{\left(1+\tau^{2}\right)^{2}} d \tau .
$$

This is not a temperate weight function. Thus the mapping $u \rightarrow D_{x^{\prime}} D_{t} u\left(x^{\prime}, 0\right)$ of $H^{\mu}\left(R^{2}\right)$ into $H^{\mu}\left(R^{1}\right)$ is not an epimorphism.
3. Trace Theorems. Let $\mu(\xi)=\mu\left(\xi^{\prime}, \tau\right)=\mu\left(\xi_{1}, \ldots, \xi_{n}, \tau\right)$ be a temperate weight function in Ξ^{n+1}. We assume that

$$
\frac{1}{\nu_{l}^{2}\left(\xi^{\prime}\right)}=\int_{-\infty}^{\infty} \frac{\tau^{2 l}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau<\infty
$$

where l is a non-negative integer. We put

$$
\frac{1}{\nu_{p}^{2}\left(\xi^{\prime}\right)}=\int_{-\infty}^{\infty} \frac{\tau^{2 p}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau \quad \text { for } \quad 0 \leqq p \leqq l
$$

Let us consider the trace mapping \mathbb{T} :

$$
u\left(x^{\prime}, t\right) \rightarrow\left(u\left(x^{\prime}, 0\right), D_{t} u\left(x^{\prime}, 0\right), \ldots, D_{t}^{\iota} u\left(x^{\prime}, 0\right)\right)
$$

of $H^{\mu}\left(R^{n+1}\right)$ into $\prod_{p=0}^{l} H^{\nu} p\left(R^{n}\right)$. In this section, we discuss the conditions in order that \mathfrak{T} may be an epimorphism.

Theorem 1. A necessary and sufficient condition in order that the trace mapping \mathfrak{G} of $H^{\mu}\left(R^{n+1}\right)$ into $\boldsymbol{H}=\prod_{p=0}^{l} H^{\nu} p\left(R^{n}\right)$ may be an epimorphism is that each of the following conditions is satisfied:
(1) the range of the transposed mapping ${ }^{t} \mathcal{O}$ is closed in $H^{\frac{1}{\mu}}\left(R^{n+1}\right)$;
(2) there is a positive constant C such that

$$
\left|\begin{array}{ccc}
\kappa_{0} & \kappa_{1} & \cdots \kappa_{l} \\
\kappa_{1} & \kappa_{2} & \cdots \kappa_{l+1} \\
& \ldots & \\
\kappa_{l} & \kappa_{l+1} & \cdots \kappa_{2 l}
\end{array}\right| \geqq C \kappa_{0} \kappa_{2} \ldots \kappa_{2 l}, \text { where } \kappa_{p}\left(\xi^{\prime}\right)=\int_{-\infty}^{\infty} \frac{\tau^{p}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau
$$

(3) if $u \in H^{\frac{1}{\mu}}\left(R^{n+1}\right)$ and $\hat{u}(\xi)=f_{0}\left(\xi^{\prime}\right)+f_{1}\left(\xi^{\prime}\right) \tau+\cdots+f_{l}\left(\xi^{\prime}\right) \tau^{l}$, then $f_{p}\left(\xi^{\prime}\right) \epsilon$ $L_{\frac{1}{\nu_{p}^{2}}}^{2}\left(\Xi^{n}\right)$ for $p=0,1, \cdots, l$;
(4) if $u \in H^{\frac{1}{\mu}}\left(R^{n+1}\right)$ and $\hat{u}(\xi)=f_{0}\left(\xi^{\prime}\right)+f_{1}\left(\xi^{\prime}\right) \tau+\cdots+f_{l}\left(\xi^{\prime}\right) \tau^{l}$, then $\hat{u}\left(\xi^{\prime}, \frac{\tau}{2}\right) \epsilon L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+1}\right)$.

Proof: Consider the transposed mapping ${ }^{\dagger} \mathbb{O}$ of $\boldsymbol{H}^{\prime}=\lim _{p=0}^{l} H^{\frac{1}{\nu_{p}}}\left(R^{n}\right)$ into $H^{\frac{1}{\mu}}\left(R^{n+1}\right)$. Then

$$
\hat{\tau} \widetilde{(0 \vec{v}}(\xi)=\sum_{p=0}^{l} \hat{v}_{p}\left(\xi^{\prime}\right) \tau^{p}, \vec{v}=\left\{v_{0}\left(x^{\prime}\right), \ldots, v_{l}\left(x^{\prime}\right)\right\} \in \boldsymbol{H}^{\prime} .
$$

Indeed, it is sufficient to verify this relation when $v_{p} \in \mathscr{D}\left(R^{n}\right), p=0,1, \ldots, l$. Let f be any element of $\mathscr{D}\left(R^{n+1}\right)$. Then the relations

$$
\begin{aligned}
<\widetilde{0} f, \vec{v}> & =\left(\frac{1}{2 \pi}\right)^{n} \sum_{p=0}^{l} \int_{\xi^{n}} \widehat{D_{t}^{p} f\left(x^{\prime}, 0\right)}\left(\xi^{\prime}\right) \overline{\hat{v}_{p}\left(\xi^{\prime}\right)} d \xi^{\prime} \\
& =\left(\frac{1}{2 \pi}\right)^{n+1} \sum_{p=0}^{l} \int_{\xi^{n}}\left\{\int_{-\infty}^{\infty} \hat{f}(\xi) \tau^{p} d \tau\right\} \overline{\hat{v}_{p}\left(\xi^{\prime}\right)} d \xi^{\prime} \\
& =\left(\frac{1}{2 \pi}\right)^{n+1} \sum_{p=0}^{l} \int_{\Xi^{n+1}} \overline{\hat{v}_{p}\left(\xi^{\prime}\right)} \tau^{p} \hat{f}\left(\xi^{\prime}\right) d \xi
\end{aligned}
$$

and

$$
<^{\bar{t} \widehat{\vartheta} \vec{v}}, f>=\left(\frac{1}{2 \pi}\right)^{n+1} \int_{\Xi^{n+1}} \overline{\overline{t^{\top}} \bar{v}(\xi)} \hat{f}(\xi) d \hat{\xi}
$$

show our assertion.
The mapping ${ }^{t} \mathbb{T}$ is injective. In fact, let ${ }^{t} \mathbb{\sigma} \vec{v}=0$, that is, $\sum_{p=0}^{l} \hat{v}_{p}\left(\xi^{\prime}\right) \tau^{p}=0$. Since $\left\{\tau^{p}\right\}, p=0,1, \ldots, l$, is linearly independent, it follows that $\vec{v}=0$.

Consequently the mapping \mathfrak{Z} is an epimorphism if and only if the range of ${ }^{\boldsymbol{T}} \mathbb{T}$ is closed in $H^{\frac{1}{\mu}}\left(R^{n+1}\right)$.

Suppose the range of ${ }^{\top} \mathbb{O}$ is closed, there is a constant $C>0$ such that $\|\vec{v}\|_{\boldsymbol{H}^{\prime}} \leqq C\left\|^{t} \mathbb{V} \vec{v}\right\|_{\frac{1}{\mu}}$ for every $\vec{v} \in \boldsymbol{H}^{\prime}$. That is,

$$
\begin{aligned}
\sum_{p=0}^{l} \int_{\xi^{n}} \frac{\left|\hat{v}_{p}\left(\xi^{\prime}\right)\right|^{2}}{\nu_{p}^{2}\left(\xi^{\prime}\right)} d \xi^{\prime} & \leqq C^{2} \int_{\Xi^{n+1}} \frac{\left|\sum_{p=0}^{l} \hat{v}_{p}\left(\xi^{\prime}\right) \tau^{p}\right|^{2}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \xi \\
& =C^{2} \sum_{p, q=0}^{l} \int_{\xi^{n+1}} \frac{\hat{v}_{p}\left(\xi^{\prime}\right) \overline{\xi_{q}\left(\xi^{\prime}\right)} \tau^{p+q}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \xi
\end{aligned}
$$

If we put $g_{p}\left(\xi^{\prime}\right)=\frac{\hat{v}_{p}\left(\xi^{\prime}\right)}{\nu_{p}\left(\xi^{\prime}\right)} \epsilon L^{2}$, then

$$
\sum_{p=0}^{l} \int_{\xi^{n}}\left|g_{p}\left(\xi^{\prime}\right)\right|^{2} d \xi^{\prime} \leqq C^{2} \sum_{p, q=0}^{l} \int_{\xi^{n}} g_{p}\left(\xi^{\prime}\right) \overline{g_{q}\left(\xi^{\prime}\right)} \kappa_{p+q}\left(\xi^{\prime}\right) \nu_{p}\left(\xi^{\prime}\right) \nu_{q}\left(\xi^{\prime}\right) d \xi^{\prime} .
$$

This inequality holds for any $g_{p} \in L^{2}\left(\Xi^{n}\right)$. Let ξ_{0}^{\prime} be a point in Ξ^{n}, and B_{ε} the closed ball with center ξ_{0}^{\prime} and radius $\varepsilon>0$. Taking $g_{p}=a_{p} \chi_{B_{\varepsilon}}$, where a_{p} is a real number and $x_{B_{\varepsilon}}$ the characteristic function of B_{ε},

$$
\left|B_{\varepsilon}\right| \sum_{p=0}^{l}\left|a_{p}\right|^{2} \leqq C^{2} \sum_{p, q=0}^{l} a_{p} a_{q} \int_{B_{\varepsilon}} \kappa_{p+q}\left(\xi^{\prime}\right) \nu_{p}\left(\xi^{\prime}\right) \nu_{q}\left(\xi^{\prime}\right) d \xi^{\prime}
$$

Now passing to the limit $\varepsilon \rightarrow 0$, we have

$$
\sum_{p=0}^{l}\left|a_{p}\right|^{2} \leqq C^{2} \sum_{p, q=0}^{l} a_{p} a_{q} \kappa_{p+q}\left(\xi_{0}^{\prime}\right) \nu_{p}\left(\xi_{0}^{\prime}\right) \nu_{q}\left(\xi_{0}^{\prime}\right) .
$$

Therefore we have for a positive constant C^{\prime}

$$
\operatorname{det}\left|\kappa_{p+q}\left(\xi^{\prime}\right) \nu_{p}\left(\xi^{\prime}\right) \nu_{q}\left(\xi^{\prime}\right)\right| \geqq C^{\prime}, \quad \xi^{\prime} \in \Xi^{n} .
$$

That is, $\operatorname{det}\left|\kappa_{p+q}\right| \geqq C^{\prime} \kappa_{0} \kappa_{2} \cdots \kappa_{2 l}$. Thus (1) implies (2).
Suppose (2) holds. Let u be any element of $H^{\frac{1}{\mu}}\left(R^{n+1}\right)$ such that $\hat{u}=$ $f_{0}\left(\xi^{\prime}\right)+f_{1}\left(\xi^{\prime}\right) \tau+\cdots+f_{l}\left(\xi^{\prime}\right) \tau^{l}$. If we put $\hat{w}(\xi)=\frac{\hat{u}(\xi)}{\mu^{2}(\xi)}$, then $w \epsilon H^{\mu}\left(R^{n+1}\right), h_{p}=$ $\widehat{D_{t}^{p} w\left(x^{\prime}, 0\right)} \in L_{\nu_{p}^{2}}^{2}\left(\Xi^{n}\right)$, and

$$
h_{p}=\widehat{D_{t}^{p} w\left(x^{\prime}, 0\right)}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tau^{p} \hat{w}(\xi) d \tau
$$

$$
=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tau^{p} \frac{\sum_{q=0}^{l} f_{q}\left(\xi^{\prime}\right) \tau^{q}}{\mu^{2}(\xi)} d \tau=\frac{1}{2 \pi} \sum_{q=0}^{l} f_{q}\left(\xi^{\prime}\right) \kappa_{p+q}\left(\xi^{\prime}\right) .
$$

Thus we have

$$
\sum_{q=0}^{l} \frac{f_{q}\left(\xi^{\prime}\right)}{\nu_{q}\left(\xi^{\prime}\right)} \kappa_{p+q}\left(\xi^{\prime}\right) \nu_{p}\left(\xi^{\prime}\right) \nu_{q}\left(\xi^{\prime}\right)=2 \pi h_{p}\left(\xi^{\prime}\right) \nu_{p}\left(\xi^{\prime}\right) \epsilon L^{2} .
$$

Since $\operatorname{det}\left|\kappa_{p+q} \nu_{p} \nu_{q}\right| \geqq C_{2}>0$ and $\left|\kappa_{p+q} \nu_{p} \nu_{q}\right| \leq 1$, we have $\frac{f_{q}\left(\xi^{\prime}\right)}{\nu_{q}\left(\xi^{\prime}\right)} \epsilon L^{2}$, that is, $f_{q} \in L_{\frac{1}{\nu_{q}^{2}}}^{2} . \quad$ Thus (2) implies (3).

Suppose (3) holds. Let u be any element of $H^{\frac{1}{\mu}}\left(R^{n+1}\right)$ such that $\hat{u}(\xi)=$ $\sum_{p=0}^{l} f_{p}\left(\xi^{\prime}\right) \tau^{p}$. By our assumption, $f_{p}\left(\xi^{\prime}\right) \in L_{\frac{1}{\nu_{p}^{c}}}^{2}\left(\Xi^{n}\right)$, that is, $f_{p}\left(\xi^{\prime}\right) \tau^{p} \in L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+1}\right)$. Therefore $\hat{u}\left(\xi^{\prime}, \frac{\tau}{2}\right) \in L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+1}\right)$. Thus (3) implies (4).

Suppose (4) holds. We shall show that the range of ${ }^{t} \mathbb{C}$ is closed in $H^{\frac{1}{\mu}}\left(R^{n+1}\right)$. Let $\left\{\vec{v}^{j}\right\}$ be any sequence of \boldsymbol{H}^{\prime} such that $\left\{{ }^{t} \widehat{\mho}_{\vec{v}^{j}}\right\}$ converges in $H^{\frac{1}{\mu}}\left(R^{n+1}\right)$ to u. That is, $\sum_{p=0}^{l} \hat{v}_{p}^{j}\left(\xi^{\prime}\right) \tau^{p}$ converges in $L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+1}\right)$ to \hat{u}. Since $\mu(\xi)$ is continuous and positive, it converges in $L_{l o c}^{1}$ to \hat{u}. We can write $\hat{u}=$ $\sum_{p=0}^{l} \hat{v}_{p}\left(\xi^{\prime}\right) \tau^{p}$ with $\hat{v}_{p}\left(\xi^{\prime}\right) \in L_{l o c}^{1}$. Indeed, $\sum_{p=0}^{l} \int_{0}^{1}\left(\hat{v}_{p}^{j}\left(\xi^{\prime}\right) \tau^{p}-\hat{u}(\xi)\right) \tau^{q} d \tau \rightarrow 0$ in $L_{l o c}^{1}$ as $j \rightarrow \infty$ for $q=0,1, \ldots, l$. Therefore $\sum_{p=0}^{l} \hat{v}_{p}^{j}\left(\xi^{\prime}\right) \int_{-\infty}^{\infty} \tau^{p+q} d \tau$ converges in $L_{l o c}^{1}$. Since $\operatorname{det}\left|\int_{0}^{1} \tau^{p+q} d \tau\right|>0, \hat{v}_{p}^{k}$ converges in $L_{l o c}^{1}$ to a \hat{v}_{p} and we can write $\hat{u}=\sum_{p=0}^{l} \hat{v}_{p}\left(\xi^{\prime}\right) \tau^{p}$. From our assumption it follows that $\hat{u}\left(\xi^{\prime}, \frac{\tau}{2^{j}}\right)=\sum_{p=0}^{l} \hat{v}_{p}\left(\xi^{\prime}\right)\left(\frac{\tau}{2^{j}}\right)^{p} \in L_{\mu^{\mu^{2}}}^{2}\left(\Xi^{n+1}\right)$
 \ldots, l, so that u belongs to the range of ${ }^{t} \mathbb{O}$. Therefore (4) implies (1).

Thus the proof is complete.
When $l=0$, the mapping \mathbb{T} is always an epimorphism since the condition (2) of Theorem 1 is satisfied.

Remark 5. The mapping \mathfrak{T} is not always an epimorphism. Let $n=1$. Consider the differential operator $P(D)=\left(D_{x^{\prime}}-D_{t}\right)^{2}$. Put $\mu(\xi)=\tilde{P}^{2}(\xi) \sim$ $1+\left(\xi^{\prime}-\tau\right)^{2}$. Here we can take $l=1$.

$$
\begin{aligned}
\kappa_{0} & =\int_{-\infty}^{\infty} \frac{1}{\mu^{2}} d \tau=\int_{-\infty}^{\infty} \frac{d \tau}{\left(1+\tau^{2}\right)^{2}}=C_{0}, \\
\kappa_{1} & =\int_{-\infty}^{\infty} \frac{\tau}{\mu^{2}} d \tau=\int_{-\infty}^{\infty} \frac{\xi^{\prime}-\tau}{\left(1+\tau^{2}\right)^{2}} d \tau=\xi^{\prime} \int_{-\infty}^{\infty} \frac{d \tau}{\left(1+\tau^{2}\right)^{2}}=C_{0} \xi^{\prime},
\end{aligned}
$$

$$
\kappa_{2}=\int_{-\infty}^{\infty} \frac{\tau^{2}}{\mu^{2}} d \tau=\int_{-\infty}^{\infty} \frac{\tau^{2}}{\left(1+\tau^{2}\right)^{2}} d \tau+\xi^{\prime 2} \int_{-\infty}^{\infty} \frac{d \tau}{\left(1+\tau^{2}\right)^{2}}=C_{1}+C_{0} \xi^{\prime 2}
$$

Then $\left|\begin{array}{ll}\kappa_{0} & \kappa_{1} \\ \kappa_{1} & \kappa_{2}\end{array}\right|=C_{0} C_{1}, \kappa_{0} \kappa_{2}=C_{0} C_{1}+C_{0}^{2} \xi^{\prime 2}$. Therefore the condition (2) of Theorem 1 is not satisfied, so that the mapping \mathscr{C} is not an epimorphism.

Corollary. If $\mu(\xi)$ is a temperate weight function in Ξ^{n+1} such that

$$
\mu\left(\xi^{\prime}, 2 \tau\right) \geqq C \mu\left(\xi^{\prime}, \tau\right)
$$

for a constant C, the trace mapping \mathbb{C} is an epimorphism.
Proof: It is known that $H^{\mu}\left(R^{n+1}\right) \subset H^{\nu}\left(R^{n+1}\right)$ if and only if $\nu \leqq C \mu, C$ being a constant ($[5]$, p. 33). One can easily verify that the condition $\mu\left(\xi^{\prime}, 2 \tau\right) \geqq C \mu\left(\xi^{\prime}, \tau\right)$ is equivalent to saying that $\hat{u}\left(\xi, \frac{\tau}{2}\right)$ belongs to $L_{\frac{1}{\mu^{2}}}^{2}\left(\Xi^{n+1}\right)$ for every $u \in H^{\frac{1}{\mu}}\left(R^{n+1}\right)$. It follows therefore from the condition (4) of the preceding proposition that \mathfrak{Z} is an epimorphism.

Proposition 3. Let $\vec{f}=\left\{f_{0}\left(x^{\prime}\right), \ldots, f_{l}\left(x^{\prime}\right)\right\}$ be an arbitrary element of $\prod_{p=0}^{l} H^{\nu} p\left(R^{n}\right)$ and $\psi \in \mathscr{D}\left(R^{1}\right)$ be equal to 1 in a neighbourhood of 0 . Suppose there exist a positive continuous $\lambda_{p}\left(\xi^{\prime}\right)$ in Ξ^{n} and a slowly increasing continuous function $\Phi_{p}(\tau)$ in Ξ^{1} for $p=0,1, \ldots, l$ such that

$$
\mu\left(\xi^{\prime}, \lambda_{p} \tau\right) \leqq \lambda_{p}^{p+\frac{1}{2}}\left(\xi^{\prime}\right) \nu_{p}\left(\xi^{\prime}\right) \Phi_{p}(\tau) .
$$

If we put

$$
\hat{u}_{x^{\prime}}\left(\xi^{\prime}, t\right)=\sum_{p=0}^{l} \hat{f}_{p}\left(\xi^{\prime}\right) \frac{(i t)^{p}}{p!} \psi\left(\lambda_{p} t\right),
$$

then u belongs to $H^{\mu}\left(R^{n+1}\right)$ and $D_{t}^{p} u\left(x^{\prime}, 0\right)=f_{p}\left(x^{\prime}\right)$ for $p=0,1, \ldots, l$.
Proof: We can write

$$
\begin{aligned}
\hat{u}\left(\xi^{\prime}, \tau\right) & =\sum_{p=0}^{l} \frac{(-1)^{p}}{p!} \hat{f}_{p}\left(\xi^{\prime}\right)\left(\frac{d}{d \tau}\right)^{p} \int_{-\infty}^{\infty} \psi\left(\lambda_{p} t\right) e^{-i t \tau} d t \\
& =\sum_{p=0}^{l} \frac{(-i)^{p}}{p!} \hat{f}_{p}\left(\xi^{\prime}\right) \frac{1}{\lambda_{p}^{p+1}} \hat{\psi}^{(p)}\left(\frac{\tau}{\lambda_{p}}\right) .
\end{aligned}
$$

After a change of variable $\tau \rightarrow \lambda_{p} \tau$ and using the fact that $\int_{-\infty}^{\infty}\left|\hat{\psi}^{(p)}(\tau)\right|^{2}\left|\Phi_{p}(\tau)\right|^{2} d \tau$ $<\infty$, we have

$$
\begin{aligned}
& \int_{\Xi^{n+1}}|\hat{u}(\xi)|^{2} \mu^{2}(\xi) d \xi \\
& \leqq(l+1) \sum_{p=0}^{l} \int_{\Xi^{n}} \frac{1}{p!}\left|\hat{f}_{p}\left(\xi^{\prime}\right)\right|^{2} \frac{d \xi^{\prime}}{\lambda_{p}^{2 p+1}\left(\xi^{\prime}\right)} \int_{-\infty}^{\infty}\left|\hat{\psi}^{(p)}(\tau)\right|^{2} \mu^{2}\left(\xi^{\prime}, \lambda_{p} \tau\right) d \tau \\
& \leqq(l+1) \sum_{p=0}^{l} \int_{\Xi^{n}} \frac{1}{p!}\left|\hat{f}_{p}\left(\xi^{\prime}\right)\right|^{2} \nu_{p}^{2}\left(\xi^{\prime}\right) d \xi^{\prime} \int_{-\infty}^{\infty}\left|\hat{\psi}^{(p)}(\tau)\right|^{2}\left|\Phi_{p}(\tau)\right|^{2} d \tau<\infty
\end{aligned}
$$

which implies $u \in H^{\mu}\left(R^{n+1}\right)$. Clearly $D_{t}^{p} u\left(x^{\prime}, 0\right)=f_{p}\left(x^{\prime}\right)$ for $p=0,1, \ldots, l$. Thus the proof is complete.

Here we note that if λ_{p} exists, then

$$
\left(\frac{\mu\left(\xi^{\prime}, 0\right)}{\nu_{p}\left(\xi^{\prime}\right)}\right)^{\frac{2}{2 p+1}} \leqq C \lambda_{p}\left(\xi^{\prime}\right)
$$

where C is a constant.
Example 1. Let $\mu(\xi)$ be written in the form

$$
\mu\left(\xi^{\prime}, \tau\right)=\mu_{1}\left(\xi^{\prime}\right)+|\tau|^{a} \mu_{2}\left(\xi^{\prime}\right),
$$

where $\mu_{1}\left(\xi^{\prime}\right), \mu_{2}\left(\xi^{\prime}\right)$ are temperate weight function and a is a real number $>\frac{1}{2}$. Let l be the largest integer such that $l<a-\frac{1}{2}$. Then $\nu_{p}\left(\xi^{\prime}\right) \sim$ $\mu_{1}^{1-\frac{1}{a}\left(p+\frac{1}{2}\right)} \mu_{2}^{\frac{1}{a}\left(p+\frac{1}{2}\right)}, 0 \leqq p \leqq l$ and λ_{p} may be chosen as $\left(-\frac{\mu_{1}}{\mu_{2}}\right)^{\frac{1}{a}}$. Putting

$$
\hat{u}_{x^{\prime}}\left(\xi^{\prime}, t\right)=\sum_{p=0}^{l} \hat{f}_{p}\left(\xi^{\prime}\right) \frac{(i t)^{p}}{p!} \psi\left(\left(\frac{\mu_{1}}{\mu_{2}}\right)^{\frac{1}{a}} t\right), \quad \vec{f} \epsilon \prod_{p=0}^{l} H^{\nu} p\left(R^{n}\right)
$$

then u belongs to $H^{\mu}\left(R^{n+1}\right)$ and $D_{t}^{p} u\left(x^{\prime}, 0\right)=f_{p}\left(x^{\prime}\right)$ for $p=0,1, \ldots, l$.
In fact, we have

$$
\begin{aligned}
\frac{1}{\nu_{p}^{2}\left(\xi^{\prime}\right)} & =\int_{-\infty}^{\infty} \frac{\tau^{2 p}}{\left(\mu_{1}\left(\xi^{\prime}\right)+|\tau|^{a} \mu_{2}\left(\xi^{\prime}\right)^{2}\right)} d \tau \\
& =\frac{1}{\mu_{1}^{2-\frac{1}{a}(2 p+1)} \mu_{2} \frac{1}{a}(2 p+1)} \int_{-\infty}^{\infty} \frac{\tau^{2 p}}{\left(1+|\tau|^{a}\right)^{2}} d \tau
\end{aligned}
$$

Hence $\nu_{p} \sim \mu_{1}^{1-\frac{1}{a}\left(p+\frac{2}{2}^{1}\right)} \mu_{2}^{\frac{1}{a}\left(p+\frac{1}{2}\right)}$. Putting $\lambda_{p}=\left(\frac{\mu_{1}}{\mu_{2}}\right)^{\frac{1}{a}}$, we have

$$
\begin{aligned}
\mu\left(\xi^{\prime}, \lambda_{p} \tau\right) & =\mu_{1}\left(\xi^{\prime}\right)+\left|\lambda_{p} \tau\right|^{a} \mu_{2}\left(\xi^{\prime}\right)=\mu_{1}\left(\xi^{\prime}\right)\left(1+|\tau|^{a}\right) \\
& \sim \lambda_{p}^{p+\frac{1}{2}}\left(\xi^{\prime}\right) \nu_{p}\left(\xi^{\prime}\right)\left(1+|\tau|^{a}\right) .
\end{aligned}
$$

Consequently our assertion follows from Proposition 3.
We note that the result also follows from theorems on Hilbert spaces due to Lions ([2], p. 422, p. 426).

Example 2. Consider the temperate weight function μ given by the following formula [3]:

$$
\mu(\xi, \eta)=\prod_{1}^{n}\left(1+|\xi|^{p_{i}}+|\eta|^{q_{i}}\right),
$$

where $\xi=\left(\xi_{1}, \ldots, \xi_{r}\right), \eta=\left(\eta_{1}, \ldots, \eta_{s}\right)$ and p_{i}, q_{i} are positive integers. We may assume that $\frac{p_{1}}{q_{1}} \leqq \frac{p_{2}}{q_{2}} \leqq \cdots \leqq \frac{p_{n}}{q_{n}}$. We use the notations: $\eta=\left(\eta^{\prime}, \tau\right), \eta^{\prime}=$ $\left(\eta_{1}, \ldots, \eta_{s-1}\right), \tau=\eta_{s}$. Let $l=\sum_{1}^{n} q_{i}-1, q_{0}=0$. Calculation shows that for any p, $0 \leqq p \leqq l$, we have

$$
\nu_{p}\left(\xi, \eta^{\prime}\right) \sim\left(1+|\xi|^{\frac{p_{m}}{q_{m}}}+\left|\eta^{\prime}\right|\right)^{\sum_{1}^{q_{i}-p-\frac{1}{2}}} \|_{m+1}^{n} 1\left(1+|\xi|^{p_{i}}+\left|\eta^{\prime}\right|^{q_{i}}\right),
$$

where m is chosen as

$$
\sum_{0}^{m-1} q_{i} \leqq p \leqq \sum_{0}^{m} q_{i}-1 .
$$

We can take $\lambda_{p}=\left(1+|\xi|^{\frac{p_{m}}{q_{m}}}+\left|\eta^{\prime}\right|\right)$, because we have

$$
\begin{aligned}
& \mu\left(\xi, \eta^{\prime}, \lambda_{p} \tau\right) \sim \prod_{1}^{n}\left(1+|\xi|^{p_{i}}+\left|\eta^{\prime}\right|^{q_{i}}+\left|\lambda_{p} \tau\right|^{q_{i}}\right) \\
& \sim \lambda_{p}^{p^{+} \frac{1}{2}} \nu_{p}\left(\xi, \eta^{\prime}\right) \frac{\prod_{1}^{n}\left(1+|\xi|^{p_{i}}+\left|\eta^{\prime}\right|^{q_{i}}+\left|\lambda_{p} \tau\right|^{q_{i}}\right)}{\lambda_{p}^{\sum_{1}^{m} q_{i}} \prod_{m+1}^{n}\left(1+|\xi|^{p_{i}}+\left|\eta^{\prime}\right|^{q_{i}}\right)} \\
& \sim \lambda_{p}^{p_{1}+\frac{1}{2}} \nu_{p}\left(\xi, \eta^{\prime}\right) \prod_{1}^{m} 1 \frac{1+|\xi|^{p_{i}}+\left|\eta^{\prime}\right|^{q_{i}}+\left|\lambda_{p} \tau\right|^{q_{i}}}{\lambda_{p}^{q_{i}}} \times \\
& \times \prod_{m+1}^{n} \frac{1+|\xi|^{p_{i}}+\left|\eta^{\prime}\right|^{q_{i}}+\left|\lambda_{p} \tau\right|^{q_{i}}}{1+|\xi|^{p_{i}}+\left|\eta^{\prime}\right|^{q_{i}}} \\
& \leqq C \lambda_{p}^{p+\frac{1}{2}} \nu_{p}\left(\xi, \eta^{\prime}\right)(1+|\tau|)^{\sum_{1}^{q_{i}}},
\end{aligned}
$$

where C is a positive constant.
Suppose there exists j such that $\frac{p_{j}}{q_{j}}<\frac{p_{j+1}}{q_{j+1}}$. We can show that μ is not equivalent to a temperate weight function as considered in the preceding
example. In fact, if the contrary is assumed, it will be equivalent to

$$
\mu_{0}(\xi, \eta)=I_{1}^{n}\left(1+|\xi|^{p_{i}}+\left|\eta^{\prime}\right|^{q_{i}}\right)+|\tau|^{\sum_{1}^{q_{i}}}
$$

In view of the inequality $\frac{\sum_{1}^{n} p_{i}}{\sum_{1}^{n} q_{i}}>\frac{\sum_{1}^{j} p_{i}}{\sum_{1}^{j} q_{i}}$, putting $\frac{1}{\alpha}=\frac{\sum_{1}^{n} p_{i}}{\sum_{1}^{n} q_{i}}$, we have $\alpha \sum_{j+1}^{n} p_{i}+\sum_{1}^{j} q_{i}>\alpha \sum_{1}^{n} p_{i}$, and

$$
\frac{\mu(\xi, 0, \tau)}{\mu_{0}(\xi, 0, \tau)} \geqq \frac{|\xi| \sum_{j+1}^{n} p_{i}|\tau| \frac{\dot{\Sigma}_{1} q_{i}}{\prod_{1}}}{\prod_{1}^{n}\left(1+|\xi|^{p_{i}}\right)+|\tau|^{\frac{\sum_{1}}{2} q_{i}}}
$$

Putting $|\xi|=|\tau|^{\alpha}$, and passing to the limit $\tau \rightarrow \infty$, we have

$$
\lim _{\tau \rightarrow \infty} \frac{\mu(\xi, 0, \tau)}{\mu_{0}(\xi, 0, \tau)}=\infty
$$

which is a contradiction.
Thus this example is a case to which we can not apply the results of Lions ([2], p. 422, p. 426).
4. Extension to the Case $\boldsymbol{m}>$ 1. Let $\mu(\xi)=\mu\left(\xi^{\prime}, \tau\right)$ be a temperate weight function defined in Ξ^{n+m}, where $\xi^{\prime}=\left(\xi_{1}, \ldots, \xi_{n}\right)$ and $\tau=\left(\tau_{1}, \ldots, \tau_{m}\right)$. We shall assume that for a non-negative integer l

$$
\int_{\Xi^{m}} \frac{\tau^{2 l}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau<\infty
$$

For any $p=\left(p_{1}, p_{2}, \cdots, p_{m}\right), p_{j}$ being a non-negative integer, such that $|p| \leqq l$, we put

$$
\frac{1}{\nu_{p}^{2}\left(\xi^{\prime}\right)}=\int_{\Xi^{m}} \frac{\tau^{2 p}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau
$$

Let us consider the trace mapping \mathfrak{T} :

$$
u \in H^{\mu}\left(R^{n+m}\right) \rightarrow\left\{D_{t}^{p} u\left(x^{\prime}, 0\right)\right\}_{|p| \leqq l} \epsilon \prod_{|p| \leqq l} H^{\nu} p\left(R^{n}\right) .
$$

The results established in Section 3 will remain valid for the mapping \mathscr{C} with necessary modifications. They can be proved along the same line as in Section 3, so we shall only enumerate them without proof.

Theorem 1^{\prime}. A necessary and sufficient condition in order that the mapping \mathfrak{T} may be an epimorphism is that each of the following conditions is satisfied:
(1) the range of the transposed mapping ${ }^{t} \mathbb{T}$ is closed in $H^{\frac{1}{\mu}}\left(R^{n+m}\right)$;
(2) there exists a positive constant C such that $\operatorname{det}\left|\kappa_{p+q}\right| \geqq C \prod_{|p| \leqq l} \kappa_{2 p}$, where $\kappa_{p}\left(\xi^{\prime}\right)=\int_{\Xi^{m}} \frac{\tau^{p}}{\mu^{2}\left(\xi^{\prime}, \tau\right)} d \tau ;$
(3) if $u \in H^{\frac{1}{\mu}}\left(R^{n+m}\right)$, and $\hat{u}(\xi)=\sum_{|p|=l} f_{p}\left(\xi^{\prime}\right) \tau^{p}$, then $f_{p} \in L_{\frac{1}{\nu_{P}^{2}}}^{2}\left(\Xi^{n}\right)$ for $|p| \leqq l$;
(4) if $u \in H^{\frac{1}{\mu}}\left(R^{n+m}\right)$ and $\hat{u}(\xi)=\sum_{|p| \geq l} f_{p}\left(\xi^{\prime}\right) \tau^{p}$, then

$$
\hat{u}\left(\xi^{\prime}, \tau_{1}, \cdots, \tau_{j-1}, \frac{\tau_{j}}{2}, \tau_{j+1}, \cdots, \tau_{m}\right) \in L_{\mu_{\mu^{2}}}^{2}\left(\Xi^{n+m}\right), \text { for } j=1,2, \cdots, m .
$$

Corollary. If $\mu\left(\xi^{\prime}, \tau_{1}, \cdots, \tau_{j-1}, 2 \tau_{j}, \tau_{j+1}, \cdots, \tau_{m}\right) \geqq C \mu(\xi), C$ being a constant, for $j=1,2, \ldots, m$, then the mapping \mathfrak{T} is an epimorphism.

Proposition 3^{\prime}. Let $\vec{f}=\left\{f_{p}\left(x^{\prime}\right)\right\}_{|p| \leqq l}$ be an arbitrary element of $\prod_{|p| \leqq l} H^{\nu} p\left(R^{n}\right)$ and $\psi \in \mathscr{D}\left(R^{m}\right)$ be equal to 1 in a neighbourhood of 0 . Suppose there exist a positive continuous $\lambda_{p}\left(\xi^{\prime}\right)$ in Ξ^{n} and a slowly increasing continuous function $\Phi_{p}(\tau)$ in Ξ^{m} for every $|p| \leqq l$ such that

$$
\mu\left(\xi^{\prime}, \lambda_{p} \tau\right) \leqq \lambda_{p}^{|p|+\frac{m}{2}}\left(\xi^{\prime}\right) \nu_{p}\left(\xi^{\prime}\right) \Phi_{p}(\tau) .
$$

Then, if we put

$$
\hat{u}_{x^{\prime}}\left(\xi^{\prime}, t\right)=\sum_{|p| \leqq l} \hat{f}_{p}\left(\xi^{\prime}\right) \frac{(i t)^{p}}{p!} \psi\left(\lambda_{p} t\right),
$$

then u belongs to $H^{\mu}\left(R^{n+m}\right)$ and $D_{t}^{p} u\left(x^{\prime}, 0\right)=f_{p}\left(x^{\prime}\right)$ for $|p| \leqq l$.
Example 3. Let $\mu(\xi)$ be written, as in Example 1, in the form

$$
\mu\left(\xi^{\prime}, \tau\right)=\mu_{1}\left(\xi^{\prime}\right)+|\tau|^{a} \mu_{2}\left(\xi^{\prime}\right),
$$

where $\mu_{1}\left(\xi^{\prime}\right), \mu_{2}\left(\xi^{\prime}\right)$ are temperate weight function, and a is a real number $>\frac{m}{2}$ and $\tau=\left(\tau_{1}, \cdots, \tau_{m}\right)$. Let l be the largest integer such that $l<a-\frac{m}{2}$.
 chosen as $\left(\frac{\mu_{1}}{\mu_{2}}\right)^{\frac{1}{a}}$, which is independent of p. Putting $\hat{u}_{x^{\prime}}\left(\xi^{\prime}, t\right)=$ $\sum_{|p| \equiv l} \hat{f}_{p}\left(\xi^{\prime}\right) \frac{(i t)^{p}}{p!} \psi\left(\left(\frac{\mu_{1}}{\mu_{2}}\right)^{\frac{1}{a}} t\right), \vec{f} \in \prod_{|p| \leqq l}^{\Pi} H^{\nu} p$, we can see that u belongs to $H^{\mu}\left(R^{n+m}\right)$ and $D_{t}^{p} u\left(x^{\prime}, 0\right)=f_{p}\left(x^{\prime}\right)$ for $|p| \leqq l$. In fact, these assertions may be verified
as in Example 1.

References

[1] L. Hörmander, Linear partial differential operators, Springer, (1963).
[2] J. L. Lions, Espaces intermédiaires entre espaces hilbertiens et applications, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine, 50 (1958), 419-432.
[3] M. Pagni, Un theorema di tracce, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat., 38 (1965), 627-631.
[4] L. Schwartz, Théorie des distributions, I, II, Paris, Hermann, (1951).
[5] L. R. Volevič and B. P. Paneyah, Some spaces of generalized functions and embedding theorems, Uspehi Mat. Nauk, 121 (1965), 3-74 (in Russian).

Faculty of General Education, Hiroshima University

