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Introduction

Let X and Y be compact Hausdorff spaces, Φ(χ, z) and Ψ(x9 γ) be real-
valued lower semicontinuous functions o n l x l and Xx Y respectively which
are bounded from below. We shall always consider non-negative Radon
measures on Xand on Y and assume that Φ is symmetric, i.e. Φ(x, z) = Φ(z, x)
for every x, zeX. For a measure μ on X, we set

Φ(x, μ)=\Φ(χ, z)dμ(z) (^-potential of μ\

y)=[Πx, y)dμ(χ)

and

(μ, μ) = ̂ Φ(x, μ)dμ(x).

Set

S = {μ (μ, μ) is finite}

and assume that £ contains at least one non identically vanishing measure.
We put

μ)dv(x)

and

(v, v)-2(^5 μ).

We say that Φ is of positive type if the quantity (μ—v, μ—v) is non-negative
for any μ, v G g. Incase Φ is of positive type, ||μ—v\\=(μ — v, μ — v)1/2 is a
pseudo-metric on «f. An <f-Cauchy sequence is a sequence {μn} in S such
that, for any ε>0, there exists an integer n0 such that the relations n^>n0

and m^>n0 imply \\μn — μm\\<ε.
Let / be a real-valued function on X which is measurable for every mea-

sure on X and let h be a real-valued function on Y for which the following
classes of measures are not empty:
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on Y},

^Ky) on Y}.

In case \fdμ is defined for all μe. & (μζ Jί resp.), we are interested in the

problem of minimizing the quantity

= (μ, μ) — 2\fdμ

ΐor μ e & (μ e Jf resp.) and denote inf I(μ) by F (Af resp.). This may be re-
garded as a problem in quadratic programming. We shall discuss whether
there exists a measure / E / (μ*E^# resp.) which satisfies I(μ*) = F (Z(/χ*)
— M resp.). We call μ* an optimal measure for F (M resp.).

In case 0 = 0, the problem for M is reduced to finding an optimal measure
in the theory of linear programming. This was studied by M. Ohtsuka [ΊΓ|.

In case Y consists of a finite number of points, the problem for F is the
conditional Gauss variational problem raised in pΓ], p. 213.

Our results will be given in the case where / is an upper semicontinuous
function or the 0-potential of a measure in <f. As an application of the exis-
tence theorem in §1, we shall discuss a duality problem in the theory of
quadratic programming as in [1].

§1. The case where f is upper semicontinuous

First we observe that an optimal measure for M does not necessarily ex-
ist even if ¥, f and h are non-negative and continuous. In fact, taking 0 = 0,
we see that Example 1 in [_4Γ\ shows this fact.

We begin with

LEMMA 1. Assume that Φ is of positive type. Assume that F (M resp.) is
finite and that {μn} is a sequence in ^ {Jί resp.) for which I(μn) tends to F
(M resp.). Then {μn} is an tf-Cauchy sequence.

PROOF. We have

Since ^ {Jί resp.) is convex and F (M resp.) is finite, our assertion is easily
verified from the above equality.

LEMMA 2. Assume that M is finite. Let {μn} be a sequence in Jί such that
I(μn) tends to M. Then the boundedness of total masses μn(X) follows from one
of the following conditions:

(H. 1) there is γ0€ Y such that ¥(χ, γo)>O for all x€Xand λ(yo)<°°.
(H. 2) Φ is of positive type and / > 0 .
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(H. 3) (μ, μ)7>0 for all μ^S1 and sup/<0.
(H. 4) W—mί {(μ, μ); μ(X) = l} is positive and f is bounded from above.

PROOF. From (H. 1), it follows that

x

From (H. 3), it follows that

From (H. 4), it follows that

I(μn)> Wμn{Xf-2βμn{X\

where β is an upper bound of/.
Now we assume (H. 2). Since {μn} is an *f-Cauchy sequence in Jί by

Lemma 1, (μn, μn) are bounded, i.e. 0<^(μw, μn)^L < oo. Suppose that
{μn(X)} is not bounded. We may assume that μn(X) tends to oo with n.
Writing λn = μn/μn{X\ we can find a vaguely convergent subsequence of {λn}.
Denote it again by {λn} and let ^0 be the vague limit. Then we have

Since Φ is of positive type,

0 <J (kλ0 ± μn, kλo±μn)= ±2k(λ0,

for any k^>0. We infer that (Ao, μn) = 0 for each n. Furthermore,

0 if

Hence nλ0 + μn e Jί. It holds that

M<: I(nλo-\-μn) = I(μn)-2n{fdλ0.

Letting n->oo, we arrive at a contradiction because/>0 and ^O(X) = 1.
We have

THEOREM 1. Assume that f is upper semicontinuous and does not take the
value +oo. If we assume one of conditions (H. 1), (H. 2), (H. 3), (H. 4) and
that M is finite, then there exists an optimal measure for M.

PROOF. Let {μn} be a sequence in Jί for which I(μn) tends to M. Then
the total masses μn(X) are bounded by Lemma 2. We can find a vaguely con-
vergent subsequence of {μn}. Denote it again by {μn} and let μ0 be the vague
limit. On account of the lower semicontinuity of Φ, Ψ and —/, we have
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Ψ(μo, y)^\im¥(μm y)<!h(y) on Y,

— r r

(μ0, /χo)^lini(/χw, μn) and lim\fdμn<,\fdμo

Therefore μoe^f and

n)^>lim(μn, μn) — 2\im\fdμn
n J

Namely μ0 is an optimal measure for M.
Similarly, we have the following results for F.

LEMMA 3. Assume that F is finite and let {μn} be a sequence in & such
that I(μn) tends to F. Then the boundedness of total masses μn(X) follows from
one of conditions (H. 1), (H. 3), (H. 4) and

(H. 2)r Φ is of positive type, / > 0 and Ψ is non-negative.

THEOREM 2. Let f be an upper semicontinuous function which does not
take the value +oo, Assume one of conditions (H. 1), (H. 2)', (H. 3) and (H. 4),
that Ψ is finite and continuous and that F is finite. Then there exists an opti-
mal measure for F.

In the above theorem, the continuity of Ψ can not be omitted in general.
This was shown in Example 2 in [2], p. 226.

§2. The case where/ is a potential

In the case where / is lower semicontinuous and does not take the value
— oo5 the existence of an optimal measure for F or M is not necessarily as-
sured. This is shown by

EXAMPLE 1. (Example 5 in [2], p. 226) Let X be the unit ball {| x | < 1}
in the 3-dimensional Euclidean space, Y consist of one point, Φ(χ, z) =
l/\x-z\, Ψ = l9 h = l a n d / 0 0 = l + \x\ for | * | < 1 , = 1 for | * | = 1 .

For μ € f̂, we have μ{X) <Ξ 1 and

= (/*, μ)-2μ(X)~2[ \x\dμ(x)
J \x\<l

If μ is the unit measure distributed uniformly on a sphere close to { x \ =1},
then I(μ) is close to —3. Thus the infimum is equal to —3, but there is no
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measure of Jί which gives —3. It is also shown that there is no optimal
measure for F.

In this section, we always assume that / is the (^-potential of î G#, i.e.
f(x) = Φ(x, v\ and that Φ is of positive type.

THEOREM 3. Assume one of conditions (H. 1), (H. 2), and (H. 4), that Φ is
consistentι) and that M is finite. Then there exists an optimal measure for M.

PROOF. Let {μn} be a sequence in Jί such that I(μn) tends to M. Then
{μn} is an ίί-Cauchy sequence by Lemma 1. On account of Lemma 2, the
total masses μn(X) are bounded. We can find a subsequence which converges
vaguely to some measure μ0. We see μ^^Jί and that \\μn — μoll tends to 0 by
the consistency of Φ. It holds that

M= lim I(μn)= lim {(μn, μn)-2(v, μn)}

Similarly we have

THEOREM 4. Assume that Φ is consistent, that Ψ is finite and continuous
and that F is finite. Then under one of conditions (H. 1), (H. 2)' and (H. 4),
there exists an optimal measure for F.

We show by an example that the consistency of Φ can not be dropped in
the above two theorems:

EXAMPLE 2. Let X be the interval {0<^<;i} in the real line, Y={γ},
F = l, A = l, Φ(x, z)=f(x)f(z\f(x) = x for 0 < : * < l , =0 for x = l. Then Φ is
not consistent and f(χ) is the Φ-potential of the point measure at x = 1/2 with
total mass 2. For μ E -#, we have μ(X) <J 1 and

If we take the unit point measure μn at x = l — l/n, then I(μn) = l/n2 — 1.
Therefore the infimum of I(μn) is equal to —1. However, we see easily that
I(μ)> —1 for every μζ.Jί and hence there is no optimal measure. It is also
shown that there is no optimal measure for F.

§3. A duality problem for M

In this section, we always assume that / and — h are upper semicontinu-
ous and do not take the value +°°. As in [1] and [3], we consider the fol-

1) Φ is called consistent if any <f-Cauchy sequence converging vaguely to a measure converges in

the pseudo-metric to the same measure.
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lowing dual problem for M:
Let Jί' be the totality of pairs [_μ, iΓ| of measures μ€£ and \> on F satis-

fying

on X

In case ^ ' is not empty, we consider the problem of minimizing the quantity

for O, jΓ] e Jί'. We put

M' — inf {J(μ, v); \^μ, v~] 6 Jί'} if ^

Our interest lies in the problem to find when the equality — M=M' holds.
First we have

THEOREM 5. // Φ is of positive type, then it holds that —M<LM.

PROOF. We may suppose that Jί'φφ. Let [μ, y]e Jί' and λe.Jf. Then

Ky)dKy)

Since Φ is of positive type, (μ — λ, μ — λ)^>0 and hence

We give a characterization of an optimal measure for M.

LEMMA 4. (α) Assume that M is finite. If μ* is an optimal measure for
M, then it holds that

for every /^GX
(/?) If μ*ζ.Jί satisfies the above relation (#) and Φ is of positive type,

then μ* is an optimal measure for M.
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PROOF, (a) Assume / ( / ) = Mand μ* e Jί. Let μ be any measure of Jί

such that \fdμ> — o° and t be a number such that 0<^<^l. Since μ{t) — tμ

+ (1 — t)μ* belongs to Jί, we have

— t)(μ*, μ*)

-2t\fdμ-2(l-t)\fdμ*.

It follows that

- dl(μ(t))
0<

dt t = 0
= 2(μ9 μ*)-2(μ*9 μ*)-

(β) Assume that μ*ζ.Jί satisfies (#) and let μ be any measure of
Then we have

= (μ, μ)~2\)fdμ

= I(μ*

Finally we prove

THEOREM 6. Assume that Φ is of positive type and one of the following
conditions is true:

(1) condition (H. 1),
(2) f>0andΦ^0,
(3) sup Ψ < 0 and either f> 0 or f< 0 or W> 0.

// M is finite, then Jί' Φφ and — M= M!.

PROOF. We can find by Theorem 1 an optimal measure μ* for M. Put
/*(#)=/00 —0(#, μ*). Then the relation (#) can be written as

for every μ^Jί, i.e. \/*dμ*= sup j\/*^/x; /xG^L Writing

~^>f*(χ) on X} and making use of Ohtsuka's duality theorem (Theorem 3 in
, p. 35), we see Jί*'φφ and
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Given ε>0, there is a measure »€ζ Jί*1 satisfying

Obviously [>*, v j e Jί'. It holds that

- - /(μ*) + 2ε = -

By the arbitrariness of ε, we obtain M<,—M. The inverse inequality was
shown in Theorem 5.
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