Remarks on the Conditional Gauss Variational Problem

Maretsugu YAMASAKI

(Received February 28, 1967)

Introduction

Let X and Y be compact Hausdorff spaces, $\boldsymbol{\emptyset}(x, z)$ and $\boldsymbol{\Psi}(x, y)$ be realvalued lower semicontinuous functions on $X \times X$ and $X \times Y$ respectively which are bounded from below. We shall always consider non-negative Radon measures on X and on Y and assume that $\boldsymbol{\emptyset}$ is symmetric, i.e. $\boldsymbol{\emptyset}(x, z) = \boldsymbol{\emptyset}(z, x)$ for every $x, z \in X$. For a measure μ on X, we set

$$\begin{split} \varPhi(x, \mu) &= \int \varPhi(x, z) d\mu(z) \qquad (\varPhi \text{-potential of } \mu), \\ \varPsi(\mu, y) &= \int \varPsi(x, y) d\mu(x) \end{split}$$

and

$$(\mu,\mu) = \int \mathcal{Q}(x,\mu) d\mu(x)$$

Set

$$\mathscr{E} = \{\mu; (\mu, \mu) \text{ is finite}\}$$

and assume that ${\mathscr E}$ contains at least one non identically vanishing measure. We put

$$(\nu, \mu) = \int \mathbf{\Phi}(x, \mu) d\nu(x)$$

and

$$(\mu - \nu, \mu - \nu) = (\mu, \mu) + (\nu, \nu) - 2(\nu, \mu).$$

We say that $\boldsymbol{\theta}$ is of positive type if the quantity $(\mu-\nu, \mu-\nu)$ is non-negative for any $\mu, \nu \in \mathscr{E}$. In case $\boldsymbol{\theta}$ is of positive type, $||\mu-\nu|| = (\mu-\nu, \mu-\nu)^{1/2}$ is a pseudo-metric on \mathscr{E} . An \mathscr{E} -Cauchy sequence is a sequence $\{\mu_n\}$ in \mathscr{E} such that, for any $\varepsilon > 0$, there exists an integer n_0 such that the relations $n \ge n_0$ and $m \ge n_0$ imply $||\mu_n - \mu_m|| < \varepsilon$.

Let f be a real-valued function on X which is measurable for every measure on X and let h be a real-valued function on Y for which the following classes of measures are not empty:

$$\mathcal{F} = \{ \mu \in \mathscr{E} ; \Psi(\mu, y) = h(y) \text{ on } Y \},$$
$$\mathcal{M} = \{ \mu \in \mathscr{E} ; \Psi(\mu, y) \leq h(y) \text{ on } Y \}.$$

In case $\int f d\mu$ is defined for all $\mu \in \mathscr{F}$ ($\mu \in \mathscr{M}$ resp.), we are interested in the problem of minimizing the quantity

$$I(\mu) = (\mu, \mu) - 2 \int f d\mu$$

for $\mu \in \mathscr{F}$ ($\mu \in \mathscr{M}$ resp.) and denote inf $I(\mu)$ by F(M resp.). This may be regarded as a problem in quadratic programming. We shall discuss whether there exists a measure $\mu^* \in \mathscr{F}$ ($\mu^* \in \mathscr{M}$ resp.) which satisfies $I(\mu^*) = F(I(\mu^*) = M$ resp.). We call μ^* an optimal measure for F(M resp.).

In case $\emptyset = 0$, the problem for M is reduced to finding an optimal measure in the theory of linear programming. This was studied by M. Ohtsuka [3].

In case Y consists of a finite number of points, the problem for F is the conditional Gauss variational problem raised in [2], p. 213.

Our results will be given in the case where f is an upper semicontinuous function or the \mathcal{P} -potential of a measure in \mathscr{E} . As an application of the existence theorem in §1, we shall discuss a duality problem in the theory of quadratic programming as in [1].

§1. The case where f is upper semicontinuous

First we observe that an optimal measure for M does not necessarily exist even if Ψ , f and h are non-negative and continuous. In fact, taking $\emptyset = 0$, we see that Example 1 in [4] shows this fact.

We begin with

LEMMA 1. Assume that $\boldsymbol{\Phi}$ is of positive type. Assume that $F(M \operatorname{resp.})$ is finite and that $\{\mu_n\}$ is a sequence in $\mathscr{F}(\mathscr{M} \operatorname{resp.})$ for which $I(\mu_n)$ tends to $F(M \operatorname{resp.})$. Then $\{\mu_n\}$ is an \mathscr{E} -Cauchy sequence.

PROOF. We have

$$I((\mu_n + \mu_m)/2) = I(\mu_n)/2 + I(\mu_m)/2 - ||\mu_n - \mu_m||^2/4.$$

Since $\mathscr{F}(\mathscr{M} \text{ resp.})$ is convex and F(M resp.) is finite, our assertion is easily verified from the above equality.

LEMMA 2. Assume that M is finite. Let $\{\mu_n\}$ be a sequence in \mathscr{M} such that $I(\mu_n)$ tends to M. Then the boundedness of total masses $\mu_n(X)$ follows from one of the following conditions:

(H. 1) there is $y_0 \in Y$ such that $\Psi(x, y_0) > 0$ for all $x \in X$ and $h(y_0) < \infty$.

(H. 2) Φ is of positive type and f > 0.

- (H. 3) $(\mu, \mu) \geq 0$ for all $\mu \in \mathscr{E}$ and $\sup f < 0$.
- (H. 4) $W = \inf \{(\mu, \mu); \mu(X) = 1\}$ is positive and f is bounded from above.

PROOF. From (H. 1), it follows that

$$u_n(X) [\inf_X \Psi(x, y_0)] \leq \Psi(\mu_n, y_0) \leq h(y_0) < \infty.$$

From (H. 3), it follows that

$$I(\mu_n) \geq 2 [\inf_X (-f)] \mu_n(X).$$

From (H. 4), it follows that

$$I(\mu_n) \geq W\mu_n(X)^2 - 2\beta\mu_n(X),$$

where β is an upper bound of f.

Now we assume (H. 2). Since $\{\mu_n\}$ is an *C*-Cauchy sequence in \mathscr{M} by Lemma 1, (μ_n, μ_n) are bounded, i.e. $0 \leq (\mu_n, \mu_n) \leq L < \infty$. Suppose that $\{\mu_n(X)\}$ is not bounded. We may assume that $\mu_n(X)$ tends to ∞ with n. Writing $\lambda_n = \mu_n/\mu_n(X)$, we can find a vaguely convergent subsequence of $\{\lambda_n\}$. Denote it again by $\{\lambda_n\}$ and let λ_0 be the vague limit. Then we have

$$0 \leq (\lambda_0, \lambda_0) \leq \lim_{n \to \infty} (\lambda_n, \lambda_n) \leq \lim_{n \to \infty} L/\mu_n(X)^2 = 0.$$

Since ϕ is of positive type,

$$0 \leq (k\lambda_0 \pm \mu_n, k\lambda_0 \pm \mu_n) = \pm 2k(\lambda_0, \mu_n) + (\mu_n, \mu_n)$$

for any $k \ge 0$. We infer that $(\lambda_0, \mu_n) = 0$ for each *n*. Furthermore,

$$\Psi(\lambda_0, y) \leq \lim_{n \to \infty} \Psi(\lambda_n, y) \leq \lim_{n \to \infty} h(y) / \mu_n(X) = 0 \quad \text{if} \quad h(y) < \infty.$$

Hence $n\lambda_0 + \mu_n \in \mathcal{M}$. It holds that

$$M \leq I(n\lambda_0 + \mu_n) = I(\mu_n) - 2n \int f d\lambda_0$$

Letting $n \to \infty$, we arrive at a contradiction because f > 0 and $\lambda_0(X) = 1$. We have

THEOREM 1. Assume that f is upper semicontinuous and does not take the value $+\infty$. If we assume one of conditions (H. 1), (H. 2), (H. 3), (H. 4) and that M is finite, then there exists an optimal measure for M.

PROOF. Let $\{\mu_n\}$ be a sequence in \mathscr{M} for which $I(\mu_n)$ tends to \mathcal{M} . Then the total masses $\mu_n(X)$ are bounded by Lemma 2. We can find a vaguely convergent subsequence of $\{\mu_n\}$. Denote it again by $\{\mu_n\}$ and let μ_0 be the vague limit. On account of the lower semicontinuity of \mathcal{O} , \mathcal{V} and -f, we have Maretsugu YAMASAKI

$$\Psi(\mu_0, y) \leq \lim_{n \to \infty} \Psi(\mu_n, y) \leq h(y) \quad \text{on } Y,$$
 $(\mu_0, \mu_0) \leq \lim_{n \to \infty} (\mu_n, \mu_n) \quad \text{and} \quad \overline{\lim_{n \to \infty}} \int f d\mu_n \leq \int f d\mu_0$

Therefore $\mu_0 \in \mathcal{M}$ and

$$M = \lim_{n \to \infty} I(\mu_n) \ge \lim_{n \to \infty} (\mu_n, \mu_n) - 2 \overline{\lim_{n \to \infty}} \int f d\mu_n$$
$$\ge (\mu_0, \mu_0) - 2 \int f d\mu_0 = I(\mu_0) \ge M.$$

Namely μ_0 is an optimal measure for *M*.

Similarly, we have the following results for F.

LEMMA 3. Assume that F is finite and let $\{\mu_n\}$ be a sequence in \mathscr{F} such that $I(\mu_n)$ tends to F. Then the boundedness of total masses $\mu_n(X)$ follows from one of conditions (H. 1), (H. 3), (H. 4) and

(H. 2)' Φ is of positive type, f > 0 and Ψ is non-negative.

THEOREM 2. Let f be an upper semicontinuous function which does not take the value $+\infty$. Assume one of conditions (H. 1), (H. 2)', (H. 3) and (H. 4), that Ψ is finite and continuous and that F is finite. Then there exists an optimal measure for F.

In the above theorem, the continuity of Ψ can not be omitted in general. This was shown in Example 2 in [2], p. 226.

§2. The case where f is a potential

In the case where f is lower semicontinuous and does not take the value $-\infty$, the existence of an optimal measure for F or M is not necessarily assured. This is shown by

EXAMPLE 1. (Example 5 in [2], p. 226) Let X be the unit ball $\{|x| \leq 1\}$ in the 3-dimensional Euclidean space, Y consist of one point, $\mathcal{O}(x, z) = 1/|x-z|, \Psi=1, h=1 \text{ and } f(x)=1+|x| \text{ for } |x|<1, =1 \text{ for } |x|=1.$

For $\mu \in \mathcal{M}$, we have $\mu(X) \leq 1$ and

$$I(\mu) = (\mu, \mu) - 2\mu(X) - 2 \int_{|x| < 1} |x| d\mu(x)$$
$$\geq \mu(X)^2 - 4\mu(X) \geq -3.$$

If μ is the unit measure distributed uniformly on a sphere close to $\{|x|=1\}$, then $I(\mu)$ is close to -3. Thus the infimum is equal to -3, but there is no

70

measure of \mathcal{M} which gives -3. It is also shown that there is no optimal measure for F.

In this section, we always assume that f is the \mathcal{O} -potential of $\nu \in \mathscr{E}$, i.e. $f(x) = \mathcal{O}(x, \nu)$, and that \mathcal{O} is of positive type.

THEOREM 3. Assume one of conditions (H. 1), (H. 2), and (H. 4), that ϕ is consistent¹⁾ and that M is finite. Then there exists an optimal measure for M.

PROOF. Let $\{\mu_n\}$ be a sequence in \mathscr{M} such that $I(\mu_n)$ tends to M. Then $\{\mu_n\}$ is an \mathscr{E} -Cauchy sequence by Lemma 1. On account of Lemma 2, the total masses $\mu_n(X)$ are bounded. We can find a subsequence which converges vaguely to some measure μ_0 . We see $\mu_0 \in \mathscr{M}$ and that $||\mu_n - \mu_0||$ tends to 0 by the consistency of \mathscr{O} . It holds that

$$M = \lim_{n \to \infty} I(\mu_n) = \lim_{n \to \infty} \{(\mu_n, \mu_n) - 2(\nu, \mu_n)\}$$
$$= (\mu_0, \mu_0) - 2(\nu, \mu_0) = I(\mu_0) \ge M.$$

Similarly we have

THEOREM 4. Assume that $\boldsymbol{\Phi}$ is consistent, that $\boldsymbol{\Psi}$ is finite and continuous and that F is finite. Then under one of conditions (H. 1), (H. 2)' and (H. 4), there exists an optimal measure for F.

We show by an example that the consistency of ϕ can not be dropped in the above two theorems:

EXAMPLE 2. Let X be the interval $\{0 \le x \le 1\}$ in the real line, $Y = \{y\}$, $\Psi = 1, h = 1, \Phi(x, z) = f(x)f(z), f(x) = x$ for $0 \le x < 1, =0$ for x = 1. Then Φ is not consistent and f(x) is the Φ -potential of the point measure at x = 1/2 with total mass 2. For $\mu \in \mathcal{M}$, we have $\mu(X) \le 1$ and

$$I(\mu) = \left(\int f(x) d\mu(x) - 1 \right)^2 - 1 \ge -1.$$

If we take the unit point measure μ_n at x=1-1/n, then $I(\mu_n)=1/n^2-1$. Therefore the infimum of $I(\mu_n)$ is equal to -1. However, we see easily that $I(\mu) > -1$ for every $\mu \in \mathscr{M}$ and hence there is no optimal measure. It is also shown that there is no optimal measure for F.

§3. A duality problem for M

In this section, we always assume that f and -h are upper semicontinuous and do not take the value $+\infty$. As in [1] and [3], we consider the fol-

¹⁾ $\boldsymbol{\vartheta}$ is called consistent if any \mathscr{E} -Cauchy sequence converging vaguely to a measure converges in the pseudo-metric to the same measure.

lowing dual problem for M:

Let \mathscr{M}' be the totality of pairs $[\mu, \nu]$ of measures $\mu \in \mathscr{E}$ and ν on Y satisfying

$$\Psi(x, \nu) + \mathbf{\Phi}(x, \mu) \ge f(x)$$
 on X.

In case \mathcal{M}' is not empty, we consider the problem of minimizing the quantity

$$J(\mu, \nu) = (\mu, \mu) + 2 \int h \, d\nu$$

for $[\mu, \nu] \in \mathcal{M}'$. We put

$$\begin{split} M' &= \inf \{ J(\mu, \nu); [\mu, \nu] \in \mathscr{M}' \} & \text{if } \mathscr{M}' \neq \phi, \\ M' &= \infty & \text{if } \mathscr{M}' = \phi. \end{split}$$

Our interest lies in the problem to find when the equality -M = M' holds. First we have

THEOREM 5. If ϕ is of positive type, then it holds that $-M \leq M'$.

PROOF. We may suppose that $\mathscr{M}' \neq \phi$. Let $[\mu, \nu] \in \mathscr{M}'$ and $\lambda \in \mathscr{M}$. Then

$$\begin{split} J(\mu, \nu) &= (\mu, \mu) + 2 \int h(y) d\nu(y) \\ &\geq (\mu, \mu) + 2 \int \Psi(\lambda, y) d\nu(y) \\ &= (\mu, \mu) + 2 \int \Psi(x, \nu) d\lambda(x) \\ &\geq (\mu, \mu) + 2 \int [f(x) - \mathbf{0}(x, \mu)] d\lambda(x) \\ &= -I(\lambda) + (\mu - \lambda, \mu - \lambda). \end{split}$$

Since $\boldsymbol{\Phi}$ is of positive type, $(\mu - \lambda, \mu - \lambda) \geq 0$ and hence

$$J(\mu, \nu) \geq -I(\lambda).$$

We give a characterization of an optimal measure for M.

LEMMA 4. (a) Assume that M is finite. If μ^* is an optimal measure for M, then it holds that

(#)
$$(\mu - \mu^*, \mu^*) \ge \int f d(\mu - \mu^*)$$

for every $\mu \in \mathcal{M}$.

(β) If $\mu^* \in \mathscr{M}$ satisfies the above relation (\$) and $\boldsymbol{\varphi}$ is of positive type, then μ^* is an optimal measure for M.

72

PROOF. (a) Assume $I(\mu^*) = M$ and $\mu^* \in \mathscr{M}$. Let μ be any measure of \mathscr{M} such that $\int f d\mu > -\infty$ and t be a number such that $0 \leq t \leq 1$. Since $\mu(t) = t\mu + (1-t)\mu^*$ belongs to \mathscr{M} , we have

$$\begin{split} I(\mu^*) &\leq I(\mu(t)) \\ &= t^2(\mu, \ \mu) + 2t(1-t)(\mu, \ \mu^*) + (1-t)^2(\mu^*, \ \mu^*) \\ &\quad -2t \int f d\mu - 2(1-t) \int f d\mu^*. \end{split}$$

It follows that

$$0 \leq \frac{dI(\mu(t))}{dt}\Big|_{t=0} = 2(\mu, \ \mu^*) - 2(\mu^*, \ \mu^*) - 2\int f d\mu + 2\int f d\mu^*.$$

(β) Assume that $\mu^* \in \mathscr{M}$ satisfies (\ddagger) and let μ be any measure of \mathscr{M} . Then we have

$$\begin{split} I(\mu) &= (\mu, \ \mu) - 2 \int f d\mu \\ &\geq (\mu, \ \mu) - 2(\mu - \mu^*, \ \mu^*) - 2 \int f d\mu^* \\ &= I(\mu^*) + (\mu - \mu^*, \ \mu - \mu^*) \geq I(\mu^*). \end{split}$$

Finally we prove

THEOREM 6. Assume that ϕ is of positive type and one of the following conditions is true:

- (1) condition (H. 1),
- (2) f > 0 and $\Phi \geq 0$,
- (3) $\sup_{X \times Y} \Psi < 0$ and either f > 0 or f < 0 or W > 0.

If M is finite, then $\mathcal{M}' \neq \phi$ and -M = M'.

PROOF. We can find by Theorem 1 an optimal measure μ^* for *M*. Put $f^*(x) = f(x) - \varPhi(x, \mu^*)$. Then the relation (\$\$) can be written as

$$\int f^* d\mu^* \ge \int f^* d\mu$$

for every $\mu \in \mathcal{M}$, i.e. $\int f^* d\mu^* = \sup \left\{ \int f^* d\mu; \mu \in \mathcal{M} \right\}$. Writing $\mathcal{M}^{*'} = \{\nu; \Psi(x, \nu) \ge f^*(x) \text{ on } X\}$ and making use of Ohtsuka's duality theorem (Theorem 3 in [3], p. 35), we see $\mathcal{M}^{*'} \neq \phi$ and

$$\int f^* d\mu^* = \inf \left\{ \int h d\nu; \ \nu \in \mathscr{M}^{*\prime} \right\}.$$

Given $\varepsilon > 0$, there is a measure $\nu_{\varepsilon} \in \mathscr{M}^{*'}$ satisfying

$$\int h d\nu_{\varepsilon} < \int f^* d\mu^* + \varepsilon = \int f d\mu^* - (\mu^*, \mu^*) + \varepsilon.$$

Obviously $[\mu^*, \nu_{\varepsilon}] \in \mathscr{M}'$. It holds that

$$egin{aligned} M' &\leq & 2 \int h \, d
u_arepsilon + (\mu^*, \ \mu^*) \ & < & 2 \int f \, d \ \mu^* - (\mu^*, \ \mu^*) + 2arepsilon \ & = & - I(\mu^*) + 2arepsilon = & -M + 2arepsilon. \end{aligned}$$

By the arbitrariness of ε , we obtain $M' \leq -M$. The inverse inequality was shown in Theorem 5.

References

- [1] W.S. Dorn: Duality in quadratic programming, Q. Appl. Math., 18 (1960), 155-162.
- [2] M. Ohtsuka: On potentials in locally compact spaces, J. Sci. Hiroshima Univ. Ser. A-I Math., 25 (1961), 135-352.
- [3] M. Ohtsuka: A generalization of duality theorem in the theory of linear programming, ibid., 30 (1966), 31-39.
- [4] M. Yoshida: Some examples related to duality theorem in linear programming, ibid., 30 (1966), 41-43.

Department of Mathematics, Faculty of Science, Hiroshima University