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1. Introduction

It is known that every finite-dimensional Lie algebra L over a field @ of
arbitrary characteristic has a faithful finite-dimensional representation. If
0 is an algebraically closed field of characteristic 0, then every solvable sub-
algebra of gl(n, @) is isomorphic to a subalgebra of the Lie algebra t(n, @) of
all the triangular matrices. Among solvable linear Lie algebras the follow-
ing three Lie algebras are most familiar to us: t(n, @), the Lie algebra {t(n, @)
of all the triangular matrices of trace 0, and the Lie algebra n(n, @) of all the
triangular matrices with 0’s on the diagonal. B. Kostant orally informed
the author that he had determined the structure of the first cohomology
group H*(L, L) of n(n, ®) and that the method of constructing an outer deriva-
tion which has been employed in the proof of Theorem 1 in [17] gives another
way of finding all the nilpotent outer derivations of n(n, @).

It therefore seems to be an interesting problem to ask the structure of
the first cohomology groups H'(L, L) of {(n, @) and {t(n, @®). In this paper we
are concerned with this problem and show the following two theorems.

Turorem 1. Let L be {n, @) with n>2.

(i) If the characteristic of @ is 0, or if the characteristic of @ is p+0
and n 0 (mod p), then H'(L, L)=(0).

(ii) If the characteristic of @ is p0and n=0 (mod p) and if n_>5, then
dim HY(L, L)=n.

Tueorem 2. Let @ be a field of arbitrary characteristic and let L be t(n, @)
with n>>2. Then dim H*(L, L)=n.

In Theorem 1 we exclude the case where the characteristic of @ is p=£0,
n=0 (mod p) and n <{4. The structure of the first conomology group H'(L, L)
of {t(n, @) in this case will be determined in Section 5.

Throughout this paper, we shall denote by @ a field of arbitrary charac-
teristic unless otherwise stated, and by e, the identity matrix in gl(n, @).

2. Lemmas

Throughout Secticns 2, 3, 4 and 5, we denote {t(n, @) by L for the sake
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of simplicity and assume that »>>3 unless otherwise stated.
We choose a basis of L as follows.

er: the (a;) € L such that ay,=1, as.1,,1=—1 and all other «;;=0.
err+1. the (a;;) € L such that a;,,.;,=1 and all other a;;=0.
*k=1,2, ..,n—1, [=1,2, ..., n—k).
We put these elements of L in the following order:

(€Y €1y 5 €n—13 €125 -5 €n—1,m5 ~=*5 €1,0415 " 'y €n—l,my 5 €1,n-1, €2,n; €lne

Then we have
Lemma 1. Let D be any derivation of L. Then

n-1 n—1 =1
Dekzz‘lf;’aei-l— 21/11:"+1€i.i+1+"'+ leé't+lei,i+l+ ot AR 1
i= i= i=

Dejpii :_zllli:;;ifei,iﬂ_l_"’+11£,nk+leln
for k=1,2,....n—1 and [=1,2, ..., n—k.
Proor. This is immediate from the facts that

L2:(€12, vy Cnlmy vty eln)>

(L2>l=(61’1+1, ey Cnlmy s 61,,) fOI' l:2, 3, ceey n—l

and that these are characteristic ideals of L.
We consider the following system of n—1 equations:

2x1— %2 =0
—x1+2x,— x5 =
~x2+2x3—x4 :0
(2 .

— %3+ 2%, 02— xn41:0

~x”42+2x”_1=0.

Then the determinant of the matrix of coefficients of (2) is n.
We need the following multiplication table:
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e, e12]=2e, [e1, ess = —eas;
Lejs ei-1,7]=—ej-1,5s Lejs €j,j1]1=2ej j:1,

3 Lej, €j1,j4+2]=—€ji1,512, for j:2, 3, -, n—2;
Len1, €n2n1 1= —€n 21, [en-1, n-1,n]=2€y 1,0

and all other [e, €1 ]=0.

Lemma 2. Let D be any derivation of L. Let De, and De, ., be expressed
as in Lemma 1. Then {A}, 22, ..., 22"} for any k=1,2, ..., n—1 1s a solution
of the system (2). Except the case where n=3 and the characteristic of @ is 3
and the case where n=4 and the characteristic of @ is 2, we have

Aitl=0 for i,k=1,2,...,n—1 and iz<k.

Proor. (i) The case where the characteristic of @ is #~2, 3:
Apply D to [ ey, ez ]=2e12. Then

201—22=0 and 2§/*1=0 for (1.
For j+1, applying D to the products [e;, 12 ], we obtain
22} —22=0.

For k=2,3, ..., n—2, apply Dto (e, erri1 ]=2e41.1. Then we have

— A 4228 —24"1=0 and 25}i1=0 for i=~k.
For j=k, applying D to the products [e;, e;:.1 ], we obtain

—AETI 2k — k1=,

Apply D to (e, 1, €n-1..]1=2€,_1,,. Then

—An724-22771=0 and 2;1=0 for is£n—1.
For j#n—1, by applying D to the products [e;, e, 1, ], we obtain

=72+ 2071 =0.

(ii) The case where the characteristic of @ is 2:
We first assume that n>>5. Apply D to [es, e;o ]=e1;. Then

23=0 and iy '=0 for i=~1, 3.
By applying D to [es, e1o ]=0, we obtain
2%2=0 and 23{=0.
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From the other products [e;, ez ], it follows that
2=0 for j+#2, 4.
Next apply D to [ey, ess J=eqss. Then
A4+23=0 and 2iy*"1=0 for 2.
From the other products [e;, ez;], it follows that
A+24=0  for ;1.
Apply D to ez, ess J=es;. Then
A3+24=0 and 2i/"1=0 for i=~1, 3.
By applying D to [[es4, €34 ]=e34, We obtain
234+2=0 and 2}2=0.
From the other products [e;, es4 ], it follows that
2Z2423=0  for j+#2,4.
For k=4,5, ..., n—2,apply D to [es_1, errs1]=e€rrs1. Then
Ai4+281=0 and 27ii1=0 for i#£k—2, k.
By applying D to [e,_3, err.1]=0, we obtain
M4+ 251=0 and %24 1=0.
From the other products [e;, ex ».1 ], it follows that
A4 2k 1 =0) for j=#+k—3, k.
For k=n—1, apply D to (e, 2, €s_1.n]=€n_1,,. Then
A272=0 and A;7'1=0 for i£<n—3,n—1.
By applying D to [e,_4, €,-1.,]=0, we obtain
2222=0 and A2-}772=0.
From the other products [ e;, e,_1,. ], it follows that
A i=0 for j#+n—4,n—2.

Thus we see that the statement is proved for n>5.

By employing a similar method, in the case where n =3 the statement is
immediately proved and in the case where n=4 it is proved that {13, 1%, 23},
k=1, 2, 3, is a solution of the system (2) of equations.
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(iii) The case where the characteristic of @ is 3:
We first assume that n>>4. Apply D to [ey, ez ]=2e12 and we obtain
221—22=0 and 2i)/"'=0 for i1, 2.
By applying D to [es, e;2 |=0, we have
221—22=0 and 2%}}=0.
From the other products [e;, ei2], it follows that
221 —-22=0 for j=1,3.
Now let £=2,8, ..., n—2. Apply D to [es, er.rs1 |=2er 1. Then
— 14224 —24"1=0 and 2j:i71=0 for is=k—1,k, k+1.
By applying D to (e 1, ere1]=[€r:1, €r,4+1]= —e€r1+1, We obtain
— 14225 —41=0 and 2[}i1=0 for i=k—1,k+1.
From the other products [e;, e z.1 ], it follows that
— 14202k 1=0  for jk—1,k k+1.
Finally, apply D to [ e, 1, €s-1.» ]=2€, 1... Then
—222422221=0 and 224 1=0 for i=n—2,n—1.
By applying D to [e,_s, €,-1,, ]=0, we obtain
—An724.22771=0 and A2z%21=0.
From the other products [e;, €,_1., ], it follows that
— 242 =0 for j#%n—1,n-3.

Hence the statement is proved for n>>4. In the case where n=3, it is im-
mediate that {1}, 22} for any k=1, 2 is a solution of the system (2) of equa-
tions.

Thus we see that in any case {1}, 4%, ..., 2271} for k=1,2,...,n—1 satis-
fies the system (2) of equations, and that except the two cases indicated
in the statement of the lemma

ApE=0 for i,k=1,2,...,n—1 and izk.

Lemma 3. Let D be a derivation of L and let j be one of the integers 2, 3,
.., n—1. Assume that

<.

n—
_ it 1 _
Dek;k*—l—v SAiiiei st A, for k=1,2,...,n—L

i=

fun

Then for 1=1,2, ..., n—j
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n—j—1l+1
— N yiititl-1 1
De, 1= 2:1 ks €iivjri-1T e,
iz

and for I=n—j+1, ..., n—1
Dek,k+1=0, k:]., 2, ceey n—I.

Proor. We prove the lemma by induction on /. The case where /=1
is trivial. Assume that />>2 and that the formula holds for De, ,;.;. For
any k=1,2, ..., n—1,

6k,k+t:[€k,k+z—1, ek+l—1,k+l:|'
Hence if [=2,3, ..., n—},

n—j-1+2
— SV qisititi-2 1
De,, ., = 2; Akiii e vt A - 181 €rir-1ht1]
=

n=Jq_ ..
+leprsr1s fs—-:lli¥l+il»k+lei,i+j+"'+]‘llzﬁl—1,k+leln:|
=
€ (el,j+la sty Cp—j—l+l,my eln)-
Ifl=n—j+1,
1
Dey i1 =A% 1-1€10 €pr1-1,6+1]
nodo 1
+lenrsi1 lilifzfl,kwei,”j‘{'"'+lk31~1,k+131n:|
=
=0.
Ifl=n—j+2,...,n—1,
nod o 1
Deyor=[epr:1-1, ,S_l:l/’#t—]bkwei,nj“i‘“~+lk'1141,k+131n]
=
=0.
Thus the formula holds for De, ;,;. This completes the proof.

Lemma 4. Let D be a dertvation of L. Assume that

n—1
De, = 2{%"“6;’”1‘1' e,
=

n
— NV i,it2 1
Dey =200 %€, 00t Alhi1e1a
for k=1,2, ..., n—1.

Then there exists an inner derivation ad x such that D'=D-+ad x has the fol-



On Some Properties of t(n, @) and it(n, @)
lowing form for e, and ey p.1:

n—2
1 RVt 1
Dek—.)i,a;,’ € ot T M€,
=

n—2
Dey 1= Eﬂéiii%ei,i—a*‘ o e,
for k=1,2, ..., n—1.
Proor. (i) The case where the characteristic of @ is #£2:

We put
n—1
D'=D+3>0i lade; ;.
i=1
Then we can write

n—1
l)/ — NV isi+l 1
ek*éﬂ/’el € i1t T " e
iz

4@ L mr
_ e 1
Diey = _Zilallz,lxe“lei,i‘fz—*— e upteq,
iz

for k=1,2, ..., n—1.

We assert that #¥**1=0 for k=1, 2, ..., n—1. In fact,
n=1_ nol o
D/ek:Z‘il;‘”-Hei,iJrl_'_ oA, 200 ey i, €4
i= i=1

and therefore by (3)

PR =2 R (=224 ) =0,

as was asserted. Applying D" to [e1, es ]=---=[e1, e,_; |=0, we have
pbitl=0 for i=1,2,...,n—1
and uit=p23=0 for m=2,3, ..., n—1.

Assume that £ >>2 and that we have

4+

upitt=0  for [=1,2,..,k—1 and i=1,2,...,n—1

and =y = =pulktl=0 for m=k, k+1, ..., n—1.
Then by applying D’ to [es, er1 = =[es, €,_1 |]=0, we obtain

upiti=0 for i=k+1,k+2,...,n—1
and pkrbErz=( for m=k+2,k+3, ..., n—1.

41
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Hence by induction we see that
uiiti=0 for i, k=1,2,..,n—1
(ii) The case where the characteristic of @ is 2 and n is odd:
We put
D'=D+(Aj%ade;,+42%adey;)+ -+ (2" %7 tade, 5, +A2"3y"ade,_y, ).

Then we can express D'e;, and D'e; ., in the form (4). Since
n=l
D'ey=2>2p " e, i+ +4j7ey,
i=1
+(l%2[€12, ek:|+'1%3[623> ek:l)+ +(/12:%’"41[3n—2,n—1, ek]

+ lZI%’"[%—Lm ek]))

by making use of (8) it is immediate that

wP=pP=. =g =y =0.
Applying D’ to [ e, ez |=---=[e1, e,_1 ]=0, we obtain

uiitl=0 for i=1,2,...,n—1
and 25=0 for m=2,3,...,n—1.
Next apply D’ to [ez, es |=---=[es, €,-1]=0. Then

uyiti=0 for i=1,2,..,n—1
and uz=pu3t=0 for m=38,4, ..., n—1.

Now, as in the proof of the first case, by induction we have
uiitl=0 for i,k=1,2,...,n—1.
(iii) The case where the characteristic of @ is 2 and n is even:
Put
D'=D+(4%ad e, +23adeys)+ -+ (45237 *ade, 5, »

+2r27 lade, 5, ) +A2 ) ade, 1,
and write D'e;, and D'e; ;. in the form (4). Then it is immediate by (3) that

uP == =ty = g = g =0,
If n=4, apply D’ to [es, es]=[e1, es]=0. Then

wP=p3t=0, p3P=p3=0.
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By applying D’ to [e;, es |=0, we obtain
uyt=p3t=0.
Since 433 = u}?=u3*=0 as seen above,
puitt=0 for i, k=1, 2, 3.
Now we consider the case where n>>6. As in the previous case, we obtain
upitt=0 for k=1,2,...,n—8 and i=1,2,...,n—1
and U=l = =y 1=0 for m=n—2, n—1.

As seen above, #”-}»=0 and, by applying D’ to [e, s, e,_1 =0, we obtain
pi-bn=0. Therefore

uhiti=0 for i, k=1,2,...,n—1.
Thus the proof is complete.

To prove the next Iemma, we need the following multiplication tables
where j=2,3, ..., n—1. For n>2j+1,

([6’1, e1,ji1]=ei1 .1, [e1, ezj.0]= —es .2,
x .
Lej-1, eio12jm1]=ejo12j-1,  [ejo1, €25 ]= —ej2j,
Lej erjl=er i1, [ eizil=eia [, €121 ]= —eji12i41,
Leji1, €1,j01]= —€1,5:1, [ €41, €2,5-2]= €2, 7.2, [€j41, €i11,2j+1 1= €j11,2j+1,
} L€ty €i2,2j12]= —€ji22j:2
(5)1 [eﬂ*jfla e?z—2j~1,n—j—1]: —€n_2j-1,n-j-1s [en_];l, en»Zj,n—j]:enfzj,n~j>
[€ni-1r €nj-1,m-11=€ncjotin-1, [€nj-15 Cnjn )= —€njm
Len s €n 2jn-j )= —€n 2jn i, Lenss en~2j+1,n~j+1]:6n—2j+1,n4]‘+1,
[en~j> €n jin]=€n_jns
L€njils €n2it1,m i1 )™= —€n2ji1,n—j+ls LE€njily €n2j12,mj+2]=€n—212,n—i+2
Len 1y nj1m1]=—€nj 1,01, Len-1, €ninl=€njns

{ and all other products [e,, e;;.; |=0.

For n=2j+1,
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[61, 61,j+1:|:€1,i+1, [61, 32,j+2:|: —€2,j+25

[6’;'—1, ej—uf—l]:ej—l,zj—h [e]-,l, ej,Zj]: —€5,2j5

[ef’ e1j1l=e1 1, [ €, ez ]=ejzj, [e,-, €j+1,2f+1]:_ei+1,2f+19
(5)11 l:en—h 61,j+1]= T €1,7+1, [en—j, €z,j+z:]=€z,j+z, [eﬂ~]‘9 en—j,n:l':en—]',m

[en—j+1, 32,j+2:|: —€2,7+2 [en—j+1, €3,j+3:|=63,j+3,

[:enfl, en~j—1,n~1]: T Cu—j-1,m-1, Een~1, en—j,n]:en—j,n

and all other products [e, e;;,; |=0.

For n=2j,
e, 61,j+1]=31,j+1, [31, e2,ji2]= —€2,j+25
[6’;‘—1, 81#1,21—13261—1,27'—1, [ej—la €j,2j 1= —€j 2j,

I:enfja el,j+1:l:el,j+19 [en—j, en——j,n]:en—j,m

(5)111
[enjs15 €1,541]= —e€1,j11, [en—je-l, ez, ji2 =€z ji2,
[en—l, enAj—l,n~1:|: —Cn—j+l,n—1y [3n~1’ en~j,n:|:en—j,ﬂ
and all other products [e;, e;;.; ]=0.
For j+1<n<2j,
Le, erj1]=e1 1, [e1, ezji0]=—e2j.2
[en—jfl, en—j~1,n—1]:en—j—1,n—1, Een—j—ly en—j,n]:_en—j,m

Lenienijnl=enjn
B)vi Lej, €11 ]=e1,j41,

i1, €1, =—ey; . i =ey ;
[e]+1 €1j+1:] €1,j+1, [81+1, €2 ;+2] €2,7+25

[6,,41, en—j—l,nAl:]: —€u_j—1,n-1, [eﬂ—lp en—j,n]: €n—jn

and all other products [e, e;;.;]=0.

For n=j+1,
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e, e1n]=e1n
B)v ({ Len-1, €1n]=¢€1n
Iand all other products [ey, ;i ]=0.
Lemma 5. Let D be a derivation of L and let j be one of the integers 2, 3,
.., n—1. Assume that

n—j
__ Y2i,i+] 1
Dek—_zlllllz e st A€,
P

Deypor="3{ikHer st + e,
for k=12 ... n—1.
Then except the case where n=4, the characteristic of @ is 2 and j=3, we have
Apiti=0 for k=1,2,...,n—1 and i=1,2,...,n—].
Proor. (i) The case where the characteristic of @ is =~2, 3;
As shown in the table (5),
Lew €iij J=alk, i, ]')C’i,i%—j
for k=1,2, ..,n—1 and i=1,2,..,n—j

where a(k, i, ))=0or 1 or —1. For k=1,2, ..., n—1, applying D to [ e, ex z:1]
=2e;.,41, We obtain

n—7j
i .
203320 e, A1)

i=1

n—j
— Pvitj 1
—[lei et T A e, €1
i=
i 1
1,1~ n
+ ey, iiik,k+jlei,i+j+"‘+’zk»k+leln:|
=
_ N TR SV it 1
= alk, iy jAie; i+ 20 Mgt et e

It follows that
Apiri=0 for k=1,2,...,n—1 and i=1,2, ..., n—j.

(ii) The case where the characteristic of @ is 2:
First we assume that n>2;j+1. We divide the proof into several cases ac-
cording to the value of k.
k=1,2, ..., j—2: By applying D to [e; 1, €xr+1]=¢s: 1, we obtain

ApEiTi=0 for i#<k+1, k42
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From [e;, e;,,1]=0, it follows that
Akttt 1=0.
From [e; .2, €r1-1 =0, it follows that
M=,
k=j—1: By applying D to [es,1, €s,r:1]=€r 1.1, We obtain
Apiti=0 for i==1,k+1, k+2.
From [e;, e;,:,1]=0, it follows that

k=j: By applying D to [e,_1, es s 1]=€rr.1, We have
Aii=0 for i£k—1,k.
From [e;, e;.:.1]=0, it follows that

kok+j+1 —
}‘k k+]1 O

From [es; 1, €141 =0, it follows that
At =0.
k=j+1: By applying D to [e; 1, s rs1]=e€r 1.1, We obtain
=0 for is£1,k—1,k.
From [e;, €x .1 ]=0, it follows that
Bidst=2gk =0,

From [es;, ;.51 ]=0, it follows that

k=j+2,...,n—j: By applying D to [es 1, €s,1.1 )= e€r 1.1 We have

Apii=0 for iFk—j—1,k—j, k—1, k.
From [e;, e;.,.1]=0, it follows that

At =apE{=0.
From (e, 2, €;.,.1]=0, it follows that
AR t=2k 7 1=0,
k=n—j+1: By applying D to [e;_1, er,r:1 =64 1.1, We Se€
20T =0 for i#k—j—1,k—j, n—j.
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From [:ek, ek,k+1:]=0, it follows that

From [ek;g, ek,k+1:]=0, it follows that
AR =250 =0.
k=n—j+2, ..., n—1: By applying D to [e, 1, €xx11]=err-1, We have
Aiti=0  for i#Fk—j—1,k—j.
From [ek, ek,k+1]=0, it follows that
At =0.
From [6},;2, ek_k+1]=0, it follows that
A =0.

By a similar method we can show the assertion of the lemma in the case
n=2j+1, the case n=2; and the case j+1<n<2j respectively by using the
multiplication tables (5)i, (6)i; and (5)v. Therefore we omit the proof for
these cases.

Now we consider the remaining case n=j;+1. If n=3, apply D to
(e, e1z ]=[ ez, e25]=0. Then we have

A3 =433=0.
For n>>5, applying D to [ ey, e1s |=[ €s_1, €r_1.,]=0, we obtain
Ar=ar,,=0.
From [es, ess |=€23, -y [€n_2, €x_3.n_2]=€n 3. 2, it follows that
Mi=..=2",, ,=0.
From [e, 3, €, 2,-1]=€, 2,1, it follows that
A%y ,—1=0.

Thus in the case where the characteristic of @ is 2, we have shown the
assertion of the lemma where the case n =4 is excluded.

(iii) The case where the characteristic of @ is 3:
First we consider the case where n>2;+1.
For k=1, 2, ..., j, applying D to [es, e r:1]=2e4 1.1 We have
Apiti=0 for i£k+1.
From [ek+1) ek’k+1:|= —€h kil it follows that

BHLk+i+1—
AbrLhritl=0.
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For k=j+1, ..., n—j—1, applying D to [es, e r.1]=2e; ;.1 We obtain
ApEi=0 for i=k—j, k+1.

From [€k+1, ek’k;ljz —€rk+l, it follows that

For k=n—j, ..., n—1, applying D to [es, €s,r,1]=2€; .1 We have
Ai=0  for i#k—j.
From Cer_1, €r 11 |= —ep 141, it follows that
A2t =0.
By a similar method we can show the assertion for the case n=2;j+1, the

case n=2j, the case j+1<n<2jand the case n=j+1 respectively by using
the tables (5), (5)ui, (5)v and (5)y. So we omit the proof for these cases.

Lemma 6. Let D be a deritvation of L and let j be one of the integers 2, 3,
., n—1. Assume that for k=1,2, ..., n—1

n—j
V)it 1
Dek")illlzt Tei s T A ey,
=
1

o . ca
2 April e it e, of jFn—1,
Dep = 71

0 if j=n—L1

n—

(N

n-j ..
If we put D'=D+ >3 ade;,;,;, then for j#+n—1
=1
il
Die,= >3 up'™ ' le; it uitey,,
i1

n—Jj—1
4 — i i+i+1 1
Diep = 21 Ukl e it T M€y
=
and for j=n—1
D’ekZD’ek,kH:O, k:]., 2, sy n—1.

Proor. It is immediate that D’ has the same form as that of D for e,
and e ,;. Therefore we put
n—j .. .
De,=>up e+ +ui"e,,
i=1
n—j—1

A i,i+j+1 1in
Uptii e jejmt o T M8
im1

for k=1,2, ..., n—1.
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Then we have
phkti=0 for £=1,2, ..., n—j.
In fact,
D’ek=Dek+gl§“[ei’iéj, e,
and therefore
PR = Uk (— 2 ) =0,
By applying D’ to [e1, es ]=..-=[ey, €,_;,_1 ]=0, we have
piiti=0 for i=1,2,...,n—j
and pbitl=y2i+t2=( for m=2,8,...,n—j—1.
For m=n—j, ..., n—1, apply D’ to [e, e, ]=0 and we obtain
wt=piitt=0.
Now assume that 2 <4 <n—j—1 and that we have
ubivi=0 for (=1,2,..,k—1 and i=1,2,..,n—j
and pLiTt= g2t = = ki =0 for m=k, k+1, ..., n—1.
Then applying D’ to [es, ers1 = --=[es, €4-j-1]=0, we have
pbiti=0 for i=k+1,...,n—j
and pErLRIFI=() for m=k+2,...,n—j—1
For m=n—j, ..., n—1, apply D’ to [ e, e, |=0 and we obtain
EALE++1—(),
Thus we conclude that

ppiti=0 for k=1,2,..,n—1 and i=1,2,...,n—j.

8. The first statement of Theorem 1

Throughout this section we assume that either the characteristic of @ is
0, or the characteristic of @ is p0 and n =0 (modp).

By our assumption on the characteristic of @, the system (2) of n—1
equations has the nonsingular matrix of coefficients. Therefore by virtue of
Lemma 2 any derivation D of L has the following form:
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n—1
Dek=21},”“e,-,,-+1+m
i=1
6)
—_kk
Dey,pi1=2%%7

for k=1,2,

Lemma 7. Let D be any derivation of L. Then there exist oy, a, -

wn @ such that
D'=D—

has the following form for e, .1:

Deyyir= >_nli’e’i+1‘~’

for

Proor. By the remark preceding

Dey,piq =% 2
We now consider the following system
2.%'1 -

X2

—x142x,— x5

n—2
+1 SY 240 +2
1€ee+1T 2.11'{},,1'”
iz

"2

1 N Y +2

1€r 1T Lléi i€
=

_xn~3+2xn
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+ ]‘}znelm

1
fe; it A€,
n—1.
Ty &y-1

n-1
Slaade;

i=1

i, z~r2+ +'{k k+1€1n

k=1,2, ..., n—1.

the lemma,

i zf2+ +Ak +1€1n

for k=1, 2, n—1.

of n—1 equations:

1
1

=1

2
2

23
123

n=2,n—
Xn— l_ln 2,m—

-“xn*2+2xn*1—_——l":1’"

n—1l.n

Since the matrix of coefficients of the system is nonsingular, the system has

a unique solution, which we denote by «ay, as, -

define D’ as in the statement. Then
n-1
D/Ck,k+1_—‘DBk,/z+1—_Zjlai[ez', ek,k+1]

(A —2a,+ay)e ,+ 2,1’

Bik+1
Aggiita,,

—20,+ay)eg 0t Z:/IM

.y @y_1.  With these a;’s we

iT2e; iaat o AlSey, for k=1,

1n
feiivat T A% e,
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-

= for £=2,38, ..., n—2,
1 CSTINEY 1
(A:ll*l:z+an*2—2aﬂ—l)e}l‘1,ﬂ+ 'zll-]‘;z’—llxnei,i-%z—’— "'+xn’i1,neln
i=

for k=n-—1.

n—2

— Nii+2 1

- ,ll;e)lieﬂei,i*z—l_"'+lkflk~rleln'
=

Proor ofF THE FIrsT STATEMENT OF THEOREM 1:

In the case where n =2, the characteristic of @ is 2. Therefore L is a
2-dimensional non-abelian solvable Lie algebra. It is known that L has then
no outer derivation, that is, H*(L, L)=(0).

We therefore assume that n>>3. Let D be any derivation of L. Then
D has the form (6) for e, and e 4.1, k=1, 2, ...,n—1. By virtue of Lemma 7,
adding an inner derivation to D, we may suppose that

Mhii=0  for k=1,2,..,n—1

Owing to Lemma 4, by adding an inner derivation to D, we may furthermore
suppose that

Ait1=0 for i, k=1,2,...,n—1.

By making use of Lemmas 5 and 6, we can proceed by induction to conclude
that after replacing D by the sum of D and a suitable inner derivation we
have

Dek=Dek,k;1=0 for k:1, 2, ceey n—1.

But Lemma 3 then tells us that D=0. This shows that the first given D is
an inner derivation and we have H'(L, L)=(0).

4. The second statement of Theorem 1

Throughout this section, we assume that the characteristic of @ is p#0
and that n=0 (modp).

The matrix of coefficients of the system (2) of n—1 equations is singular
but has rank n—2. Therefore any solution of (2) is of the form:

xl'_——B, x2:233 Sty xn—lz(n—l)ﬁy

where 3 is an element of @.
By virtue of Lemma 2 any derivation D of L has the following form for
(% and €r b1
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n—1 n—1
Dep=XliBrei+ 204 e i+ -+ Afey, for %£=1,2,..,n—1.
i=1 i=1
(M) (For n>5,
Apittes it + A% ey, for k=1,2,...,n—1

Lemma 8.  The center of L is spanned by the identity matrix e,.

Proor. The trace of ¢, is 0 and therefore e, ¢ L. e, evidently belongs
to the center of L.
Conversely, suppose that

ezglie;+ jzi‘;x"'”le,-,er-.. + ey,
is an element of the center of L. By taking the products [e, e;]=0, i=1, 2,
..., n—1, and by using the tables (3) and (5), we see that

A =0 for i=1,2,..,n—j and j=1,2,..,n—L1
From [ e, e;; ]=0, it follows that
22— 22=0.
For k=2, 38, ..., n—2, it follows from [e, e, ;.1 ]=0 that
— 2Bt 228 —2F 1 =0,
From [e, e, 1, =0, it follows that
— A" 421 =0.

Thus {A!, 2%, ..., %71} is a solution of the system (2) of equations. There-
fore we can write

with some f € @®. Hence
n—1
ezﬁ’(zjlie,-)zﬁ’eo.

Lemma 9. For any k=1,2, ..., n—1, let D, be the endomorphism of L
sending e, to e, and all other elements of a basis (1) to 0. Let D,» be the endo-
morphism of L sending ey, to ey, for k=2, 3, ..., n and all other elements of a
basis (1) to 0. Then D, and D, are outer derivations of L.

Proor. By Lemma 8 we see that D, maps L into the center of L and L?
into (0). Hence D, is a derivation of L, which is outer since e, ¢ L
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It is easy to verify that D, is a derivation of L. It is furthemore outer.
In fact, suppose that

n—1 . n—1 ..
_D12= Zl’ad ei+ Eli,i+1ad ei,i+1+ +llnadeln'
= =1

Applying Dy, to e, k=1, 2, ..., n—1, by (3) and (5) we obtain

A =0 for i=1,2,..,n—j and j=1,2,..,n—1
Hence Dlzzgl"ad e;. Now apply Dy, to ez, es3, -, €,-1.,. Then we see that
—22=1and i5123.‘5 22,2, ..., 2" 7! satisfy the following system of equations.
—2x;— x3 =0
— %0+ 2x5— x4 =0

®

— Xp-3+ 2xn~2"' Xp1=0

—Xp2+22,-1=0

The system (8) has the nonsingular matrix of coefficients and therefore it has
only the trivial solution. Hence

12213: =l"‘1:O,

This contradicts the fact that —i2=1. Therefore D,, is outer, as was as-
serted.

Lemma 10.  Let D be a derivation of L. Assume that

n—1 n—1
De,=>lifse; + S A e, ;i1 + -+ Ay, for k=1,2,..., n—1.
1 i

If we put
n—1
D'=D— 251’01‘
i=1

with D,’s the derivations defined in Lemma 9, then

n—

1
Die,=3SY e, ; 1+ .-+ 2", for k=1,2,...,n—1.
1

i=

Proor. By Lemma 9 we have
4 n—%_ n:‘l i,i+1 ) 1 72:‘1
D'e,= .E_ilﬁkei_‘_ Lnfk" € it ""*‘/zk”eln“(ZJlBiDi)ek
i= i= i=

n—1 ..
=PBreo+ Ejil/le”’lei,i+1+""I’/I/%”em"ﬂkpkek
=
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n—1
=2 et A e,
i=1
Lemma 11.  Let D be a derivation of L. Assume that

n—1
1o
Dek:.z-l'lliz’ Ye; it -t A€,
i=

Dey 1=k e 0t 2_11;‘}&1%61 peat T A e,
for k=1,2,...,n—1.
Then there exist oy, s, ---, Ay_1 i1 @ such that
-1
D'=D—(A%+a,)D,,— Zaiadei
=2

has the following form for e . 1:
Dlek,kﬂ:i'{}e'i:%e; it AT e, for k=1,2,...,n—1

Proor. We consider the system of n—2 equations
(2x,— x5, =A33

— %+ 2x5—x, =23

— 2,
xn—3+2xn—2 Xp-1~— 12 Z,Z

— -1,
_xn-2+2xnfl—lz—1,’n1‘

This system has the nonsingular matrix of coefficients and therefore it has a
solution. Denote a solution of the system by «», as, ---, a,_; and define D’ as
in the statement. Then

n—1 _
D'e;y=Dey,— A3+ ay)e;— Z)Qf[eia ers ]
1=4
:(l%% i3+ az)‘*'az)elz‘*‘}_nl' ¥ le it ATSey,
n~12 L ivo 1
=2y e st A,
=
n—1
D'ey3=Degz— Z;aitei, €3]
=

=13 2a2+a3)ez3+2 Ay e, o+t Ajgey,
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= Ay e it AMe,
For k=3,4, ..., n—2,

n—1
/ —_ Y
D'eyp1=Deyp1— D il €y € r:1]
i=2
B+l $3
=it a 2ak+ak+1)ek.k+1+>_z/zk Pffes it T A ey,
=
= . AL ;el pivet oo H AN e,
, 2l
D en——l,n:DenAI,n—.lzlai[ei, en—l.n]
iz

— +2
(ln 1n+an 2 zan l>en 1n+ Zx;z tln i, 1+2+ +l7z 1.2€12

n—2
= 711;1 ll—r; i, 1+2+ +ln 1,2€1n-
i=1
Thus the proof is complete.
Proor or THE SECOND STATEMMENT OF THEOREM 1:
Any derivation D of L has the form (7) for e, and e .1, 5=1,2, ..., n—1.
Put

n—1 n—1
=D—>8;D;— A5+ a,)D,,— > a;ade;,
i=1 i=2

where a, s, -, a, 1 are the elements of @ chosen in Lemma 11. Then by
making use of Lemmas 10 and 11 we have

n—1
/L, NV pisitl 1
Diey= 30" ey jurt o Aie,,

D €. k+1—>llk }taz%et i 2+ +Xk r+1€1n for k=1> 23 RS n—1.

Now as in the proof of the first statement of Theorem 1, we can use Lemmas
3,4, 5 and 6 to see that D’ is an inner derivation of L. Therefore in order
to see that H'(L, L) is of dimension n, it is sufficient for us to show that
Dy, D;, ..., D,_;, and Dy, are linearly independent modulo the inner derivations.
Suppose that the derivation

n—1 . n-1 . n—1
9) SWD;+ D1+ S fad e+ > uv  rade; i1+ -+ 4 ad e,
-1 = Rt

is identically 0, where all the s and #’s are in @. Applying the derivation
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(9) to e;, we obtain 2*=0 for £=1,2, ..., n—1. Apply the derivation (9) to
eis. Then 1—x#*=0. By applying the derivation (9) to ess, ess, ---, €n_1.m
we see that z% 4%, ..., 4"~ satisfy the system (8) of n—2 equations. It
follows that #*=/4*=...=4"'=0. Therefore 1=0. It is now immediate that
all the other #’s are 0. This completes the proof.

5. Remark to Theorem 1

In this section, we shall consider the three cases excluded in Theorem 1.
In the case where n=2 and the characteristic of @ is 2, L is a 2-dimen-
sional abelian Lie algebra. Hence dim H'(L, L)=4.
The case where n=38 and the characteristic of @ is 3:
By virtue of Lemma 2 we see that '

2 ..
De,=pB(e;—ey)+ zjllé"ﬂei,iﬂ'i'l}zsem,
=

De, 1= ‘llliiliﬁei,in‘i‘}*/%sels for k=1, 2.
Let D%} (resp. Di%) be the endomorphism of L sending e (resp. ex;) to e
(resp. e12) and all other elements of a basis (1) to 0. Then these are outer
derivations of L. With a slight modification of the reasoning in the preceding
section, we can show that any derivation of L is a linear combination of D,
D,, D,,, D3, D}% and an inner derivation. It is easy to see that these outer
derivations are linearly independent modulo the inner derivations. Therefore
we conclude that dim H'(L, L)=5.
The case where n=4 and the characteristic of & is 2:
By Lemma 2 and its proof, we see that

3 2
De,=pB(e;+e;)+ 2:1113’”131',“1‘*‘ Z‘ixé’t‘zehwz"‘@“eu
1= 1=

for k=1, 2, 3,
12 34 IR 14
De,,=(A13e1,+%es)+ .).i/zi’zn €;,iv2 T Ai%€14,
iz
23 2 iLie2 14
Deyy=1233es3+ >3 1'15'31 €;,ivotA35€14;
=
12 34 2y i ie2 14
Des4:(/134‘312+134634)+Zl/zéif €e;,iv2TA3i€14
iz

Let D34 (resp. D) be the endomorphism of L sending e;» (resp. ess) to ess
(resp. e1), e13 (resp. eyy) to —ezy (resp. —ep3) and all the other elements of a
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basis (1) to 0. Let D} be the endomorphism of L sending es; to ey and all
other elements of a basis (1) to 0. Then these are outer derivations of L.
With a slight modification of the reasoning in the preceding section, we can
show that any derivation of L is a linear combination of Ds, D,, D3, Di,, D33,
D}% DI} and an inner derivation. It is easy to see that these outer deriva-
tions are linearly independent modulo the inner derivations. Thus we con-
clude that dim HXL, L)="1.

6. Proof of Theorem 2

We can prove Theorem 2 in a quite similar manner as in the proof of the
second statement of Theorem 1. Therefore we shall only write the outline

of the proof.

Throughout this section, let @ be a field of arbitrary characteristic and
denote t(n, @) with n>>2 by L for the sake of simplicity.

We choose a basis of L as follows.

e.: the (a;,) € L such that a,,=1 and all other a;;=0,

for k=1,2, ..., n.
ene+s: the (a;;) € L such that ¢, ,,,=1 and all other a;;=0,
for k=1,2, ..., n—1and [=1,2, ..., n—Fk.

We put these elements of L in the following order:

(10) €1y -0y en; €12, Tty en—l,n; ) el,n—l, 6271; €1y.
Then, corresponding to Lemma 1, for any derivation D of L we have

n—1

@ . - . .
Dek:'L‘il,’ee,-—I— _2}/1,;” fle; v + -+ 23"y, for £=1,2, ..., n,
1= 1=

n—1
_ it 1n
Dey,, = Zli,i+lei,i+l+ et e,

1
i=1

for k=1,2,...,n—1 and [=1,2, ..., n—k.

Corresponding to Lemma 2, we can show without any restriction on » and @
that

A=x=..=x for k=1,2..,n
and Aii=0 for i,k=1,2,...,n—1 and ik

The results corresponding to Lemmas 3, 4, 5 and 6 hold for a derivation of
L=t(n, ®) without any restriction on n and @. It is to be noted that in the
proof of the result corresponding to Lemma 4 we only need to define D’ as
follows:
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[dut S
[Y::ll+'2;l?’+ladeiJ+P
i=

It is evident that the center of L is spanned by the identity matrix e,, We
define the derivation D,, k=1, 2, ..., n, as in Lemma 9. Corresponding to (8),
we consider the following system of n—1 equations in n indeterminates:

/ — 712
xX1— X9 =113
— 723
X9— X3 —123
.
— — n—Ln
> Xn-1 Xy '—Zn—lyn‘

Then the system has a solution of the following type:
x1:07 K=z, -y Xp=0Uy.

Putting
D'=D—3D,—Sa;ade,,
i=1 i=2

we have

n—

1
D/ek:.>—‘il;3”+lez‘yi+l+"‘+linelm k:1> 2’ cry T
i=

n—2
4 — is1+2 —
D ek,k+1—,§]1’{l‘a,l1e+lei,i+2+ R W T k=1,2, ..., n—1.
iz

Now as in the proof of the second statement of Theorem 1, we see by making
use of the results corresponding to Lemmas 3, 4, 5 and 6 that D’ is an inner
derivation of L and we can conclude that dim H*(L, L)=n.
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