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Introduction

If L is a Lie algebra over a field Φ, we consider the lattice of all sub-
algebras of L. A Lie algebra will be called distributive, modular, upper semi-
modular, lower semi-modular, complemented, or relatively complemented if
its lattice of all subalgebras has the corresponding property. In [8], we investi-
gated distributive, upper semi-modular, lower semi-modular, and modular Lie
algebras. In this paper we continue the investigation of the relation between
the structure of a Lie algebra and the structure of its lattice of all subalge-
bras and we concentrate on relatively complemented Lie algebras. We 1)
characterize relatively complemented Lie algebras over algebraically closed
fields of characteristic zero, 2) characterize relatively complemented Lie al-
gebras over the field of real numbers, 3) study other properties of comple-
mented and relatively complemented Lie algebras.

The Lie algebras considered in this paper will be finite dimensional, and
will, unless otherwise stated, be over a field of characteristic zero.

In this paper, if L is a Lie algebra QL, L~] will be denoted by L\ and
[_L\ Z/[] by L". Also the subalgebra of L generated by ei, e2, •••, ek will be
denoted by {eu e2, •••, ek}.

SECTION 1. Preliminaries and Examples

DEFINITION: A Lie algebra Z, over a field of any characteristic, is called
distributive, modular, upper semi-modular, lower semi-modular, comple-
mented, or relatively complemented if its lattice of all subalgebras has the
corresponding property.

DEFINITION : Let L be a Lie algebra over a field of any characteristic. The
Frattini subalgebra F of L is the intersection of all the maximal subalgebras
of L.
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DEFINITION: Let L be a Lie algebra, over a field of any characteristic,
and M a subset of L. Let {M} denote the subalgebra of L generated by
M. x e L is called a non-generator of L if whenever L— {x, M} then L= {M}.

It is known that if Lφ {0} is a Lie algebra over a field of any character-
istic, then its Frattini subalgebra F is the set of all non-generators of L. Also,
let L be a Lie algebra over a field of any characteristic, M a subset of L, F
the Frattini subalgebra of L. The basis theorem asserts that if {M, F} =L,
then {M}=L. Moreover, if L is a nilpotent Lie algebra over a field of any
characteristic, then its Frattini subalgebra contains L'.

PROPOSITION 1.1 Let L be a simple three-dimensional Lie algebra. L is
relatively complemented if and only if L is non-split. Moreover, if L is split,
then L is complemented.

PROOF : It is known that L is non-split if and only if L has no two-dimen-
sional subalgebra. Thus, if L is non-split it is relatively complemented.

Let L be split. Then there exists a basis eu e2, e3 for L such that
Oi, e2] = e3; [_eu e3~] = 2eλ\ [e 2 ,e 3 ]= —2e2.
We now define the following subalgebras of L:

L2 = L

M={eu e3}.

We assert that there exists no subalgebra N of L such that M\jN=L2 and
MΓ\N=Lι, for if such a subalgebra N exists then N= {βi, α2e2 + α3e3}, a2φ0.
Now Qβi, α2e2 + α3e3] = 2α3ei + α2e3. Thus, TV is a subalgebra if and only if
there exists λ, β e Φ such that 2α3ei + α2e3 = Λei + Xα2e2 + α3e3). Then a2 = jUa3;
2a3 = λ; βa2 = 0. Since a2φ0, u = 0, which implies that α2 = 0, a contradiction.

We now show that if L is split then it is complemented. First, every
two-dimensional subalgebra of L has a complement, and if c φθ, e L then there
exists an element x e L such that c and x generate L (see Lemma 1.1 in [β~J).
Hence, every one-dimensional subalgebra of L has a complement.

PROPOSITION 1.2 Let L be the four-dimensional Lie algebra over a field
Φ with basis e0, eu e2, e3 defined by [>i, e2] = e3; |>2, e{] = ae1\ [e3, e{} = βe2]
[e,, eo] = O, i = l, 2, 3, α ^ O , /9=̂ =0, 6 Φ. L is not relatively complemented.

PROOF: If {eu e2, e3} is split, then it is not relatively complemented.
Thus, suppose {eu e2, e3} is non-split. We then define the following subalge-
bras of L:

Li= {eo+ eι}

L2 = L

M= {eθ5 ei}
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We assert that there exists no subalgebra N of L such that M\jN=L2 and
MΓ\N=Lι. Thus, if such a subalgebra TV exists, it must be two or three-
dimensional. Let N={a, c, eo + ei}, where a and c e L. Let a — aoeo + aieι
+ a2e2 + a3e3, and let b — e0 + e\. We then have [£a, δ], \J_a> δ], δ]] =
— (α|α/9 + αfα^ex. But this element e MΓ\N. It then follows that
ala-\-alaβ = 0. Now {βi, e2, e3} is non-split if and only if a\β + a\a-\-a\aβ = 0,
αi, α2, «3 6 0, implies that aι = a2 = a3 = 0. Hence, we conclude that a2 = a3 = 0.
Thus, a = aoeo + aιeι. Since α € MΓ\N, we have αo = αi. Similarly, c is a scalar
multiple of e o + βi. Hence, M\jN=M. This completes the proof.

DEFINITION: An (n + l)-dimensional (n^>l) Lie algebra, over a field of any
characteristic is called almost abelian if it has a basis e0, ex, •-, ew such that
[>;, β0H = eί for ί > l , and \_a, ejJ = O for

PROPOSITION 1.3 Let L be an (^ + l)-dimensional almost abelian or n-
dimensional (ra^>l) abelian Lie algebra, over a field of any characteristic.
Then L is relatively complemented.

PROOF : In either case every subspace is a subalgebra.

SECTION 2. Relatively Complemented Lie Algebras

THEOREM 2.1 If L is a complemented Lie algebra, over a field of any
characteristic, then its Frattini subalgebra F= {0}.

PROOF : Let M be the complement of F. Then M\jF=L, and MΓ\F= {0}.
By the basis theorem, we have (M) = L. Since M is a subalgebra (M) = M, and
hence F={0}.

THEOREM 2.2 If L is a complemented nilpotent Lie algebra, over a field
of any characteristic, then L is abelian.

PROOF: If L is nilpotent then its Frattini subalgebra contains V.

COROLLARY 2.1 If L is a relatively complemented Lie algebra, over a field
of any characteristic, then its nil radical is abelian.

COROLLARY 2.2 If L is a relatively complemented Lie algebra, over a
field of any characteristic, then its Frattini subalgebra is abelian.

PROPOSITION 2.1 If L is a relatively complemented Lie algebra, over an
algebraically closed field, then L is solvable.

PROOF: If L is non-solvable, then by Levi's Theorem L = SφLu where
Li is a semi-simple subalgebra of L and S is the radical of L. Lγ then con-
tains a split simple three-dimensional subalgebra which is thus not relatively
complemented.
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We now turn to the characterization of relatively complemented Lie alge-
bras over algebraically closed fields of characteristic zero. We first have the
following

LEMMA 2.1 Let L be a Lie algebra of dimension rc + 1, ^ ; > 1 , over a field
of any characteristic, and let iVbe an abelian ideal of L of dimension n, and
x 6 L, x <r TV. If L is a relatively complemented Lie algebra then ad x \N is a
diagonal transformation.

PROOF : Let f(z) be the minimal polynomial of ad x \ N. Factoring f(z)
into its irreducible factors, we have f(z)=pi(z)eip2(zy2---pk(z)ek, where p{(z)
are monic irreducible polynomials. If at least one of thepι(z), (ί = l, 2, ..., k)
say pj(z), is of degree r > l , we write pj(z) = co + cιz + c2z

2 + -\-cr-ιzr~ι + zr.
Then there exists a basis/i,/ 2, ••-,/« of N such that ad χ\N can be repre-
sented by a matrix in rational canonical form. We thus have a subalgebra A
of Z,, generated by fu / 2, , fr, χ9 where

c/2, *:=/s

C/r, Λ U =C0fl+Cιf2+ •-•+Cr-lfr

We now show that ί̂ is not relatively complemented. For define the follow-
ing subalgebras of A:

Lι={fUf2, •• ,/r_i}

If there exists a subalgebra TV of A such that M\jN=L2 and MίλN=Lu then
iV={/i,/2, •• ,/ r _i, α}, where a = arfr + ar+ix, ar+1φ0. Since TV is a subalge-
bra, there exist Λi? Λ2, •••, ^r_i, A e cZ> such that [/V-i, a~] = ar+1fr = λιfι + λ2f2

+ ... + ̂ r_i/ r_i + Aα. We then have βar = ar+1 and Aαr+i = 0, which imply that
α r + 1r=0. Thus, f(z) = (z — a)kl(z — /3)*2 where α,/?, ••• are the eigenvalues
of ad x I AT. We next show that all A, = l. For suppose some jfc, > l . Then there
exists a basis / i , / 2 , •••,/» of iV such that ad Λ;|AΓ can be represented by a
matrix in Jordan normal form. Thus, there exists a subalgebra B of L with
basis / i , / 2 , / 3 such that [/ l 5/ 2] = 0; Ifuf^fa + afr Zf2, fsj = af2. B is
not relatively complemented, for consider the following subalgebras of B:
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L3={f3}

If there exists a subalgebra TVi of B such that Tk/iWTVi = Z4, MιΓ\Nι = L3, then
Nι = {/3, α}, where a=fι + a2f2. Since TVi is a subalgebra, there exist λ, μ. e Φ
such that [_a, f3j = afι + (1 + aa2)f2 — λa-\- βf3. Thus, we have the the following
system of inconsistent equations:

Hence, all &/ = l, which implies that a d ^ | ^ is a diagonal transformation.
This completes the proof.

THEOREM 2.3 Let L be a solvable Lie algebra. Then L is relatively com-
plemented if and only if L is abelian or almost abelian.

PROOF: If L is abelian or almost abelian, then by Proposition 1.3 L is
relatively complemented.

Conversely, suppose that L is relatively complemented. If L is not abelian,
let TV be its nil radical. TV is then abelian. Now let x e L, x <r iV, and con-
sider ad x IN. Since N is an ideal, {x, N} is a subalgebra satisfying the hypo-
theses of the lemma and thus, if f(z) is the minimal polynomial of ad x \ N

iheτιf(z) = (z — ά)(z — β)' where a, /?, ••• are the distinct eigenvalues of ad
x IN. Let the decomposition of TV into its eigenspaces relative to ad x \ N be
N=Na + Nβ+. .. T h e n t h e r e e x i s t eaeNa, eβeN s u c h t h a t [ > α , xj=aea;

Qê , χ~] = βββ and [_ea^ e/J = 0. Thus, {x, ea, eβ} is a three-dimensional sub-
algebra A of L. If a = 0 and βφO, we then show that A is not relatively
complemented. For consider the following subalgebras of A:

Lι={ea+eβ}

L2 = A

M={ea+eβ, eβ}.

If there exists a subalgebra TV of A such that .M\JN=L2, MΓΛN=LU then
N={ea+eβ,a}9 where a = aιeβ + a2χ + a3ea. Since TV is a subalgebra, there
exist λ,jueΦ such t h a t \^ea

J

Γeβ, cΓ\ = βa2eβ = λ(ea+eβ) +βa> We then have

the following system of equations:

= βa2
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which implies that a2=Ό, and thus, M\jNφL2.
If all the eigenvalues are zero, then the subspace M= {x, N} is an abelian

ideal of Z, contradicting the maximal nilpotency of TV.
We next show that dim (L/N) = l. Let ex e L, a f TV, and assume that

we can find e2 e L, e2 ί {βi, TV}. Now if x e L, x ξ N, then all the matrices
representing ad A; | N can be taken in simultaneous triangular from, by Lie's
Theorem. Thus, if a> β, ••• are weights then a(a)Φ0 if aΦO where a e L,
α ί TV. Now a(a(eι)e2 — α(e2)ei) = 0, and thus a(ei)e2 — a(e2)ei = 0, contradict-
ing the hypothesis that eλ and e2 are linearly independent.

Let e0, ei, ••-, eΛ be a basis of L. We then have Qe,-, eo~] = aie^ ctiΦO, ί^>l
and [e/5 eyH = O, i, 7 > 1 .

We now show that all the α, are equal. Suppose that, say a2 φ 1 and
αi = 1. Consider the three-dimensional Lie algebra {e0, βi, e2} = B. We assert
that B is not relatively complemented. For consider the following subalge-
bras of B:

Lι= {ei + e2}

M={eu e2}.

If there exists a subalgebra TV of B such that M\JN=L2 and MΓ\N—LU then
7V= {ei+e 2 ? α}5 where α = α0e0 + αiei + α2e2. Since TV is a subalgebra, there
exist λ, β 6 Φ such that [βi + e2, α] = α0ei + α0α2e2 = Λ(ei+e2) + /m. We then
have the following system of equations:

Now β = 0 implies that α 2 = l, and αo^O implies that M\jNφL2. Hence, all
<Xi are equal and thus L is almost abelian. This completes the proof of Theo-
rem 2.3.

COROLLARY 2.3 Let L be a Lie algebra over an algebraically closed field.
Then L is relatively complemented if and only if L is abelian or almost
abelian.

We now turn to an investigation of simple Lie algebras over the field of

real numbers.

THEOREM 2.4 If L is a non-compact real simple Lie algebra, then L is not
relatively complemented.
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PROOF: Let L be a non-compact real simple Lie algebra of rank 1. Let
Lc be the complexification of L, and let Λi, h2, •••, hh ea, e_α, e#, e-β, ••• be a
basis of Lc. The compact form Lu of Lc has a basis ίhu ίh2, •••, ίhh (eα + e_α),
i(ea — e-a) a ranging over the positive roots. We now use Cartan's Theorem
([52, p. 227) for obtaining all real forms of a given complex semi-simple Lie
algebra.

Let S be an involutive automorphism of Lu. Then 5 is either an inner
or an outer automorphism. We first consider the case where S is an inner
automorphism of Lu and let L = LiφL_i be the decomposition of L with re-
spect to the eigenvalues ± 1 of S. Then the Cartan subalgebra is contained
in L\. Now if ea-\-e^a and ί(ea — e _α)eL_i, then ίha, ί(ea+ e^a) and — (eα —e_α)
belong to the real form of Lc. Since [ea, e -a2 = h,a,[_ea, ha] = 2ea, Ee_α, ha2
= —2e-a> we have that {ίha, i(eα + e_α), — (eα — e_α)} is a split simple three-
dimensional subalgebra of the real form of Lc, and hence the real form is not
relatively complemented.

We now let S be an outer automorphism of Lu. Only five kinds of real
forms are obtained by outer automorphisms (see Sugiura's paper, [9~2 p. 414).
These are (AnT) (n>2\ (AIT), (Dnlb) ( Λ > 3 ) , (ET) and (ETV).

Now (Anϊ) is the normal real form of An, (H9], p. 397), and (Eϊ) is the
normal real form of E6 ([_9J P 417). Hence, both (AnT) and (ET) are split and
thus not relatively complemented.

Now (A II) is also a real form of An, and from [ΊΓ], p. 398 we see that
04II) is SL(m, Q\ where Q is the field of quaternions, and 2m = n + l. Since
SL(m, (?)D SL(m, R) and SL(m, R) is split, we conclude that (̂ 411) is not rela-
tively complemented.

Next we turn to (Dnϊb) 72, > 3, and again follow Sugiura (Q9] pp. 401-406).
Let 0<^m<Zn, m odd. Then Gm is a real form of (DnIb\ where

A B D )

C ~fA F

*F fD L

A 6 gl(m, R), B, C 6 0(771), L e o(p)

D, F are real mxp matrices

and p-\- 2m = 2n.
We also have that Gγn — is a Cartan decomposition of Gm where

K=

A B D

B -'A -D

-*D *D L

A, B e o(m\ L 6 o(p)

D is a real mxp matrix.
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P=

A B D

-B -A D

*D XΏ 0

A is a real symmetric mxm matrix,

B £ o(m)

D is a real mxp matrix.

We now define the following elements in Gm:

m m

m

m

πι

m

m

0
- 1

0

1 0...

o

0

0

...o

...o

...o
0

- 1

o.

0

1 0...

o

0

...o

...o

...o

0

0

0

1 0 0 0
0 - 1 0 0

0 0

0

0

0

- 1 0 0
0 1 0 0

o o

0

0

0

0

0 1 0 0
1 0 0

o o

0

0

0

0 - 1 0 . 0
- 1 0 O O

0 0

0

0

0

0

P.
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Since {eu e2, e3} is a split three-dimensional simple subalgebra of Gm

we conclude that Gm is not relatively complemented. Thus, (DnIb), n^>3, is
not relatively complemented.

Next, we turn to (EIV). We use the results of Gantmacher, ([5] p. 246),
on the chief outer automorphisms Z of E6. In our notation E6 is Z,c, and
(E IV) is L. Now the roots of L are:

φp-φqy ±(Φp + Φq + φs\ ±^ΦP9 where p, q, 5 = 1, 2, ..., 6 p<q<s.

The vectors ea e Lc corresponding to the roots

6 6

Φp~Φq> Φp + Φq + Φs, —
1 1

are denoted by
/ f

P Q} P 0. $ ? P Q $ ? ^ ? ^*

Let joi be the index which is conjugate to p, i.e., the index which together
with p forms one of the pairs (1, 2), (3, 4), (5, 6).

The chief outer automorphism Z of Lc which gives L acts on ePq as fol-
lows:

juvpq — v̂  -L j ^q-\P\'

We then have:

Zβ4i — ^23 Zh,2z — — hu.

l ί l U o , ZJ\II\\ -γ- ίl23j— —V^14 > "-23/

Now Z induces an outer automorphism Z in X ,̂ and we have

Z{ί(hu H~ ^23)} = — ϊ(Aχ4 + Λ23)

Z{i(e i 4 + e23) — i(e4i + e32)} = i(e4i + β32) — ί(eu +

If Lα = Li0L_i, we have that '̂(̂ 14 + ̂ 23) and i(eu+e23) —i(e4i + e32) 6 L_i,
whereas (e i 4 + e23) + (e4i + e32) 6 Iα. Using Cartan's Theorem, we conclude that
the following elements ei, e2, e3 β L,
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Now {ei, e2, e3} is a split simple three-dimensional subalgebra of L, and,
hence, L is not relatively complemented. This completes the proof of Theo-
rem 2.4.

LEMMA 2.2 The compact classical simple Lie algebras of types A2 and B2

are not relatively complemented.

PROOF: Each of these classical simple Lie algebras contains a four-
dimensional subalgebra L. L then has a basis {e0, ei, e2, e3} such that
L= {eu e2, e3}φ{β0} where [_eu e2~] = e3; [e2, e{\ = ae\\ [e3, e J = /?e2; [ez , eoU = O,
for ί = l, 2, 3, α:^=0 βφO, e 0. The result then follows from Proposition 1.2.

THEOREM 2.5 If Z is a compact real simple Lie algebra of rank > 1 , then
L is not relatively complemented.

PROOF : Lemma 2.2 implies that the compact classical simple Lie algebras
of types An and Bn are not relatively complemented. Now since Λ2CG2 and
G2CF±QEQCEΊCLEg, we conclude that the exceptional compact Lie algebras
are not relatively complemented. Moreover, since A3CDA and B2CC3, the
classical compact Lie algebras of types Cn and Dn are not relatively comple-
mented.

THEOREM 2.6 A Lie algebra L over the field of real numbers is relatively
complemented if and only if L is abelian, almost abelian or compact simple
of rank one.

PROOF: The sufficiency follows from Propositions 1.1 and 1.3.
Now let L be relatively complemented. If L is solvable then L is abelian

or almost abelian. If L is non-solvable, then by Levi's Theorem L = S®LU

where S is the radical of L and Lx is a semisimple subalgebra of L. It then
follows that Liis a compact simple Lie algebra of rank one. Thus, Lx has a
basis ei, e2, e3 such that [>i, e2] = e3; [e2, ef] = eι; [_e3, ei] = e2. We now show
that S=0.

Since 5 is solvable and relatively complemented, it is abelian or almost
abelian. If S is abelian, let x e Lu x <r S. Note that {x, S} is a subalgebra
of L and consider adx | 5 . From Lemma 2.1 it follows that ad^; | 5 is a diago-
nal transformation. For x e Lu x <r 5, define ^(^) = a d ^ | s. Then φ is a re-
presentation of Li, and since L\ is compact all the eigenvalues of φ are pure
imaginary and it then follows that φ = 0, which implies that 5=center of L.

If 5=7^0, let e 4 ^ 0 , e 5, and consider the subalgebra B={eu e2, e3}φ{e4}
of L. By Proposition 1.2, B is not relatively complemented. Hence, S~0.

Now suppose 5 is almost abelian. Let TV be the nil radical of S and con-
sider iVφZi. It then follows that NφLi is a subalgebra of L and N is its
radical. Thus, JV is abelian and we can then apply the preceding proof to
conclude that JV=O, a contradiction. This completes the proof of Theorem 2.6.
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COROLLARY 2.4 Let L be a Lie algebra over an algebraically closed field
or the field of real numbers. L is relatively complemented if and only if L
is upper semi-modular.

PROOF : It is shown in [βΓ\ (Theorem 2.4) that L is upper semi-modular
if and only if L is abelian, almost abelian or special simple (C8], p. 152).
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