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Introduction

If L is a Lie algebra over a field @, we consider the lattice of all sub-
algebras of L. A Lie algebra will be called distributive, modular, upper semi-
modular, lower semi-modular, complemented, or relatively complemented if
its lattice of all subalgebras has the corresponding property. In[87], we investi-
gated distributive, upper semi-modular, lower semi-modular, and modular Lie
algebras. In this paper we continue the investigation of the relation between
the structure of a Lie algebra and the structure of its lattice of all subalge-
bras and we concentrate on relatively complemented Lie algebras. We 1)
characterize relatively complemented Lie algebras over algebraically closed
fields of characteristic zero, 2) characterize relatively complemented Lie al-
gebras over the field of real numbers, 3) study other properties of comple-
mented and relatively complemented Lie algebras.

The Lie algebras considered in this paper will be finite dimensional, and
will, unless otherwise stated, be over a field of characteristic zero.

In this paper, if L is a Lie algebra [ L, L] will be denoted by L', and
[L', L' by L". Also the subalgebra of L generated by e;, ez, ---, e, Will be
denoted by {ey, ez, ---, ex}.

SECTION 1. Preliminaries and Examples

DeriniTion: A Lie algebra L, over a field of any characteristic, is called
distributive, modular, upper semi-modular, lower semi-modular, comple-
mented, or relatively complemented if its lattice of all subalgebras has the
corresponding property.

Derinition: Let L be a Lie algebra over a field of any characteristic. The
Frattini subalgebra F of L is the intersection of all the maximal subalgebras
of L.
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Derinition: Let L be a Lie algebra, over a field of any characteristic,
and M a subset of L. Let {M} denote the subalgebra of L generated by
M. «x €L is called a non-generator of L if whenever L= {x, M} then L={M}.

It is known that if L=~ {0} is a Lie algebra over a field of any character-
istic, then its Frattini subalgebra F is the set of all non-generators of L. Also,
let L be a Lie algebra over a field of any characteristic, M a subset of L, F
the Frattini subalgebra of L. The basis theorem asserts that if {M, F} =L,
then {M}=L. Moreover, if L is a nilpotent Lie algebra over a field of any
characteristic, then its Frattini subalgebra contains L'.

Prorosition 1.1  Let L be a simple three-dimensional Lie algebra. L is
relatively complemented if and only if L is non-split. Moreover, if L is split,
then L is complemented.

Proor: It is known that L is non-split if and only if L has no two-dimen-
sional subalgebra. Thus, if L is non-split it is relatively complemented.

Let L be split. Then there exists a basis e;, e;, e; for L such that
[e1, ez |=e3; [ e, es |=2e1; [ es,e3 ]= —2es.
We now define the following subalgebras of L:

L1={61}
L,=L
M= {61, 63}.

We assert that there exists no subalgebra N of L such that MUN=L, and
MNN=L,, for if such a subalgebra V exists then N = {e,, azes+ases}, a; 0.
Now [ e, azes+ases |=2aze,+azes. Thus, N is a subalgebra if and only if
there exists 4, x € @ such that 2aze, +azes=12e,+ #lazes+ases). Then a,=pas;
2a3=12; pna;=0. Since a,+0, =0, which implies that a,=0, a contradiction.

We now show that if L is split then it is complemented. First, every
two-dimensional subalgebra of L has a complement, and if ¢ <0, ¢ L then there
exists an element x ¢ L such that ¢ and x generate L (see Lemma 1.1 in[87]).
Hence, every one-dimensional subalgebra of L has a complement.

Prorosrrion 1.2 Let L be the four-dimensional Lie algebra over a field
@ with basis €p, €1, €2, €3 defined by [61, 62]:6’3; [62, 63]:a€1; [63, 61]—_—862;
[ei, e0]=0,i=1,2, 8 a=+=0,8~0,e @. L is not relatively complemented.

Proor: If {ei, e, es} is split, then it is not relatively complemented.
Thus, suppose {e,, ez, es} is non-split. We then define the following subalge-
bras of L:

Li={eo+tei}
Lz—_—L

M= {eo, e1}
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We assert that there exists no subalgebra N of L such that M\UN=L, and
MNN=L,. Thus, if such a subalgebra N exists, it must be two or three-
dimensional. Let N={a, c, eo+e;}, where @ and c € L. Let a=aoeo+aie:
+ azes + aszes, and let b =eo+e;. We then have [[a, b, [[a, o], b]]=
— (a3af + a?af?)e,. But this element € MNN. It then follows that
ada+aiaf=0. Now {ey, es, es} is non-split if and only if a8+ aa+a2af=0,
a1, az, az € @, implies that a; =a,=a3;=0. Hence, we conclude that a;=a;=0.
Thus, a=a¢eo+aie,. Since a € MNN, we have ay=a,;. Similarly, c is a scalar
multiple of e;+e;. Hence, MUN=M. This completes the proof.

DerniTion: An (n+1)-dimensional (n>>1) Lie algebra, over a field of any
characteristic is called almost abelian if it has a basis ey, e, -, e, such that
[e,-, eojzei for Z>1, and [ei, ej]:O for i, ]>1

Prorosition 1.3 Let L be an (n+1)-dimensional almost abelian or n-
dimensional (n>1) abelian Lie algebra, over a field of any characteristic.
Then L is relatively complemented.

Proor: In either case every subspace is a subalgebra.

SECTION 2. Relatively Complemented Lie Algebras

Tuaeorem 2.1 If L is a complemented Lie algebra, over a field of any
characteristic, then its Frattini subalgebra F= {0}.

Proor: Let M be the complement of F. Then M\UF=L,and MNF={0}.
By the basis theorem, we have (M)=L. Since M is a subalgebra (M)= M, and
hence F= {0}.

Tuarorem 2.2 If L is a complemented nilpotent Lie algebra, over a field
of any characteristic, then L is abelian.

Proor: If L is nilpotent then its Frattini subalgebra contains L'.

CoroLrLary 2.1 If L is arelatively complemented Lie algebra, over a field
of any characteristic, then its nil radical is abelian.

CoroLrLARY 2.2 If L is a relatively complemented Lie algebra, over a
field of any characteristic, then its Frattini subalgebra is abelian.

Prorosition 2.1 If L is a relatively complemented Lie algebra, over an
algebraically closed field, then L is solvable.

Proor: If L is non-solvable, then by Levi’s Theorem L= S&L,;, where
L, is a semi-simple subalgebra of L and S is the radical of L. L, then con-
tains a split simple three-dimensional subalgebra which is thus not relatively
complemented.
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We now turn to the characterization of relatively complemented Lie alge-
bras over algebraically closed fields of characteristic zero. We first have the
following

Lemma 2.1 Let L be a Lie algebra of dimension n+1, n>1, over a field
of any characteristic, and let NV be an abelian ideal of L of dimension n, and
x €L, x ¢ N. If L is a relatively complemented Lie algebra then ad x|y is a
diagonal transformation.

Proor: Let f(z) be the minimal polynomial of ad x|y. Factoring f(z)
into its irreducible factors, we have f(z)=pi(2)°1ps(2)°:-..ps(2)°*, Where pi(z)
are monic irreducible polynomials. If at least one of the pi(z), =1, 2, ..., k)
say pi(z), is of degree r>1, we write p(z)=co+c1z+c22*+ ... +e,z" M2
Then there exists a basis f1, f2, -, f» of N such that ad x|y can be repre-
sented by a matrix in rational canonical form. We thus have a subalgebra 4
of L, generated by f1, f2, ---, f», %, Where

[fb x:':fz
[fz., x]=f3

[ #1=F,
Lfrx] =cofiterfet-terafs
[fhfi] =0 i’j':l’ 23 sy T

We now show that A4 is not relatively complemented. For define the follow-
ing subalgebras of 4:

Li=A{f1, fo, - froa}
L2=A={f1)f2’ "‘3ff$ x}
M={f, fo - fr}-

If there exists a subalgebra N of 4 such that M\UN=L, and MN\N=L;, then
N={f1, f2 -+ fr-1, a}, Where a=a,f,+a,,1%, a,.170. Since N is a subalge-
bra, there exist i, 45, -, 4,1, £ € @ such that [ f, i, a]=a, 1 f,=Afi+ /s
+...4+2,_1f,-1+ua. We then have ya,=a,., and ya,,;=0, which imply that
a,s1=0. Thus, f(z)=(z—a)1(z—p)*:... where «, §, --- are the eigenvalues
of ad x|y. We next show that all k&;=1. For suppose some %;>1. Then there
exists a basis fi, f2, -, f» of N such that ad x|y can be represented by a
matrix in Jordan normal form. Thus, there exists a subalgebra B of L with
basis fi1, f2, f3 such that [ fi1, f21=0; [ f1, fsl=fetafi; [fo fs]l=afs. B is

not relatively complemented, for consider the following subalgebras of B:
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Laz{fs}
L4=B
M= {12 f3}

If there exists a subalgebra N; of B such that M;\UN,=L,, My \N,= L3, then
Ni={f3, a}, where a=fi+a,f,. Since N, is a subalgebra, there exist 1, x € @
such that [a, f5s]=af1+ (1 +aaz)f:=24a+ 1fs. Thus, we have the the following
system of inconsistent equations:

=«
Xa2=1+a2a
©=0.

Hence, all k;=1, which implies that ad x|y is a diagonal transformation.
This completes the proof.

Tueorem 2.3 Let L be a solvable Lie algebra. Then L is relatively com-
plemented if and only if L is abelian or almost abelian.

Proor: If L is abelian or almost abelian, then by Proposition 1.3 L is
relatively complemented.

Conversely, suppose that L is relatively complemented. If L is not abelian,
let N be its nil radical. N is then abelian. Now let x € L, x ¢ N, and con-
sider ad x| y. Since N is an ideal, {x, N} is a subalgebra satisfying the hypo-
theses of the lemma and thus, if f(z) is the minimal polynomial of adx|xy
then f(z)=(z—a)(z—p).--- where «, B, -.- are the distinct eigenvalues of ad
x|n. Let the decomposition of N into its eigenspaces relative to ad x|y be
N=N,+Ng+.... Then there exist e, € N,, ez € N such that [e,, x |=aeq;
Leg, x |=Pesz and [e,, es ]=0. Thus, {x, e,, eg} is a three-dimensional sub-
algebra 4 of L. If «=0and 35+0, we then show that 4 is not relatively
complemented. For consider the following subalgebras of A4:

L1:{€a+8/3}

Lz’—‘A

M={e,+ep, eg}.
If there exists a subalgebra N of A4 such that M\UN=L,, MN\N=L,, then
N={es+egs, a}, where a=ajes+asx+asze,. Since N is a subalgebra, there

exist 4, £ € @ such that [e,+eg, a]=PFazes=2(e,+epg)+ra. We then have
the following system of equations:

A+ pay = Ba;
,aaz—:O
Z+ﬂa3:O,
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which implies that a.=0, and thus, M\UN=£ L,.

If all the eigenvalues are zero, then the subspace M= {x, N} is an abelian
ideal of L, contradicting the maximal nilpotency of V.

We next show that dim (L/N)=1. Let e;€ L, e; ¢ N, and assume that
we can find ey, € L, es ¢ {e1, N}. Now if x € L, x ¢ N, then all the matrices
representing ad x | y can be taken in simultaneous triangular from, by Lie’s
Theorem. Thus, if «, B, --- are weights then a(a)=0 if a==0 where a € L,
a ¢ N. Now afa(er)e:—alez)e)=0, and thus a(ei)e;—a(ez)e; =0, contradict-
ing the hypothesis that e, and e; are linearly independent.

Let eo, €1, ---, e, be a basis of L. We then have [e;, e |=aie;, a; 0, i >1
and [3,’, ej]——-O, Z, ] >1.

We now show that all the «; are equal. Suppose that, say a,=*1 and
a;=1. Consider the three-dimensional Lie algebra {e, e;, e.} =B. We assert
that B is not relatively complemented. For consider the following subalge-
bras of B:

Li={ei+e2}

Lz’:B

M= {81, 82}.
If there exists a subalgebra N of B such that M\UN=L, and MN\N=L,, then
N={e,+ ez, a}, where a=ajeo+aie1+aze.. Since N is a subalgebra, there

exist A, € @ such that [e,+es, a]=ape,+apazes=2A(e1+e2)+ ua. We then
have the following system of equations:

Hao=0
A+ Hay=ay
l"i‘ Uar = aoa.

Now #=0 implies that a;=1, and a,=0 implies that M\UN==L,. Hence, all
«; are equal and thus L is almost abelian. This completes the proof of Theo-
rem 2.3.

CoroLLARY 2.3 Let L be a Lie algebra over an algebraically closed field.
Then L is relatively complemented if and only if L is abelian or almost
abelian.

We now turn to an investigation of simple Lie algebras over the field of
real numbers.

Turorem 2.4 If L is a non-compact real simple Lie algebra, then L is not
relatively complemented.
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Proor: Let L be a non-compact real simple Lie algebra of rank 1. Let
L€ be the complexification of L, and let Ay, Az, .-, by, €q, €_a, €s, €_p, --- be a
basis of L¢. The compact form L, of L€ has a basis ihy, ihs, ---, ih;, (ea+e_q),
i{es—e_q) a ranging over the positive roots. We now use Cartan’s Theorem
([57, p. 227) for obtaining all real forms of a given complex semi-simple Lie
algebra.

Let S be an involutive automorphism of L,. Then S is either an inner
or an outer automorphism. We first consider the case where S is an inner
automorphism of L, and let L=L,PL_; be the decomposition of L with re-
spect to the eigenvalues +1 of S. Then the Cartan subalgebra is contained
in L. Now if e,+e_, and i(eq—e _o)€L_1, then ih,, i(ea+e_ o) and —(e,—e_q)
belong to the real form of L€. Since [ea, € -o]=ha, [ €a, hal=2€a, [ € o ha]
= —2e_,, we have that {ih,, i(eate_,), —(es—e_o)} is a split simple three-
dimensional subalgebra of the real form of L, and hence the real form is not
relatively complemented.

We now let S be an outer automorphism of L,. Only five kinds of real
forms are obtained by outer automorphisms (see Sugiura’s paper, [ 9] p. 414).
These are (A4,]) (n >2), (A1), (D,16) (n>38), (E]) and (EIV).

Now (A,I) is the normal real form of 4,, (9], p. 397), and (EI) is the
normal real form of E; ([97] p. 417). Hence, both (4,I) and (EI) are split and
thus not relatively complemented.

Now (A4II) is also a real form of 4,, and from [9], p. 398 we see that
(A11) is SL(m, Q), where Q is the field of quaternions, and 2m=n-+1. Since
SL(m, Q) > SL(m, R) and SL(m, R) is split, we conclude that (A1) is not rela-
tively complemented.

Next we turn to (D,Ib) n >3, and again follow Sugiura (9] pp. 401-406).
Let 0<m<Cn, m odd. Then G, is a real form of (D,Id), where

[ A B D \l
Gn.= C "4 F  ; A€ gl(m, R), B, C ¢ o(m), L € o(p)

] ‘Foip g D, F are real m x p matrices [
and p+2m=2n.

We also have that G,=K+ P is a Cartan decomposition of G,, where

4 B D] 1

K= B "4 —D | ; A, Beo(m), L€ o(p)

_ D is areal mx t'.J
\|\ tDtD L, m pmal‘lx
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- A4 B D
; A is a real symmetric m x m matrix,

B € o(m)
. 'D 'D 0] Disareal mxp matrix.

P= —B —4 D

N

We now define the following elements in G,,:

m m p
010...... 0
=10 0 0 0
0. 0
010...... 0
er= | m 0 _}0 """"" 0 0 €K
[\ TR 0
P 0 0 0
m m P
1 00.. .. 0
20 =1 0. 0 0 0
0. oo 0
~10........ 0
er= | m 0 910 ...... 0 0 P
0even 0
P 0 0 0
m m P
010.... 0
10 0 0 0
[ TR 0
0 —10...0
ei= | m 0 -1 00.0 0 cP
[ T 0
P 0 0 0
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Since {ei, es, es} is a split three-dimensional simple subalgebra of G,,
we conclude that G,, is not relatively complemented. Thus, (D,Ib), n >3, is
not relatively complemented.

Next, we turn to (EIV). We use the results of Gantmacher, (5] p. 246),
on the chief outer automorphisms Z of E,. In our notation E; is L€, and
(E1V)is L. Now the roots of L are:

6
¢p_¢q, i(¢p+¢q+¢s): i‘?gﬂp, Where pa ‘], s:]., 27 T 6 p<q<S
The vectors e, € L¢ corresponding to the roots

b= b0y Bo-t but ey —Bot bt 6, S — 300

are denoted by

4 14
€pgs €pgss € pgss €05 € o-

Let p; be the index which is conjugate to p, i.e., the index which together
with p forms one of the pairs (1, 2), (3, 4), (5, 6).
The chief outer automorphism Z of L¢ which gives L acts on e;, as fol-
lows:
Zebq:<_l)kaTleqlf'1'

We then have:

Zeyy=esp Zez=eyy
Zezz=eq Zhyy= —hzs
Zey=ey3 Zhyz= —has.

Thus, Z(h14 + hzs) = (h14 + h23>-
Now Z induces an outer automorphism Z in L,, and we have

Z{i(h1a~+ hos)y = — i(his+ has)
Z{(e1s+ e23)+(eq1+ es2)y =(e1s+ ez3)+ (es1+e32)
Z{i(e1a+ e23)—i(ea1+ es2)y =i(ear+ e32) —i(era+ e23).

If L,=Li@®L_;, we have that i(his+hss) and i(e1s+ ezs)—i(ess+es2) € Ly,
whereas (e;;+ e23)+(es1+e32) € L. Using Cartan’s Theorem, we conclude that
the following elements e, ez, ez € L,

e1=(ew+ ez3)+ (es1+es2)
e2=—(e1s+ e23)+(es1+e32)
es=hys+ has.
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Now {ei, ez, es} is a split simple three-dimensional subalgebra of L, and,
hence, L is not relatively complemented. This completes the proof of Theo-
rem 2.4.

LemMa 2.2 The compact classical simple Lie algebras of types 4, and B,
are not relatively complemented.

Proor: Each of these classical simple Lie algebras contains a four-
dimensional subalgebra L. L then has a basis {e;, e;, e;, e3} such that
L={e, ez, e3} P {eo} Where [ e, es |=e3; [ es, es ]=e1; [ €3 e1 |=0ez; [ e, e0]=0,
for i=1,2,3, =<0 3~0,€¢ @. The result then follows from Proposition 1.2,

Turorem 2.5 If L is a compact real simple Lie algebra of rank >1, then
L is not relatively complemented.

Proor: Lemma 2.2 implies that the compact classical simple Lie algebras
of types 4, and B, are not relatively complemented. Now since 4, G, and
Gy CFyC Es CE; C Eg, we conclude that the exceptional compact Lie algebras
are not relatively complemented. Moreover, since A4;C D, and By Cs, the
classical compact Lie algebras of types C, and D, are not relatively comple-
mented.

TaeoreMm 2.6 A Lie algebra L over the field of real numbers is relatively
complemented if and only if L is abelian, almost abelian or compact simple
of rank one.

Proor: The sufficiency follows from Propositions 1.1 and 1.3.

Now let L be relatively complemented. If L is solvable then L is abelian
or almost abelian. If L is non-solvable, then by Levi’s Theorem L=S®L,,
where S is the radical of L and L, is a semisimple subalgebra of L. It then
follows that L,is a compact simple Lie algebra of rank one. Thus, L; has a
basis e, es, e; such that [ e;, es |=e3; [es, es |=e1; [es, e1 ]=e2. We now show
that S=0.

Since S is solvable and relatively complemented, it is abelian or almost
abelian. If S is abelian, let x € L;, x ¢ S. Note that {x, S} is a subalgebra
of L and consider adx|s. From Lemma 2.1 it follows that ad x| s is a diago-
nal transformation. For x € L,, x ¢ S, define ¢(x)=adx|s. Then ¢ is a re-
presentation of L, and since L; is compact all the eigenvalues of ¢ are pure
imaginary and it then follows that ¢=0, which implies that S=center of L.

If S=~0, let e, =<0, € S, and consider the subalgebra B={e;, e, es} PD{es}
of L. By Proposition 1.2, B is not relatively complemented. Hence, S=0.

Now suppose S is almost abelian. Let IV be the nil radical of S and con-
sider NPL,. It then follows that NPL, is a subalgebra of L and N is its
radical. Thus, N is abelian and we can then apply the preceding proof to
conclude that N=0, a contradiction. This completes the proof of Theorem 2.6.
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CororLLARY 2.4 Let L be a Lie algebra over an algebraically closed field

or the field of real numbers. L is relatively complemented if and only if L
is upper semi-modular.

Proor: It is shown in [ 8] (Theorem 2.4) that L is upper semi-modular

if and only if L is abelian, almost abelian or special simple ([ 87, p. 152).
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