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1. Introduction

In this paper, we are concerned with the direct solution of the systems
of linear algebraic equations arising from the discretization of linear partial
differential equations over a rectangle. Such a system is usually solved by
means of the iterative methods, and the direct methods are rarely used be-
cause of storage capacity [11]V. Among the direct methods, however, there
are known the square root method [117], the hypermatrix method [9, 36 ], the
tensor product method [187], the method of summary representation [327],
the method .of lines [12, 20, 25, 26, 27, 37, 46 ], and so on [ 13, 16, 23, 39, 40, 45 .

Although the results stated in this paper are not all new, they are sum-
marized in a somewhat unified form. The methods can easily be extended to
the problems in higher dimensions and to the domains consisting of rectan-
gles. Several examples to which the direct methods are applicable are pre-
sented.

2. Preliminaries

2.1 Tridiagonal matrices
Let x be a real number and let U,(x) and 7,(x) be the solutions of the
difference equation

2.1 Yra1—XYr+ ¥ro1 =0 (r=0,1, .-)

satisfying the initial conditions y_,=0, yo=1 and y_1=1, y,=x/2 respec-
tively. Then, as is easily checked, we have the following

Lemma 1. U, (x) and V,(x) are expressed as follows:

w, 2cosho=ux« (x=2)
sinhw
U,(x) = ﬂ"s(;T*al)f,A 2c080=x (%] <2)

(-1)7%&”“’, 2cosho = x| (x=—2)

1)  Numbers in square brackets refer to the references listed at the end of this paper.
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cosh(r+ Do, 2coshw = x (x=2)
V,(x)= ( cos(r+1)0, 2cos6 = x (lx]<2)
(=1)*'cosh(r+1)w, 2coshw = | x| (x<-2).
The general solution of the equation (2.1) is given by the formula
(2.2) ¥r = CU,(x)+ CoVr-1(w),
where C; and C, are arbitrary constants.

We introduce the following & % k matrices (k=3):

1 (01 0 1
|1 0 _ 1".’-.O _ | 1 0 -
Ik— . 5 Jk'— vl | Kk— o . ’ Zk"‘ O ’
0"y 0" 0"y 1
01 0
1,0 000 0.0 0-. 0
U= O-. s V= e |, U= 0'0 s Vi=1] “.
: -0 0,
0 0 "~y 1 0719
Let p, ¢, @ and § be the real numbers such that
(2.3) 1+a>0, 1+5>0,
and put

L=Lk;p, q;a B)=J,+pU,+qUi+aV,+8V{

p l+a

, o 1,0
1, o, 1

0 148, ¢

Then we have the following

Lemma 2. Under the condition (2.3), the eigenvalues of L are all real and
distinct and they are the roots of the equation

2.4) F(Q) = U(D)—(p+@QUs-1(D)+(pg—a—B) Ur_2(A)+
+(pB+ qa)Us_s()+afU-4(2) = 0.

Let 2 be an eigenvalue of L and put

(2.5) x; = Upi(D)—pU;(D)—al;-sd)  (j=1,2, .-, k),
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(2‘6) xT :(xla X2y cony xk):
then x is an eigenvector corresponding to A.

Proor. Let L=(l;), then since L is a real tridiagonal matrix and
livt, iliy i:1>0 (i=1, 2, ..., k—1), the eigenvalues of L are all real and distinct
[447].

Let 2 be an eigenvalue of L and x be an eigenvector corresponding to 2.
Then there holds the relation (L—1I)x=0, namely

2.7 (p—=Dx1+A+a)x: =0,
(28) xj_l—/lxj+xj+1=0 (]:2; 3: s k_l),
(2.9) (A+B)x4-1+(g—Dxp = 0.

By (2.2) x; satisfying (2,8) can be written as follows:
(2.10) x; = Cy Uj—l(l)‘*‘ CV;1(2)
and, by (2.7) and (2.9), constants C; and C, must satisfy the equations

(2.11) (p—=Nx1+A+a)x2 = px1+axz—xo

= (p+alU)Ci+(pVe)+aVi()—1)C, =0,
and

(2.12) A+B)wp1+(q—Dxp = Brp 1+ gxr— %411
=(BUs-2AA)+ qUp-1(D)— U D)C1+(BV o—2(D)+ qV-1(2)— Vi(D))C, = 0.

The necessary and sufficient condition for the equations (2.11) and (2.12)
to have a non-trivial solution is that

(218)  (pVot+aVi—1XBUs-24 qUs1— Up)—(pUs+aU) BV -2+ qVi1—V3)
= Up—p(VoUs— UsVi)— qUs_1+pqg(VoUs-1— UpVi-1)— BUs_o—
— a(V Uy~ U V) +pB(VoUp—s— UgVi_2)+ ga(ViUs_1— U V1) +
+aB(ViUp_y— Uy Vi_y) = 0.

Using Lemma 1 and addition theorems for trigonometric and hyperbolic funec-
tions, we can rewrite (2.13) as (2.4).
In the case where p+aU,(2) 0, from (2.11) we have

and, if we put C.=p+aUi(2), then it follows from (2.10) that
x; = U;_1() —P( Vo(DU; (D) —V;- 1(}-)) - a( Vi) U;-1(2)— Un(2) Vi- 1(/{))
= U;1(2) 4 Uj—z(/z) —aU;_s(A).
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In the case where p+aU,(2)=0, from (2.3) it follows that
1—pVo(D)—aVi(2) =1+ U (D)V (D) — V1(2)) = 1 +a>0,
so that C;=0 from (2.11). If we put C,=1+a, then we have
x; = C1U;1() = A+ ) U;-1(2)
= U s —pUj-o) — alo(A).

Thus the vector x given by (2.6) is an eigenvector corresponding to A.

Cororrary 1. Let 2; (j=1, 2, ..., k) be the eigenvalues of L and put

Gk; p, q; a, B) =diag (4, 4z, -, ),
R(k; p, q;5 o, B) = (rij),
D(k; a, p) =diag(1/QA+a)1, 1, ..., 1, 1/1+R)),

where
rij = Cilijs
Fij = Ui A(2)—pUi_s(4) — aU;_3(%)),
' .k.——l
(2.14) c; =1/(Z7%;+7,/A+a)+7%;/A+ /) 2.

i=

Then it 1s valid that
L(k; p, q; &, B) = R(k; p, q; a, B)G(k; p, q;et, B)R(k; p, q; a, B)7,
R(k; p, g5 @, B = R(k; p, q; @, B D(k; a, B).

Proor. Put

F=diag(1/N1+a, 1,1, ..., 1, LN1+B).

Since FLF-'=S is a real symmetric matrix, there exists an orthogonal
matrix T such that S=7GT-'. If we put

?; :(Flj’ ija Tty 7kj>)

then c7; (c5£0) is an eigenvector of L corresponding to.4;. Let R be the
matrix

R = (c1F1, caFay -y CiFa),
then it follows that
LF'T=F'TG, LR = RG.

Hence we can choose ¢; (j=1, 2, ..., k) so that FR=1T7. Evidently such a ¢;
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is given by (2.14). Then it follows that
R'=T'F=T7F=R'F'F=RTF*=R7D.
From this corollary we directly obtain the following

CoroLrarY 2. Suppose that the matrix al,—L(k; p, q; «, B) 18 mon-
singular. Then

(alu—Lk; p, g5 @, B) !
= R(k; p, q;5 @, BNad;—G(k; p, ¢; @, B)) 'R(k; p, q; @, B)".
Differentiating the formula (2.4) and using the relation (2.1), we have
Cororrary 3. The functions F,(2), Fi(2) and F,(2) satisfy the following
recurrence formulas:

F(2) = AF, 1(2)— F,_x(4),

Fy(2)=2F, ()= F, ,(D)+F, (4 (r=3,4, -, k),

FY2) = 2F] (D)= F;_y()+2F;_,(2),

where
Fi() =Q1—aB)A—(p+q+pB+q),
Fx(2) = 2 —(p+@i+pg—a—B—aB—1,
FiA)=1—-ap, FyA)=21—(p+q),
Fl)=0, Fi)=2.
Now put

Li(k)=L(k;0,0;0,0), Lyk)=1L(k;1,1;0,0), Lsk)=L(k;1,0;0,0),
Lik)=L(k; 0,051, 1), Ls(k)=L(k;0,0;1,0), Le(k)= Li(k)+ Z,,
Gl(k) = diag(2cos@i1, 20080,'2, sy ZCOSO,'),),

where
7T (j—Dr @j—Dr
o=y o=t 0=
0. =~ br , _@j—Dn _2j—Dm
VT ok=1 YT 2k > YTk

Further put
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Ri(k) = (sini6y;), Ru(k) = (sin'% 1>az,)

Ry(k) = (sin(k+1—1i)s;), Ru(k)=/(cos(i—1)0s;),
Ry(k) = (cos(i—1)0s;), Re(k)=(rij),
where
ra=1/N2, ry=cos(i—1)6s; (@RZ;j<I1-1),
ru=0c0o8(i—1)0s, ri;=-sin(i—1)0; (I+1Z5k),
1 (k: odd)
1="[k/2], 5={ _
1/NV2  (k: even).
Then we have the following
Tueorem 1. There holds the relation
L(k)= R{(k)G{(k)Rk)* (=12, ...,86),

and Ri(k)™! are represented as follows:

R = 2R, R = 2 RGBT, Ro() = g b,

Ry(k)™

= o ROTDy R = LR Dy, Rk = TR,

where
D, =diag(1/2,1, ...,1,1/2), D,=diag(1/2,1, ..., 1).

Proor. The results for i=1,2, ..., 5 follow directly from Corollary 1.
The result for ;=6 is obtained from the fact that L¢(k) is a circulant matrix
(197

Now put

Li(k; p, )= L(k; p, ¢;0,0), Lg(k; p, )= L(k; p, q; 1, 1),

and let us define G(k; p, q), Rik; p, q) (i=1, 8), Gk; p) and Ri(k; p) (=9, 10)
likewise.

By Corollary 2 we can obtain the matrix (af,— L)' in terms of the eigen-
values and eigenvectors of L. Without knowledge of eigenvalues, however,
we can also write it explicitly by the following

Lemma 8. Under the condition (2.8), suppose that the matrix al, —
L(k; p, q; a, B) is mon-singular. Then it is valid that
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(al,—L(k; p, q;5 @, B)) '=(riy),
where
rin =AY Up-i—qUp_i-1—BUs_i-2),
B AN Uio1—pUis—aU;3)(Up-j—qUp-jo1—BUp-j-2)  (j=1),
e { AN Up-i—qUp-ior—BUp—i-2)(U;-1—pUi_p— aUj_s) (<),
C=j=sk-1)
rie =AY U;.1—pUis—aU;_3),
A=Fya), U=Ufa) (j=-2,-1,0,..).
Proor. We consider the system of equations
(2.15) (@li—L(k; p, ¢; @ B)x =,
where

xTz(xls X2y vy xk)) fT”_‘(flng, “‘3fk)'
From the first £—1 equations of (2.15) we obtain inductively

-1
(2.16) «x,= ——'gz Uisisifi— Uio f1/ A+ @)+ 2:(Uioy— pUs 2 —aU;_5)/(1+ ).
(l=1, 2) ) k)

Substituting the expressions for x,_; and x, into the last equation of (2.15),
we have

@.17) Ax1/<1+a>=fk+f§:: (Usoi—qUss1— BUsi_)f i+

+(Up-1—qUp—2—BU-3)f1/ 1+ ).
Multiplying (2.16) by A and substituting (2.17) into it, we have

(2.18) Ax;= ((UI—I_PUI—Z_aUl—S)(Uk—l‘—qu—-Z"BUk—S)'—AUI—Z)fI/(l+a)+

-1
+ .gz((Uk—i_qu—i~1"BUk—i—2)(Ul—l_PUI—Z_aUl—3)"’AUl—~1~i)fi+

E-1
+ ;I(Uk~i_'qu—i—l—BUk—i—Z)(Ul—l'-PUI—2"aUl—3)fi+

F(Ur-1—pUp-2—aUs_3)f s

Using Lemma 1 and addition theorems for trigonometric and hyperbolic func-
tions, we can rewrite (2.18) as follows:
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k-1
Ax; = Ui-1—pU_s—alU,_3)(fr+ .§I(Uk—i"'qu~1~i'—BUk—2—i)fi)+

-1
+(Uk—l_qu—1—l_BUk—Z—I)(.gz(Ui—l —pUi_z—aU;_3)fi+ f1).

This completes the proof of the lemma.

Lemuma 4. Let W be a kx k non-singular matriz and let p and q be con-
stants. Suppose that (W —pU,—qU{) is non-singular. Then it is valid that

(W—pU,—qU) ' =W"+ W-zZwt,
where

( pPA "X —qwie), 0, -, 0, pgA~'wyy

0 0
Z= . .
0 0

PgA W, 0, -, 0, gA7'Q—pw1)
W= (wy), A=1—pwi)1—que)—pquwiws.
Proor. Consider the system of equations |
(W—pU,—qU{)x=f.

Then we have

(2.19) Ax=(L=pW ' Uy—qW ' UDx=W"'f=g,
where
1—Pw11, 0 — qWip { &1 3
— pway, . g2
A= . . M , 8= :
. 0 1, —qWr-1k
{ —pPpWr —qwkk L &k

From the equations
(1 —pwi)x1—quiexr = g1,
—pwinx1+ (1 —que)xe = g,
we have
21 =AY —quip) g1+ A 'qwi gs,
220 qurr) g1 quirg
Xp = A_lpwk1g1+A_l(1 —pu)u)gk,

and substituting these into the remaining equations of (2.19), we obtain
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%= gr+pwnxi+ quirgr
= g+ (pwnA~'(1—qui) + quiA~ pwi) g1+
+(pwnA~lquwis+ quiA A —pwi))gr  (1=2,38, ..., k—1).

Further (2.20) can be rewritten as follows:
x1 = g1+ pA (wi(1—qwes)+ quiswin) g1+ A quir g1,
xr= g+ pA w1 g1+ gA  (wee(1 — pwir) + pwyswi) g

Hence it follows that 4" '=1,+ W~1Z. Thus the lemma has been proved.
Let A4 be an m x m matrix and B be an n x n matrix. Then we define an

mn X mn matrix AQB by
A®B = (a,'jB).

For simplicity, in the sequel, the matrices A4,, 4,(k) and 4,(k; p, q) are
written as 4, 4; and A;(p, q) respectively when k=n and they are written as
Ay, A; and A{p, q) respectively when k=m. Further we put

(2.21) S=1,QR;, P=RI.

The following lemma is an extension of Lemma 4 and it can be proved
analogously.

Lemma 5. Let Wbe an mn x mn matrix and let p and q be constants. Sup-
pose that the matric W—(pU,+qU;)RI is non-singular. Then it is valid that

(W—(pU,+qUpQD) ' =W '+ W'ZW,

where
i/ PAI 19 03 Tty Oa PQ(I_P 1:’711)_1 WlmA;l\
0 0
Z= : : ’
0 0

PEI—q W) Wi AT, 0, -5 0, gAY
Wit=wy) G, =12, ..., m),

A= (I——p Wu)_Pq(I—q Wom) ™ Wi,

Ap=T—=qWum)—pg(I—pW11)"* Wim,

and W;’s are n X n matrices.
Let p, ¢, a, 8, v and 0 be real numbers and put
Mk; p, g5 @, B5 7, 0) = 7(K,+pU,+aV,)+10UKI +qU{ +B8V])
={1p, 10°+70X )
7 0, yo? 0

O 7 0, .7’62
7+70°8, 70%q |
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where it is assumed that
(2.22) 70, 0>0, 01
Then, as is easily seen, we have the following
LemMA 6. Let E, be the matrix defined by
E,=diag(, 9, 6% ..., 0%°%).
Then, under the condition (2.22), it is valid that
M(k; p, g5 @, B 1, 0) = Ey'y0L(k; pd~?, q0; ad =%, BO%)E,.

This lemma reduces the problem of finding Jordan’s canonical form of M
to that of finding the canonical form of L(k; pd~', q0; ad~?, 50%). As special
cases of L, we consider two cases where p=¢=1, a=§=0 and p=¢=0, a=
f=1. Put

Lll(k; 6) = L(k; 6—1, 6; 0: 0), le(k; 6) = L(k; 0’ O; 6_2) 62)>

Guk; 0)= diag<2cos—”-, ey 2(:os(k7cl)n, 6+6“>

Guulk; )= diag(2cos ", -, 2cos("k—_21)”, 0+07%, —@+0),

Ru(k; 0) = (rij), Rualk; 0)=(sij),
where

TR (5 sin T _ qin G / 2_ JEN\ F
rij x/2/k<6s1n - sin > <1+6 20 cos k) A<i<k-1),

rie="(1—0%)/(1—02%)0¢ "%,

Sij = (3 Sinki]%1 —6'1Sin(ik_fij7z)/<<k;1 — sin® %)(5,_5—1)2_*_

. jn. 1/2
+(6+6‘1)281n2m> A<j<k-2),

si-1 = V(L —04)/(2(02—82)) o' 1,
sie = V(A —09)/(2(82—52#))(—0)i L.

Then by Corollary 1 we have the following
Turorem 2. Under the condition (2.22), it is valid that
Lik; 0) = Ry(k; 0)Gi(k; OR(k; ) (j=11,12),
Ru(k; 0)7' = Ru(k; 0)7, Ris(k; 0)™" = Ruz(k; 0)" Dy,
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where
Dy = diag(6%/(1+06%), 1, ..., 1, 1/ +6?).
We consider further the matrices
Lis(k; p, q; 0)= L(k; po~*, q0; 0, 0),
Lu(k; p, g; 0) = L(k; pd~", ¢0; 072, 8%),

and define G;(k; p, q; 0) and Ri(k; p, q; 0) (=13, 14) likewise.
Since

aly—M(k; p, q; @, B; 0) = Ey 10((r0)'alpy— L(k; pd~7, q0'; ad %, BO%)Es,

we can obtain (al,—M)™* by Lemma 3.

2.2 Quidiagonal matrices

Let A be the matrix defined by

(2.23) A=al-2b]+(J?—21I),
where
-1, 0, 1
0, 0, 0, 1
1, 0, . 0
JE—2I= L .
w1
0 ~.0, 0
1,0, —1

Then we have
A= R, (a—2—-b)I+(bI—J)*)R7",

Thus the matrices of the form (2.23) can be diagonalized easily.
Let S,(2) and T,(4) be the solutions of the difference equation

(2~24) yk+2“2ayk+1+ dyk—2ayk_1+ yk-2=0 (k=0, 1, 2, )
satisfying the initial conditions

y—1:y0:09 y1=1: }’2:0;
and
_’)/—1:}’0:)/1:0, yz:]-

respectively, where

d=a*+2-—12 (a>0).
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Put
Ri() = T{D)S;-1(A)— T;-((D)SLA).
Then, as is easily checked, we have the following
Lemma 7. R{(j=0,1, 2, ...) are the solutions of the difference equation
(2.25) Rj.3—dR; 2+ (4a*—1)R;,,—(8a®*—2d)R;+(4a*—1)R; —dR; 2+ R; 3=0
satisfying the initial condition
R ,=1, R,=Ry=R,=0, R;=1, R;=d.
Moreover it is valid that
Ri(2) = T2 — T; (D) T; 1 (2.
Solving the characteristic equation of (2.25), we have the following

Lemma 8. Ri(2) can be expressed as follows:
In the case where 2>(a+2)* or 1<(a—2)%,

R{}) =

2
2D T a0 U0

(—2)(;—‘([] i(s)— Uj_o(s)),

where

= 5 (@14 V@ = =27 —161), 5= (a*—2—V(a®—4— 27— 161).
In the case where (a—2)*<i<(a+2)%
R = ;@20 )1+ Uy o) U+ UA) Uy o)),
where

r=a+vi, s=a—+V2i.

In the case where A= (a+2)* or A= (a—2),
2 AU+ UL G#2)
(r—2)? i1 r—gl it ’

R(H)= 1
]\ Téjz(jz_l) : (r=2),

where

r=(a*—2)/2.
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Solving the characteristic equation of (2.24) and using the initial condi-
tions, we have the following

Lemma 9. S,(2) and Tw(A) can be expressed explicitly as follows:
In the case where >0,

S48 = 5 (0Ts+(1)— Uy +(0)+ Us 0= Us (o))

Ti@) = 5 (U-1(0)— Us-1(10),
where
c———\/z, p=at+c, g=a—c.

In the case where 2<0,

S = L (Ve Us0) = Vs () Usr(0) +
+ Ups() U —5(0)— Uk—3(:a)Uk—1(p)))

Ti(D) = - (U )UK~ U Ui o),
where

4= 2080 = %((a+2)2—l—\/(a—2)2j/1),

o =2cosho = ((a+2?—2+(a—2P—2),

¢ = cosh?c — cos?6.

In the case where A=0,

SiD = 4L (@ 2R Vs s+ =D Tp A~ @+ 203 (),

Tk<l) e 1 P (k + 1)Uk_2(a)'— U};((l))

4—
Put
Ma; p, ) = (@*+2)I—2a]+(J*—2D)+(p+ DU+ (¢+ DU’

={a*+24+p, —2a, 1
—2a, a®*+2, —2a, 1 0
1, —2a, *+2, —2a, 1

1, —24, a®+2, —2¢ 1
0 1, —2, a*+2, —2a
1, —2a, a*+2+g¢g
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Then there holds the following

Lemma 10. The eigenvalues of N(a; p, q) are all real and they are the
solutions of the equation

(2.26) H(2) = Ryo(D)+(p+ QRy1()+pgRu(2) = 0.

Let 2 be an eigenvalue of N(a; p, q) and x; (i=1, 2, ..., n) be the solution of
the difference equation

2.27 Xrpo—2a%x, 1+dx,—2a%, 1+%,_2=0 (r=12,..)
satisfying the initial condition
£ 1=pTra(d), %=0, x1=T,.2), x2=—Sn()+pTd)
and put
2T = (%1, %3, -, Xn).
Then x is an eigenvector corresponding to A.

Proor. Since Ma; p, q) is a real symmetric matrix, its eigenvalues are
all real. The equation Ma; p, ¢)x—Ax=0 can be written as follows:

(d+p)x1—2ax:+ 23 =0,
—2ax,+dx;—2ax3+x4=0,
(2.28) xig—2ax; 1+ dx;—20x; 1+ 2x;,2=0 (i=38,4, ..., n—2),

X 3—2a%, 2+ dx,_1—2ax,=0,

Zn-2—2a%,-1+(d+q)x, =0,
where d=a?42—21. Then we have inductively
(2.29) x; = (S{A)=p T;-1(A)x1+ Ti(A)xz (=L2,..)

and the last two equations of the system (2.28) become as follows:

(2.30) ZXn-3—20%p_2F A2y 1—2a%, = —%,,1 =0,

(2.31) Xn-2—20%,_1+(d+ @)%, = qxp+2a%,,1— %42 = 0.
Subtracting (2.830) from (2.31) and substituting (2.29) into them, we have
(2.32) (851D —p T 1+ Ty s(D2 =0,

(Sn+2(l) —pP Tpn(D)— Q(Sn('l) 4 Tn—l(l)))xl + ( Tyio(B)— q Tn(]‘))xZ =0.

For these equations to have a non-trivial solution it is necessary and sufficient
that



Direct Solution of Partial Difference Equations for a Rectangle 31

H(l) = Tn+2(l)sn+1(l)'— Tﬂ+1(l)sn+2(l) +P( Tn+1(z)2"" Tn(l) Tn+2(l))+
+¢( T 1) Su(D)— Tu(D)S01(D)+ pg(Tw(2)* — Ty 1(2) Ty1(2)) = 0.

Using Lemma 7, we can rewrite this equation in the form (2.26).
Evidently x; (=1, 2, ..., n) defined by (2.29) satisfy the equation (2.27).
By (2.32) we set

21= Tpa(d),  x2= —Sp1(D)+pTu(A).
Then we have from (2.29)
50 = (So(A)=p T-1() Tn1(D)+ ToA)(p Tu(D)— Spr() = 0,
%1 = (S =pT-2D) Trir()+ T (p Tu(D)— Sp11(D) = p T 11(2).

This completes the proof of the lemma.
Now we consider the equation

(2.33) (Na; p, 9)—)x =f,

where 2 is a real number that is not an eigenvalue of N(a;p, g). Then we
have the following

Lemma 11.  The solution of the equation (2.33) is given by the formula

(2.34) oy = Zf T, SO+ (S, )= p Ty ()21 + T, (W),
(T:‘l, 2> ] n)

(2.35) 1= HO™ S X freros

(2.36) wp= H(/l)‘lg1 Y, fusiis

where X; and Y; are the solutions of the equation (2.24) satisfying the initial
conditions

X 1=qTh1(A), Xo=0, Xi="T,.22), Xo=(d+q)T,(D)—2aT,_1()+ Tr_2(2)
and
Y= —gSu@+pgTuD), Yo=0, ¥i=—S,.(D+pT:d),
Yy = S50 =208, 11(N) — ¢S = p(T121(D) — 2a T,(D)— g Tp-1(2))
respectively.

Proor. Form the system (2.33) we have inductively the formula (2.34),
and from the last two equations of the system (2.83) it follows that
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(e =p TuD)r+ Tos@ro = = 5 Tor D),
(S 20— gSuA)—p T r(D)+ pg Tur(R)1+ (T o) — g To()) 2=
= = 5(Tosr D= T Q)
Solving these equations, we have

Q)31 = Tya®) 5Tz D= Ty D)5~
- ( Tn+2(l) —-q Tn('{)) él Tn+1 ~j(x)fja
HQ)x = (Sues(D)= 4850 =p T+ pg ToaD) £ Tor- Df =

=811 =P TD) L (Tar2A D= Tu-AD)f

From these (2.35) and (2.36) are obtained.

8. Second order elliptic equations

8.1 Methods for the solution

The problem of solving approximately the second order elliptic equations
is often reduced to that of solving the difference equations of the following
form:

( Al, —Cl, V[ % ) ’f1
— By, Az, —Cz, x2 fz
Bl) Mx= : =|: =5
— By, Ap_1, —Cny Xm-1 fm—l
\ _Brm Am \ Xm / fm

Where 4;, B; and C; are nxn matrices. For convenience we consider that
Bl'—:Cm:.O' .

Methods for solving the equation (38.1) are considered in the following
three cases:

1°. Case where M is similar to a block-diagonal matrix. When M is
expressed as

(8.2 M= Ediag(D,, Ds, .., D,)E},
since

M~1 = Edlag(D;1> Dgla Tty -Dr;l)E—l,
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the problem is reduced to that of finding the matrices D;! (i=1, 2, ..., m).
2°. Case where M is decomposed as M= W+ N and W~! is easily obtained.
The equation (3.1) can be rewritten as follows:

(3.3) (I+ W 'N)x = W-Yf.

This decomposition is effective when the problem of solving (3.3) is reduced to
that of solving the equations of the lower order.
3°. Case where all the block principal minor matrices

Al’ —‘Cb 3
M,' = —Bz, Az, —Cz (l:1, 2, [ERDY m)
\ —B, 4

of M are non-singular. M can be decomposed into the form LU, where

b g, 1 0 P{’Pz,ﬁ “ ¢, 0 ]
L= . , U= R ,
0 Zppi. "] | 0 “p e l
P, = A,
(3.4) P,= A,—B,P;},C,_, (k=2,38, ..., m).
Then since
Ux=L"'f=g, x=Ug,

x; (=1, 2, ..., m) can be obtained through the recurrence formulas

81 :fb 8 :fk+BkP;~11gk~—1 (k:2> 3> Tty m):
Xy = P;ngma Xp = Pl;_l(gk—i_ckxlﬂ—l) (k:m_l) m—2, Tty 1)

In the case where 4,, B,, and C, can be diagonalized by the same simi-
larity transformation, namely where there exists a matrix F such that

Ay=FAF', B,=FB,F', C=FC,F*' (k=1,2,...,m)

with diagonal matrices A4 b B, and C,, this method is easily applied. Since

Als _(111, N 0
—BZ’ AZ) _CZ
(85)  M=(I,QF) e TP,
- Bm~l, Am-l, N —Cm—l
L O —Brm m /

if we put ;= F!x; and ﬁzF‘lﬁ, then the system (3.1) can be rewritten as
follows:
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( A
Al) _éla 21 ) f,.l
. =By, e %2 fz “
Mz = S : = | =f.
o e =G Zm-1 ;
\ Bma Am Bm ) f;m—l
In

P, and P;! are easily obtained because 4,, B, and C, are diagonal matrices.
In the particular case where

A;= A= diag(as, az, -, a,)  (@;>0;i=1,2, ..., m),
B;= B=diag(by, by, ..., b,)  (5;>0;i=2,3, ..., m),
C; = C=diag(cy, ¢z -y ) (¢;>0;i=1,2, ..., m—1),
we investigate the stability of this numerical process.
TueoreMm 3. Suppose that
(8.6) a;=max(2Vb;c;, 2b,~é;~, 2b;, 2¢i, bi+ciy 1+ bicy) (i=1,2, ..., n).
Then both the forward process
3.7) g =fitBPilge, (k=28 ..,m)
and the backward process
(3.8) z,= P;'Cz,.,+ P, g, (k=m,m—1, ..., 1)
are numerically stable.

Proor. The vectors g, and z, are written explicitly in terms of f} and g;
as follows:

A k=1 k-1 ~
8 =fk+j§1(§jBP?1)P{1fj k=1,2, ..., m),

m j-1
n=Plgt 3 (LPIOPg; (k=m m—1,..,1).
Hence in order that the round-off errors incurred in the course of numerical
computation may not grow, it is sufficient that the eigenvalues of P;!, BP;!
and P;'C (I=1, 2, ..., m) are all less than one in modulus.
Put P;=Q;%,0; (j=1,2, ...), where Q; are diagonal matrices. Then, in
view of (8.5), we have

Qf:AQf—l_BCQj—Z (]:2, 3, Tty m)
Q=1 Q=4
Since by (3.6) a;=2d; = 2Vb;c;, Q; can be written as follows:
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disinh(j+1o; )
sinhw, * 7/

Q;= diag<~--,
where
—0; — __1_ g2 — 442
e = 2di(al Va?—4d?).
Hence we have

Py =diag( ., SR )

" d;sinh(j+1Do,;” /S

On the other hand, since cosh(j+1)w/sinh(j+1)w>1(w>0), it follows
that

sinh jo

—e cosh(j+Do
sinh(j+1)

0sho = SR (74 Do

sinhw

<coshw — sinhw =e™°.
Hence we have only to show that
ei/d; <1, be“/d;<1, ce“/d;<1.
Since b; < a;—c;, it follows that
462 <4a;b;—4d?, (a;—2b,)*<a?—4d?,
and so
a;,—Va?—4d2<2b,.
Similarly we obtain the result
a;—Va?—4d?<2c,.
From these follows that
bei/d; <1, ce“/d;<1.
Since b;c;—a; < —1, it follows that
thici—dab,c, < —4d3, (a,— 24} Zaf—4d,
so that
a;i—Vai—4d? <2d2

This means that e ®:/d;<<1. Thus the theorem has been proved.

8.2 Examples

In the following examples, we are concerned with partial differential



36 Hisayoshi SHINTANI

equations over a rectangle R with sides parallel to the x- and y-axes.
denote by UH and LH the upper and lower horizontal sides of R respectively
and by RV and LV the right and left vertical sides respectively. Let A and

h, be the mesh-sizes in the x- and y-directions respectively, and put

3.9 0= h/h,

Values of the unknown function u;;=u(x;, y;) are arranged in the following

manner:

x%'r:(un, U2iy ---y uni)

2
b=g?

a=2(140).

(1:13 23 Tt m)'

Laplace’s operator A is approximated by the following two formulas:

(I) Five point formula
—(Au),-j = h‘ZHu,-j-f-O(hz)
e
=L 1wt o
— __h—z_ a ! — u;; ).
b |
|
(II) Hermitian difference formula
1] 10 | 1
— 2(Au); = -1_12 10 1100 | 10 | (Aw)y,
110 | 1
—A+8 | —06-2) | —@+p)
|
=_’}7 —(10—26) | 10a | —(10—2b) | uy+O(hY).
—(1+b) | —(106—2) | —(1+b)
8.2.1 Example 1
We consider the equation
—Au+2u = f(x, y) 2=0).

(I) Case where five point formula is used.

The matrix M takes the form

M=1,A4— BRI, A= (a+ih")I—-bC,

We
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where B is an m x m matrix, 4 and C are n x n matrices and, according to the
boundary conditions imposed on LH and UH, C becomes as follows:
(a) when u is given on LH and UH, C=L,.
(b) when u is periodic in the y-direction, C= L.
(¢) when u is given on UH and u, is given on LH,
(i) in the case where u,(x, y) is approximated by the forward differ-
ence (u(w, y+h)— u(x, y)/hy or by the backward difference (u(x, y)—
u(x, y—hl))/hl, C=L3
(i) in the case where u,(x, y) is approximated by the central
difference (u(x, y+hi)—u(x, y—h))/(2hy), C=Ls.
(d) when u, is given on LH and UH, C=L, in the case (i) and C=L, in
the case (ii).
(e) when u,+0,u is given on LH and u,+0.u is given on UH,
C=L(p, q), p=1+mho, g=1+ho, in the case (i);

C= Lg(p, q), pP= 2h1(f1, q= 2h162, in the case (ii),

where ¢, and ¢, are constants.
(f) when u is given on UH and u,+0u is given on LH,

C=Lyp), p=1+mo, in the case (i);
C=Li(p), p=2h0, in the case (ii).

If UH, LH, u,, L;, C, p, q, ¥, 01, and 0, are replaced with RV, LV, u,, L,
B, r, s, x, 03 and 04 respectively, then B is determined similarly.
Thus we have the matrices

(3.10) M;; = m®((a + AR — bL;) — TJ,-(X)I (i, j=1,2, ..., 10).
Since
(3.11) M;; = (I,QR)(I,Q((a+ AR —bG;)— L,QIN)(I,QR,),

matrices M;; are of the form (3.5) except for the case j=6.
On the other hand, since

(3.12) Mi; = (R,QD)(I,R((a+ R —bG)—G;QI) (R,Q1),
matrices M;; are of the form (8.2). Moreover, it follows that
(3.13) Mi; = (L,QR)(R,QD A R,QT) (I,QR) ™,

Ay = L R((a+ ) —bG)— G,
= diag (45, A7, ., A7),
Al = diag (K8, X5, -, A8,

l(ile})l — (a+lh2)'— bi, 1 Ljps
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where
Gi = diag(ln, lz’Z) Tty lin)a
Cj = diag (1, Mz, -5 Him)-

In particular, we have

@14 M =wm+absine B asint P G j=1,2, ., 6),

When M;; are non-singular, evidently their inverse matrices are given
by the formula

M;} = (I, QR)(R;,QDA; N R;,Q1)(R,QI) .
Since
M;,= Mil_(rUm+SUn]z)®Ia M= Mi4_(TUm+3U7{;)®I>
Mw = Mil—TUm®I, M0 = Mis—‘TUm®L

matrices M;}, M7}, M;} and M;}, can also be obtained by Lemma 5. In ad-
dition, since

(3.15) Mi;= L, R((a+ 20— bLp, )~ LI
=RRD2R,QD)  (=1,8,9;j=1,4,5),
i = L,R((a+ ) I—bL{p, ¢))— G,
= diag (27, 2%, -, &),

QP = (a+2h*—p;)I—bL(p, 9),

Q-1 are obtained by Lemma 3. Hence M;{, M;} and M;! can be obtained
without knowledge of the eigenvalues of Li(p, ¢).
(II) Case where Hermitian difference formula is used. Put

25 5

a; = 10a+ §~lh2, a;=106—2— —6~/Ih2,
bi=10—2b— 2 Mh%, by=1+b— L 2
6\ 14

A= all—agf, B= 1)1[+ bz]

Then we have the formula

—bz —day —bz

"—bl ai —bl Uij = hzgfu-f-O(hs)

"“bz — Qa3 —bz
|
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The partial derivatives u, and u, are to be approximated by the central
difference. Then we have the following results:
1°. when u is given on the whole boundary,

M, =I,4—L,QB.
2°.  when u is periodic in both directions,
M; = I,Q(a, I —a;Le)— LeQ(b1 I+ b,J).
3°. when u is given on LH and UH and u is periodic in the x-direction,
M;=I1,RA4—L:QB.
4°. when u is given on LH and UH and u, is given on LV and RV,
My=I,0A4A—L,QB.
5°. when u, is given on LH and UH and u, is given on RV and LV,
M;s = I, (a1 I — asLg)— LiQ(by I+ b,Ly).

6°. when u is given on LH and UH, u.+0su is given on LV and u,+0.u
is given on LV,

Ms=I1,0A4—Ly(p, )RDB, p=2ho;3, q=2ho,.
7°. when u is given on LH, UH and RV and u,-+0,u is given on LV,
M;=I,A4—Li(p)RDB, p=2h0s.
Since

I, A4—LQB = (I, QR)(I1,Q(a1I — a:6)— LiQ(b, I+ b:61)) (I, QR,) Y,
(i=1,8,4,6,7)

M, = (I, QR X1, (a1 I — a:Ge)— Le@ (b1 1+ b:G6)) (I, QRs) Y,
M; = (I, QRy)(1nQ(ar I —a:Gy)— Lo I+ b:G)) (IR,

each block of M; can be diagonalized.

8.22 Example 2
We consider the equation
—Au+du.+euy,+ gu = f(x, y).

(I) Case where five point formula is used.
We assume first that

d=d(x), e=const, g=g(x),
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The mesh-size 4 is to be chosen small so that
_(1_Hh 2 _ h
r=(1-%e¢)>0, 10 =(1+5e)>0  @>0.
Then A4,, B; and C, become as follows:
A . .
— 2 n _ . .
Al——<a+h &1 T<1+ 2 d1>>I M(P) q; &, Ba 7s 6)7
Ai = (a+hzg1)-[’-M(P7 9, «, B; 7> 6) (122’ ‘35 Tty m—1)>

A, = <a+h2gm—s<1- —g d,,,))[——M(p, q; @, B;7,0),

Ci= (1— _]21 d1+w<1+ % d1>>I’
;= (1-12251,.)1, B,-=(1+ %d,)[ (i=2,3, .., m—1),

By = <1+ 121 dpt z(l - % d,,,))l.

The values of p, g, « and 8 are determined according to the boundary condi-
tions as follows:

in the case (a), p=q=a=p=0;

in the case (¢) i), p=1, g=a=p=0;

in the case (c) (ii), p=0, ¢=0, a=1, F=0;

in the case (d) (i), p=g=1, a=p=0;

in the case (d) (ii), p=¢=0, a=p=1;

in the case (e) (1), p=1+hoi, ¢=1+ho, a=8=0;

in the case (e) (ii), p=2m0;, ¢=2m0; a=8=1;
in the case (f) (i), p=1+ho, ¢=0, a=p=0;
in the case (f) (ii), p=2m0o;, ¢=0, a=1, p=0.

If LH, UH, uy, p, q, @, B, 01, 02 and h; are replaced with LV, RV, u,, r, s, w,
z, 03, 04 and h respectively, then the values of r, s, w, and z are determined
similarly.

In each case it is readily seen by Lemma 6 that 4; (i=1, 2, ..., m) can be
diagonalized by the same similarity transformation.

By interchanging the roles of x and y, the case where

d=const., e=-e(y), g=g(y)

can be treated analogously.
Next we are concerned with the case where d, ¢ and g are constants.
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We choose & small so that

#=<1+_%d>>0, ,a02=<1-~g—d>>0 (0>0),

and put
F=diag(l, o, 0% .-, 0" ")
Then it is valid that
M= 1,((a+reI—Mp, q; a, B; 1, 0)— M(r, s; w, z; #, ORI
Since
M= (I,QE) (FRI) ' AFRQI)(I,QF),
2=I,a+hrgI—10L(pd~", q0; ad=?, pO%))—
—noL(ro™, so; wo™?, 209R1,

M can be reduced to the form (3.5).
(II) Case where Hermitian difference formula is used.
We assume that

d=d(x), e=0, g=g(x),

and put
a; = 10a—2h0,d; +8h? g, + h*0% g, + 2h2di— %hsd,@,,g,-,
(= B—b)@+hd)—hd,d; + 02, +h(di — g)+
B? B? 5
+ éaxgz—zdzaxdz *Z*dtgu
¢, =(B—b)2—hd;,)—hd,d,— %6§d,»+h2(d%— g)—
h2 hz hS
- 76xgi+ A diddi+ o digi,
—10b—Rl e B — hoaN = _ha
a;=10b—hig;, B,-(1+b)<1+ 5 d,), ri=1+8)(1-5 d,),
where

6xfij =fi+1j—ff~1j, 6azrfi.i :fi+1j“2fij+fi—1j>
6yfij:fij+1'—fi1'~1’ 6§fz‘f:fif+1—2fij+fﬁ-1-
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Then we have the formula

—fi il B Uij = h2<8fii+fi/+1 +fij—1+<1-|- % di>fi—1j+
—bi | | —c
e e e (RO PR

and the following results are obtained:
1°. when u is given on the whole bounary,
| Adi=al—a;J] (G=1,2,...,m),
B;=0b;I+p:J] (i=2,3, ..., m),
Ci=ciI+71J] (=1,2,...,m—1).
2°. when u is given on LH and UH and u, is given on LV and RV,
di=al—a;] (=12, .., m),
Ci= (b1t e)I+(Bi+11)d,
Ci=cd+7J, Bi=bI+pJ (i=2,8,...,m—1),
By = (bn+tcm)I+Buntrm.
3°. when u, is given on LH and UH and u, is given on LV and RV,
di=al—a;Ly (=12, ..., m),
C, =1+ c)I+(Br+711)Ls,
Ci=cil+71:Ls, Bi=0b;I+piLs (i=2,3, ..., m—1),
By = (bn+tcm)+Bn+7m)Ls

In each case M can be reduced to the form (3.5).

8.2.3 Example 8

We consider the axially symmetric problem
1 0u , 0%z , 0%u
T o top Sne) (0<r<l 0<E<),

where u(r, 0) is given and u is regular at r=0. Let A=1/n be the mesh-size
in the r-direction and A;=4/c be the mesh-size in the z-direction. 'If we use
five point formula, then M becomes as follows:

Mz’j = m®Ai—' B,®b[,



Direct Solution of Partial Difference Equations for a Rectangle 43

where 4; and B; are determined according to the boundary conditions in the
following manner:
(i)  when u(1, z) is given,

1 7
4, = c+( 1+ 5 _D)V
(i) when u,(1, 2) is given,
Az = C—ZV].

(iii) when u,(1, z)+0,u(d, z) is given,

4y = C—2V/+ 2014 g 1)U

1°.  when u(r,(m+1)h,) is given,
Bi= Ja.
2°.  when u,(r, mh,) is given,
B,=J,+V}.
3°.  when u.(r, mh))+0.u(r, mhy) is given,

B;=J,+V;—2ho,U},

where
2(2+ b)a —49
_1 30
o 214D, >
C= KR . .
14 LA, —1- L
0 2(n—2)’ ’ 2(n—2)
0, 2(1+b)
Let
Bj = SjAjSJTl, Aj = diag(ljl, ljZa Ty ljm)'
Then since

M;; = (S;Q1)2:/(S;,Q1)7,
i = 1A — 4,Qb1
= dlag (‘Q(;lf>7 52(121)7 ‘Q(M)),

53(/3')= Ai“b/zjkL

matrices M;; are of the form (3.2).
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8.2.4 Example 4

We consider Poisson’s equation in polar coordinates

2
0%u | 1 0u lzﬁli fr, 0 (0<r<1).

In the case where u(1, 6) is given, we have

By, <1+%>
A
(1‘2(m1—1)>1 Bos, <1 2Tml——1)>I
(g o

where

1
= —2(1+ ( 60)2>I+ oy

In the case where u,(1, 0) is given, we have

By, <1+—§~)1
o <1—%>1,. B, .<1+71—>I.
(1—&%_1»1, B .(1+2(m—1_ﬁ>1
o1, B, )

Since

B, = Ry(—2(1+ (P;0)2>I+ (P;0)201>R1‘1,

each block of M can be diagonalized.

4. Fourth order elliptic equations

The problem of solving approximately the fourth order elliptié equations
is often reduced to that of solving the system of equations of the following
form:
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A, —Cy, E 1 x \1 f1
_B2> AZ) —C29 E, O X2 fz
D3, — B, As, —Cs, E; X3 f3
(4.1) Nx= : =|: =f.
Dm-z, '_-Bm~2> Am-z, _Cm—z, Em—z Xm-2 fm—Z
O Dm—l) _Bm—l: Am~1a —Chpy Xm-1 m—1
my — Dmy Am RN 773 / fm

In the case where all the block principal minor matrices of N are non-
singular, N can be decomposed into the form LU, where

1 ) ‘P, —U, E
—Lz, 1 0 KR KR KR O
L = M3, '—L3, I 5 U: Em-z 5

.Pm»la '~ Um»l
0 P |

0 "My, Lo 1 :
M, =D,P;1,

L;=(B;—M;U,;_,)P;1,,

U =C—LE._, (=12 ., m.
P,=A,—L,U;, ,— M,E,_,

This method is easily applied when 4;, B;, C;, D; and E; can be diagonalized
by the same similarity transformation.

Example We consider the equation
AAu+2aAu+PBu = f(x, y),
where « and [ are constants and » is given on the entire boundary. Put
A = (a®+2b*+ 2+ 2ah*a+ FA) T — 2(a+ ah®)b ]+ b*(J*—21),
B=(at+ah®)I—b].

We consider the following three cases:
(i) when u,, is given on LV and RV and u,, is given on LH and UH,

N, =1,84-2],QB+(J2—21,)R1.
Since
Ny = S(Ly 2+ (B—aPh)+((a+ah? ) — bG, ) ) +
+ 1,R2((a+ah®)I—bG,)+ (]2 —21,)R1)S,
each block of N,can be diagonalized. In this case, moreover, it is valid that

N, = SPAP-'SY,
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A= L,&B—a)H* I+ (1,Q((a+ah) —bG)— G QT )
= diag(Al, A2, Tty Am),

A, = 24 2 Er 2\
r=B—a*h +<(a+ah )I—bGl—2cos;n—_-ﬁI>

= diag<lk1, Arz,y - 'lkn)a

o (B— ™+ (ah+ 4bsin®—IT 4 4gin? FT Y
i =(B—a’)h +<ach +4bsin 2(n_l_1)~|—4sm 2(m+1)> .

(ii) when u,, is given on LH and UH and u, is given on LV and RV,
N, = N,+2(U,+ UDSL.
In this case each block of N, can be diagonalized and since
N, = S(PAP~*+2(U,,+ UDRI)S,

N;! can also be obtained by Lemma 5.
(iii) when u, is given on LH and UH and u, is given on LV and RV,

N, = N,+2(U,+ UDRI,
where
N, = I,Q(A4+2b2(U+ U"))—2],QB+(J2—21,)QI.
In this case it is valid that
N, = PQP,
2= 1,(4—-2I+2b% U+ U")—26,QB+G:R1I
=diag (2, 22, ---, 2n),

kr

— 2 3~2
2, = <<2b—l—ah +4sin %m+1)

)I— bJ>2+ (B—a®)h* T+ 26X U+ UY).

2, can be obtained either by Lemma 4 or by LU-decomposition, so that N;!?
can be obtained easily and then N;! can be computed by Lemma 5. Lemma
10 and Lemma 11 can also be applied.

5. Parabolic equations

5.1 One-dimensional second order parabolic equation
Let us consider the equation

ou

02
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where u(x, 0) is given. Let » be the mesh-size in the x-direction and h; be
the mesh-size in the ¢-direction and put r=h,/h%

In the case where u(0, t)=u(l, t)=0 (:>0), using Crank-Nicolson’s
formula, we have [41]

Blul+1 = (41— Bl)ul (ZZO, 1: );
where
B]_ = 2]“7’].

In the case where the boundary conditions are given by
L@ =k(u—v), DL, D= —ku—v) (>0,
x 0x

with constants %, ks, v; and v;, we have

Bau; .y = (41— Bow,+fi (=0,1, ...),
where

By = 201+ ) —rL(— 2hk:,— 2hks; 1, 1).

Both cases can be treated easily.

5.2 Two-dimensional second order parabolic equation

We consider the equation
0<zx, y<1,0<t<T)

with the initial conditions
u(w, y, 0)=f(x, ),
and boundary conditions
w0, y,t)=ul, v, ¢6)=0 0y<1,0:<T)

u(x,0,)=u(x,1,t)=0 0<x<1,0e ST
Put
Uij k= u(ih, jhl, kl), a):hz/l, T:w+a+8, 0§a,,@§1

Using the formula [ 38]
1
Uij kel = *27(afui+l,j,k+1+C¥ui*1,]’,k+1+Bui,j+1,k+1+

FBUi 1,1+ C— Uiy i+ (2 — B jr1,e+
+Q2—)ui1 ;v +C—PRuij1— 2<4—T)ui,j,k)>
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we have
Aui,+1=Bup (ona 1) )5

where

A= 1®D—J®—‘2’11, B=A+IRT+IRI,

D=7I-%] T=—4I+].

A~'B is easily obtained.

5.8 Fourth order parabolic equation
Let us consider the equation

0%u |, 0%u
u b < 0
0t2+6 =0 0<x<1,:>0),

with the initial conditions
u(z, 0)= go(x), 24 (x 0= g(x)  (O=x=<D,

and boundary conditions

w0, = ful®), u(l, )= fi(®
Pu© 0=p®, TEA0=p@)

Put

o=gi. v=Th a=(3) o=t )

Then the given equation can be rewritten as follows [107]:
08 _ .08
Bt = Conr

Let & be the mesh-size in the x-direction and 4, be the mesh-size in the ¢-direc-
tion and put r=h,/h%
When Crank-Nicolson method is used, we have

Agl;+1 = ng+fp (P—:O) 1, ),
where

A:Im®A1+Jm®A2, B=Im®Bl+.]m®B27
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Al I2+7'C Az— - C B1 Iz—‘rC Bz Az.

In this case it is valid that
A4=(RL)DRRIL), B=(RQQLF(R,QL)™,
D=1,04,+6,Q4,=diag(D,, Dy, ..., D),
F=T1,QB1+6,QB, = diag(Fy, Fy, -, Fy),

- —jil_
D]—-A1+ 2cos 1 Iz+2TSln 2( 1)
. == ___];, _ — 1 z._]—_
F] B+ 2cos le—Iz 2rsin 2( 1>C

When Douglas’ high order correct method [ 8] is used, we have
A1:1012+127‘C, Az:Iz—GTC,
B1=1012—12rC, B2=12+6rC.

In this case it is valid that

jm
<8+4cos %m 1)>Iz+24TSln 2(m+1)6,
N
<8—|—4c0s %m +1>>IZ 24rsin mc'
Since
(L4+6C)y ' =L (I,—5C)
1407 ’
A~'B can be obtained easily.
5.4 Periodic parabolic problem
We consider the equation
Ou _ 0*u
o Toxe O<E<D

with the boundary condition [427]
u(0, )= f@), u@,t)=g), ulx, 0)=ulx, T),

where

f+T)=f0), g+ T)=gt) (=0
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Put
l=T/m, h=1/(n+1), c=1/h

and let Q,, be an m x m matrix defined by

0 1

1, 0

1, 0
Qm: ,.'. ..-
... 0
0 1, 0

Then, according as explicit formula or implicit formula is used, the problem
is reduced to the solution of the following systems of equations:

(5.1) (InQRQI—Qu@M)x = f
or

(5.2) (InQN—QuR1)x = g,
where

M=(1-20I+c] (0=<1/2), N=@1+20)I—0].
Since
M= R,DR7', N=R,E'Ri},

where

D=(1—20)I+6G,, E'=(1+20)I—0G,,
we can write (5.1) and (5.2) as follows:
(5.3) SUInRI—Q0n®@D)S 'z =,
(5.4) SR QnQEYI[,QE)S x = g.
Then, for (5.3), it is valid that

(I&RI+Q,RD+ - +Qn QD" 1)S™f =

=(,QI-QrQD™)S tx = I,&Q(I—D™)S ',
because Q7=1,, and it follows that

x = S(I,Q(I~ D) )I,RQ1+Q,&D+ - +Qp ' QD" 1)S7'f.
Similarly for (5.4) we have
x = S(I,QE)(I,QI—E") ") I,R1+Q,QE+ -+ Q' QE")S'g.



Direct Solution of Partial Difference Equations for a Rectangle 51

5.5 Three level difference scheme

Let us consider the equation

ou

2
Wz%; 0<x<1),

where boundary values are given. If Mitchell-Pearce nine point formula [24]
is used, we have

Auk+1=Buk+Cuk_1+fk+1 (k:l, 2, ),
where

A=al+b], B=clI+d], C=el+f]

—Aftar_ L 2 23 313
@ =4p 5" 15P" ~ 842~ 12600°

c= —16p4+p2—6§?}(%,
=8 P a0
e= —4p'+5p°+ %pz_ §~§’;p+ 13%;’0’

_oa, 1 3 1 , 11 13 E
S=2 4 5P o0 " g4oP " 2p200 (P =V5/10)

Matrices 4, B, and C can easily be diagonalized.
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