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1. Introduction

In this paper, we are concerned with the direct solution of the systems

of linear algebraic equations arising from the discretization of linear partial

differential equations over a rectangle. Such a system is usually solved by

means of the iterative methods, and the direct methods are rarely used be-

cause of storage capacity [11]1 }. Among the direct methods, however, there

are known the square root method [11H, the hypermatrix method [9, 36], the

tensor product method [[1311, the method of summary representation £32],

the method,of lines [12, 20, 25, 26, 27, 37, 46], and so on [13,16, 23, 39, 40, 45].

Although the results stated in this paper are not all new, they are sum-

marized in a somewhat unified form. The methods can easily be extended to

the problems in higher dimensions and to the domains consisting of rectan-

gles. Several examples to which the direct methods are applicable are pre-

sented.

2. Preliminaries

2.1 Tridiagonal matrices

Let x be a real number and let Ur(x) and Vr(x) be the solutions of the

difference equation

(2.1) yr+ι-χyr + yr-ι = 0 ( r = 0, 1, •••)

satisfying the initial conditions γ-i = 0, 70 = 1 and j_ i = l, yo = χ/2 respec-

tively. Then, as is easily checked, we have the following

LEMMA 1. Ur(x) and Vr(x) are expressed as follows:

gίnhCr+Dα) 200811*) = * (x>2)
sinhco

Ur(x) = ( W < 2 )

( _ 1 ) r s i n h ( r
sinhα)

1) Numbers in square brackets refer to the references listed at the end of this paper.
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cosh (r + l)ω, 2 cosh ω — x {x

cos(r+l)0, 2cos0 = # ( |J

general solution of the equation (2.1) is #ivew 6̂ / the formula

(2.2) y r = ^Ur^

where CΊ and C2 are arbitrary constants.

We introduce the following kxk matrices

ΓxO
ON,

•*•
Λ . M
υ 1 0 ,

. X . - ί . °
,°'' i o

1

0
α

f l o θ
0 1

0 f 0 . O

υ o.

Let JO, 9, a and /? be the real numbers such that

(2.3) l + α > 0 , l + /3>0,

and put

0 0
o . υ

U 1 0

, l+«
1, 0, 1, U

0
1, 0, 1

Then we have the following

LEMMA 2. Under the condition (2.3), έfce eigenvalues of L are all real and
distinct and they are the roots of the equation

(2.4) Fk(λ) =

-A{λ) = 0.

Lei Λ δe αw eigenvalue of L and put

(2.5) xj = Uj-M ; = 1, 2, ..., A),
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(2.6) XT = O i , Λ?2, ••-, Xk\

then x is an eigenvector corresponding to λ.

PROOF. Let £=(/#), then since I is a real tridiagonal matrix and
li+u dh * +i>0 (ί = l, 2, ..., k — 1), the eigenvalues of L are all real and distinct
[44].

Let λ be an eigenvalue of L and x be an eigenvector corresponding to λ.
Then there holds the relation (L—λl)x=θ, namely

(2.7) Q>

(2.8) *y_.1--J*y+*y+i = O (/ = 2, 3, ..., fc~l),

(2.9) (l + /9>,_! + ( ? - ^ , = 0.

By (2.2) %j satisfying (2,8) can be written as follows:

(2.10) xj = CιUJ-l(λ)+C2VJ-1(λ)

and, by (2.7) and (2.9), constants CΊ and C2 must satisfy the equations

(2.11) (p — λ)xι-\-(lΛ-a)x2=pxι + ax2 — x0

and

(2.12)

ύλ)- Vk(λ))C2 = 0.

The necessary and sufficient condition for the equations (2.11) and (2.12)
to have a non-trivial solution is that

(2.13)

= Uk-p(VQUk- Uo

Using Lemma 1 and addition theorems for trigonometric and hyperbolic func-
tions, we can rewrite (2.13) as (2.4).

In the case wherep + aUι(λ)φQ, from (2.11) we have

and, if we put C2—p + aUι{λ\ then it follows from (2.10) that
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In the case where p + aUi(λ)=Ό> from (2.3) it follows that

1 -p Vott)~a V1(λ) = 1 + a{Ux{λ) V0(λ)- V1(λ)) - 1 + a> 0,

so that C2 = 0 from (2.11). If we put Cι = l + a, then we have

Thus the vector x given by (2.6) is an eigenvector corresponding to λ.

COROLLARY 1. Let λj (j = 1, 2, . . . , k) be the eigenvalues of L and put

G(k;p, q; α, β) = dizg(λu λ2, ••-, λk\

D(k; a, /9) = diag(l/(l + α),l, 1, •••, 1,

(2.14)

iί is i αiΐcί

L(A; p, q; a, β) = R(k;p, q; α, β)G(k;p, q a, β)R(k;p, q; a, β)~\

R(k;p, q; a, βyι = R(k;P, q; a, β)τD(k; a, β).

PROOF. Put

Since FLF~1 = S is a jeal symmetric matrix, there exists an orthogonal
matrix T such that 5 - TG T\ If we put

then cfj(cφϋ) is an eigenvector of L corresponding to.λ,-. Let R be the
matrix

i , c 2 r 2 , •••, ckrk)<>

then it follows tha,t

LF-χT=F-ιTG, LR = RG.

Hence we can choose cj (y = l, 2, ..., A) so that FR= T. Evidently such a cy
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is given by (2.14). Then it follows that

R-i= χ-ιF= TTF=RTFTF=RTF2 = RTD.

From this corollary we directly obtain the following

COROLLARY 2. Suppose that the matrix aIk — L(k; p, q; a, β) is non-
singular. Then

= R(k;p, q; a, β)(aIj-G(k;p, q; a, 0))-\R(*;p, q; a, β)'1.

Differentiating the formula (2.4) and using the relation (2.1), we have

COROLLARY 3. The functions Fk(λ), F'k(λ) and Fk(λ) satisfy the following
recurrence formulas:

(λ) (r = 3, 4, ..., k),

F%λ) = λF^1(λ)-F^2(λ) + 2F'r^(λ),

where

Fι(λ) = (1 - aβ)λ -(p + q+pβ + qa),

F2(λ) = F-(p + q)i+pq-a-β-aβ-l,

Fί(λ) = 1 - aβ, F'2(λ) = 2λ-(p + q\

Fl(λ) = 0, F'2(λ) = 2.

Now put

Uk) = L(k 0, 0 0, 0), L2(k) = L(k;l,l;0, 0), L3(k) = L{k 1, 0 Q, 0),

Uk) = L(k 0, 0 1, 1), U{k) = L(k 0, 0; 1, 0), L6(k) = Uk)+Z>,

Gi(k) = d i a g ( 2 c o s 0 , i, 2 c o s β ί 2 , •••, 2cos(9, ji !),

w h e r e

θ _ J'π

 θ -(J-Vπ θ _(2/-l>r

0' 1 Λ-rr / O 7 "1 ^77" ty( 7* 1 \ητ

Further put
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Λi(A) = (sin iθυ\ R2(k) = ( s i n ^

R3(k) = (si

Λ5(*) = (cos(i-1)05/),

where

r/i = l/V2, r,y = cos (£-1)06/

rl7 = ί cos (ί-1)06/, rίy = sin (i-1)06/

f 1 (A: odd)

U/V2 (A: even).

Then we have the following

THEOREM 1. There holds the relation

Li(k) = Ri(k)Gi(k)Ri(k)-1 (i = l, 2, ..., 6),

and RiQc)'1 are represented as follows:

where

Dλ - diag(l/2, l, ..., l, 1/2), Da = diag(l/2, 1, . ., 1).

PROOF. The results for £ = 1, 2, , 5 follow directly from Corollary 1.
The result for i = 6 is obtained from the fact that L6(k) is a circulant matrix
[19].

Now put

L7(k;p, q) = L(k;p, q; 0, 0), Ls(k;p, q) = L(k;p, q\ 1, 1),

p) = L(k;p,0; 0, 0), Lιo(k p) = L(k ;p9θ;l9 0),

and let us define Gt{k\p, q\ Rt{k;p, q) (*' = 7, 8), G/A; p) and Rj(k;p) (; = 9, 10)
likewise.

By Corollary 2 we can obtain the matrix (aIk — Lyι in terms of the eigen-
values and eigenvectors of L. Without knowledge of eigenvalues, however,
we can also write it explicitly by the following

LEMMA 3. Under the condition (2.3), suppose that the matrix alk —
L(k p, q a, β) is non-singular. Then it is valid that
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(aIk-L(k;P, q; a, β))'1^^),

where

m = ΔrKUt-i-qUt-i-i-βUt-i-i),

r A-1(U,.1-pU{.2-aUi.sXUi.J-qUt.j.1-βUi.j.2) (j^i),

A = Fk(a), Uj= Uj(a) (/= - 2 , - 1 , 0, •)•

PROOF. We consider the system of equations

(2.15) (ah - L(k p, q; a, β))x =f,

where

xτ = (xu X2, •••, Xk), fT::=(fuf2, •••,/*).

From the first k — 1 equations of (2.15) we obtain inductively

Σ(2.16) x l 2 f φ p

{1 = 1,2, -- k)

Substituting the expressions for xk-ι and xk into the last equation of (2.15),
we have

(2.17) / )f k

i — 2

Multiplying (2.16) by Δ and substituting (2.17) into it, we have

(2.18) Ax,

i = I

Using Lemma 1 and addition theorems for trigonometric and hyperbolic func-
tions, we can rewrite (2.18) as follows:
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Ax, = (Ul-i-pUl-S-aUl-3)(f»+kΣ(Uk-i-qUt-1-i-βUll-2-i)fi)+
i l

This completes the proof of the lemma.

LEMMA 4. Let Wbe a kxk non-singular matrix and let p and q be con-
stants. Suppose that ( W - p Uk — q U{) is non-singular. Then it is valid that

where

pA~ι(l — qWkk\ 0, • •-, 0, pqA~ιWιk

0 0

••
0 0

pqA~ιwuu 0, , 0, qA~ι(\ —

_ , Δ = ( l -

PROOF. Consider the system of equations

(W-pUk-qU{)x=f.

Then we have

(2.19) Ax = (Ik

where

~ι =

A =

From the equations

Vlk

qwkk ,

ιqwιkgk,

we have

(2.20)

and substituting these into the remaining equations of (2.19), we obtain
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χι = gι
= gι qwkk

Δ-\l— pwxι))gk (1 = 2, 3, ..., k — 1).

Further (2.20) can be rewritten as follows:

X\ =

Xk = gk +pA~1Wkigι + qA~ι(wkkQ —pwn) +pwikWki)gk-

Hence it follows that A~1 = Ik+Wr~ιZ. Thus the lemma has been proved.
Let A be an m x m matrix and B be an n x n matrix. Then we define an

mn x mn matrix A®B by

For simplicity, in the sequel, the matrices Ah Aj(k) and Aj(k;p, q) are
written as A, Aj and Aj(p, q) respectively when k = n and they are written as
Am, Aj and Aj(p, q) respectively when k = m. Further we put

(2 21) S—I 6ζ)i? P=ίli(>όl

The following lemma is an extension of Lemma 4 and it can be proved
analogously.

LEMMA 5. Let Wbean mnxmn matrix and let p and q be constants. Sup-
pose that the matrix W—(pUm + qU£)(g)I is non-singular. Then it is valid that

where

V,o, ..., o,

0

0

0

0

lAϊ\ 0, .-., 0,

Δx - (I-p Wn)-pq(I- q Wmm)~ι WmU

Am = (I- q Wmm)-pq(I-p Wn)'1 Wlm

and Wi/s are nxn matrices.
Let p, q, α, β, γ and δ be real numbers and put

M(k;p, q; a, β; r, S) =

γp, γt
γ, 0, γd

, 0

0 r, o, γδ2
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where it is assumed that

(2.22) γφO, ί>0, dφl.

Then, as is easily seen, we have the following

LEMMA 6. Let Ek be the matrix defined by

Then, under the condition (2.22), it is valid that

M(k;p, q;a,β; γ, δ) = Ek-
ιγδL(k;pδ'\ qδ; aδ~\ βδ2)Ek.

This lemma reduces the problem of finding Jordan's canonical form of M
to that of finding the canonical form of L(k;pδ~ι, qδ; aδ~2, βδ2). As special
cases of L, we consider two cases where p=q = l, a=β=0 and p=q=0, a—
β=l. Put

LnQc δ) = L(k δ~\ δ 0, 0), Ll2(k δ) = L(k 0, 0 δ'\ δ2),

G12(k; ί ) = diaβr(2coSj^ I , •••, 2 c o s ^ ^ , d+d~\

(A;ί) = (ry), R12(k S) - 0,7),

where

rik = V d -

1 / 2

Sih - <l(χ-

Then by Corollary 1 we have the following

THEOREM 2. Under the condition (2.22), ΐί is valid that

Lj(k d) = Rίk ίχ?/A d)Rj(k ί ) " 1 (/=11, 12),

Ru(k; dy1 = R11(k; δ)τ, R12(k; δ)'1 = R12(k; δ)τD3,
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where

D 3 = diag(5 2 /(l + £2), 1, •••, 1, 1/(1 + <Ϊ2)).

We consider further the matrices

Lu(k;p, q; δ) = L(k;pd'x, qδ; 0, 0),

27

and define Gj(k;p, q; δ) and Rj(k;p, q; δ) (/ = 13, 14) likewise.
Since

aIk-M(k;p, q; a, β; δ) = E^rφtr^h-Hk;pd~\ qδ; aδ'\ βδ2))Eh,

we can obtain {ah — M)~ι by Lemma 3.

2.2 Quidiagonal matrices

Let A be the matrix defined by

(2.23) A = aI-2bJ+ (J2 - 2/),

where

ί - 1 , 0, 1
0, 0, 0, 1 0

v . . ••. •-.

0
\ \ .
* . .o, o

1,0, - 1 j

Then we have

A = i? 1 ((α-2-

Thus the matrices of the form (2.23) can be diagonalized easily.
Let Sk(λ) and Tk(λ) be the solutions of the difference equation

(2.24) γk+2-2ayk+ί+dyk-2ayk-1+yk-2 = Q (k = 0, 1,2, ...)

satisfying the initial conditions

y-\ = jo = 0, j i = 1, j 2 = 0,

and

respectively, where

_i = yo = yι = 0, 7 2 = 1



28 Hisayoshi SHINTANI

Put

Rj(λ)= TMSj-M-Tj

Then, as is easily checked, we have the following

LEMMA 7. i?//=0, 1, 2, ) are the solutions of the difference equation

(2.25) Rj+3-dRj+2 + (Aa2-l)Rj+1-(8a2-2d)R

satisfying the initial condition

R-2 = lj R-i = = Ro = ^ i = = 0, i?2 == 15 R3 = d.

Moreover it is valid that

Rj(λ)= Tj(λ)2- Tj^(λ)Tj+ιa).

Solving the characteristic equation of (2.25), we have the following

LEMMA 8. Rj(λ) can be expressed as follows:
In the case where λ>(a + 2)2 or λ<(a—Z)2,

where

(a2λ + <J(a24λγ16λ) s = ~

In the case where {a — 2)
2
<Λ<(α + 2)

2
,

Rj(λ) = -i

where

In the case where λ = (a + 2)
2
 or λ = (a — 2)

2
,

Rj(λ) =

~j\f-l) (r = 2),

where

r = (a
2
-λ)/2.
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Solving the characteristic equation of (2.24) and using the initial condi-
tions, we have the following

LEMMA 9. Sk(λ) and Tk(λ) can be expressed explicitly as follows:
In the case where λ>0,

Sk(X) = ^

where

c = \lλ , p =

In the case where λ < 0,

Sk(λ) = ±-

Tk(λ) = ±-c ) - UkQι)Uk-2(ρ)),

where

p = 2coshσ = -ί((o

c = cosh2 σ—cos2 θ.

In the case where λ=0,

Tk(λ) =
r CL

_ 2 ( O ) _ Uk{aj).

Put

p, -2a, 1
- 2 α , α2 + 2, - 2 α , 1 Q
1, - 2 α , α2 + 2, - 2 a ? 1

"l, - 2 α , α2 + 2, - 2 α , Ί
0 1, - 2 α , α2 + 2, - 2 α

1, - 2 α , α2
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Then there holds the following

LEMMA 10. The eigenvalues of N(a;p, q) are all real and they are the
solutions of the equation

(2.26) H(λ) = Rn+2(λ)+(p + q)Rn+ι(λ)+pqRn(λ) = 0.

Let λ be an eigenvalue of N(a;p, q) and x{ (ί = l, 2, ..., n) be the solution of
the difference equation

(2.27) xr+2-2axr+1 + dxr-2axr-1 + Xr-2 = 0 (r = l, 2, •••)

satisfying the initial condition

and put

XT =

Then x is an eigenvector corresponding to λ.

PROOF. Since N(a;p, q) is a real symmetric matrix, its eigenvalues are
all real. The equation N(a;p, q)x—λx=O can be written as follows:

(2.28)

(d+p)xχ — 2ax2-\- X3 = 0,

- 0 ,

i + */+2 = 0 (ί = 3,4, -.., Λ - 2 ) ,

#w_3 — 2axn-2+ dxn-\ — 2axn = 0,

s Λ;«_2 — 2a#w_i + (rf+y)*,, = 0,

where d=a2+2—λ. Then we have inductively

(2.29) Xj = {Sj(λ)—pTj-ι(λ))xι + Tj(λ)x2 (7 = 1? 2, ..)

and the last two equations of the system (2.28) become as follows:

(2.30) xn-3 - 2axn-2 + dxn-χ - 2axn = - xn+1 = 0,

(2.31) Xn-2 — 2axn-ι~h(d + q)xn = qxn + 2axn+ι — xn+2 = 0.

Subtracting (2.30) from (2.31) and substituting (2.29) into them, we have

(2.32) (Sn+1a)-pTn(λ))xί+ TnM)x2 = 0,

)-q(Sn(λ)-pTn-1(λ)))x1 + (Tn+2(λ)-~qTn(λ))x2 = 0.

For these equations to have a non-trivial solution it is necessary and sufficient
that
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q(Tn+1(λ)Sn(λ)- Tn(λ)Sn

Using Lemma 7, we can rewrite this equation in the form (2.26).
Evidently *, ( i = l , 2, •••, n) defined by (2.29) satisfy the equation (2.27).

By (2.32) we set

xι = Γ.+ 1U), xz=- Sn+1(X)+p Tκ(λ).

Then we have from (2.29)

*o = (S0(λ)-pTM))Tn+I(λ)+ T0(λ)(pTn(λ)- Sn+1(X)) = 0,

n(λ)- Sn+1(Xj) = pTn+1(X)

This completes the proof of the lemma.
Now we consider the equation

(2.33) (N(a;p,q)-λl)x=f,

where λ is a real number that is not an eigenvalue of N(a;p, q). Then we
have the following

LEMMA 11. The solution of the equation (2.33) is given by the formula

(2.34) xr =
 r£τr^λ)fj+{Sr(λ)-PTrM))xi+ Tr(λ)x2>

(r = l, 2, ...,»)

(2.35) Xl jb

(2.36) X2

where Xj and Yj are the solutions of the equation (2.24) satisfying the initial
conditions

and

Y0 = 0, Y1=~Sn+1(λ)+pTn(λ\

respectively.

PROOF. Form the system (2.33) we have inductively the formula (2.34),
and from the last two equations of the system (2.33) it follows that
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(Sn+ι(λ)—pTn(λ))xι+ Tn+ι(λ)x2= — Σ ΓII+I-X

Sn+2(λ)-qSn(λ)-pTn+ι(λ)+pqTn-ι(λ))xi + (Tn+2(λ)-qTn(λ))x2 =

Solving these equations, we have

H(λ)Xl = Tn

-(τn+2(λ)-qTj

H(λ)x2 = (Sn+2(λ)-qSn(λ)-pTn

p Tn(λ)) Σ (Tn+2-M)-q Tn

y=i

From these (2.35) and (2.36) are obtained.

3. Second order elliptic equations

3.1 Methods for the solution

The problem of solving approximately the second order elliptic equations
is often reduced to that of solving the difference equations of the following
form:

Xm-1

(31) Mx =

~Bm, Άn

Where Ah B{ and C, are nxn matrices. For convenience we consider that

xi /i

f2

fm-1
/

Methods for solving the equation (3.1) are considered in the following
three cases:

1°. Case where M is similar to a block-diagonal matrix. When M is
expressed as

(3.2) M--

since
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the problem is reduced to that of finding the matrices Djι (i = l, 2, •••, m).
2°. Case where M is decomposed as M= W+N and W~γ is easily obtained.

The equation (3.1) can be rewritten as follows:

(3.3) (/+ W~ιN)x = W~ιf.

This decomposition is effective when the problem of solving (3.3) is reduced to
that of solving the equations of the lower order.

3°. Case where all the block principal minor matrices

2, - C 2
ί = l, 2, ..., m)

of M are non-singular. M can be decomposed into the form LU, where

L —
/ 0

0 D p-1 T

Pi = Alt

1 5 - 1

. P 2 ) - C 2 0

o "•• '-

(3.4)

Then since

(A = 2, 3, ...,m).

x. (j = l, 2, . . , w) can be obtained through the recurrence formulas

gi=f» gk=fk + BkPk\gk-ι (i = 2,3, ...,m),

k+i) (k = m-l,m-2, ••-, 1).

In the case where Ah Bh and Ck can be diagonalized by the same simi-
larity transformation, namely where there exists a matrix F such that

with diagonal matrices Jk9 6k and Ck, this method is easily applied. Since

o
Λ (Im®FY\(3.5) M=(Im®F)

{ Ah —Ci,

-c2

O -Bm> A

if we put zi = F'1xi and fi = F~1fi, then the system (3.1) can be rewritten as
follows:
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X2

fm-1

f

Pk and Pk1 are easily obtained because Ak, 6k and Ck are diagonal matrices.

In the particular case where

Ai = A = diag(αi, α2, •••, α») (αy>0; ι = l , 2, • •-, m),

jftf = B = diag(6i, 62, •••, i») ( δ y > 0 ; ί = 2,3, . . .,w),

C, = C = diag(ci, c2, ..., cΛ) ( c y > 0 ; ί = l, 2, ..., TO —1),

we investigate the stability of this numerical process.

THEOREM 3. Suppose that

(3.6) α, :>max(2Vϊ^ci, 2δ, c, , 2όz , 2c, , δ/ + c, , l + δfc, ) (ί = l , 2, ..., τι).

5ΓΛeτi δoίfe ίfcβ forward process

(3.7) gk^fk + BPϊλig^ (A = 2, 3, ..., 711)

and £fce backward process

( 3 . 8 ) ** = i ϊ 1 C * i k + 1 + P ϊ - 1

β r Λ (A = /n, TO-1, •-., 1 )

are numerically stable.

PROOF. The vectors gk and *A are written explicitly in terms of f and gj

as follows:

y = i

y — 1

(Σ l, ..., 1).

Hence in order that the round-oίf errors incurred in the course of numerical

computation may not grow, it is sufficient that the eigenvalues of Pj1, BPj1

and PjxC (1 = 1, 2, ..., m) are all less than one in modulus.

Put PJ=QjlιQj ( / = 1 , 2, ...), where (λ, are diagonal matrices. Then, in

view of (3.5), we have

2 O'=2, 3, -.., m)

Since by (3.6) α, ^2d!, = 2Vδ/cf , ρ, can be written as follows:
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5 sinhα);

where

Hence we have

On the other hand, since cosh(y + l)6θ/sinh(y + l)to>l(6θ>0)5 it follows
that

Ί cosh(/ + l)α) . ,
= coshto — . w . , .,v sinh^o

smh ( + ΐ)ω
. , / : , - .x = coshto . w . , .,v

smh(y +1) smh ( + ΐ)ω

< cosh ω — sinhα) = e~ω.

Hence we have only to show that

e~ω*/di <: 1, biβ-^/di <; 1, c-e" V ^ ^ l

Since δ/^α/ — c, , it follows that

and so

Similarly we obtain the result

From these follows that

bie~ωi/di ^ 1,

Since δ/c —α, < — 1, it follows that

so that

This means that e " ω ί /^/<l . Thus the theorem has been proved.

3.2 Examples

In the following examples, we are concerned with partial differential



36 Hisayoshi SHINTANI

equations over a rectangle R with sides parallel to the x- and j-axes. We
denote by UH and LH the upper and lower horizontal sides of R respectively
and by RV and LV the right and left vertical sides respectively. Let h and
hi be the mesh-sizes in the %- and y-directions respectively, and put

(3.9) σ = h/hu b = σ

Values of the unknown function Uij—u

manner:

x j =

a = 2(1 + b).

x^ yj) are arranged in the following

O' = l, 2, ..., m).

Laplace's operator Δ is approximated by the following two formulas:
(I) Five point formula

h2

(II) Hermitian difference formula

- 1

- 6

a

-b

- 1

1

10

1

10

100

10

1

10

1

-(1 + 6)

-(10-26)

-α+6)

-(106-2)

10o

- ( 1 + 6)

-(10-26)

-(106-2) - ( 1 + 5)

h2

3.2.1 Example 1

We consider the equation

— Au + λu = f(x, y)

(I) Case where five point formula is used.
The matrix M takes the form

M= Im<g)A-B<g)I, , A = (a + λh2)I-bCy
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where B is an m x m matrix, A and C are nx n matrices and, according to the
boundary conditions imposed on LH and UH, C becomes as follows:

(a) when u is given on LH and UH, C=Lλ.
(b) when u is periodic in the y-direction, C=L6.
(c) when u is given on UH and uy is given on LH,

(i) in the case where uy(x, y) is approximated by the forward differ-
ence (u(x, y+hι)— u(x> γ))/hι or by the backward difference (u(x, y) —
u(x, y—hι))/hu C=L3.

(ii) in the case where uy(x, y) is approximated by the central
difference (u(x, y+hι)—u(x, γ—hi))/(2hi\ C=L5.

(d) when uy is given on LH and UH, C=L2 in the case (i) and C=L4 in
the case (ii).

(e) when uy + (Jχu is given on LH and uy + σ2u is given on UH,

C=L7(p, q), p = l + hγ<5χ, q = l + hσ2 in the case (i)

C=Ls(p,q\ p—2hχ6ι, q = 2hι(T2, in the case (ii),

where βx and σ2 are constants.

(f) when u is given on UH and uy-\-dιu is given on LH,

C = L9(p\ p = 1 + Λi<Ti in the case (i);

C = Lw(p), p = 2hιβι in the case (ii).

If ί/i7, Z/f, uy, Li, C,p, q, y, ΰ\, and σ2 are replaced with RV, LV, ux, Lh

B, r, s, x, σ3 and σ4 respectively, then B is determined similarly.
Thus we have the matrices

(3.10) Mv = Im<g)(<iα + λh2)I-bLt)-tj®I ( i , / = l , 2, ..., 10).

Since

(3.11) Ma = {

matrices Mί; are of the form (3.5) except for the case 7 = 6.
On the other hand, since

(3.12) Mij = (

matrices M^ are of the form (3.2). Moreover, it follows that

(3.13) Mij = (Im®Ri)(Rj®I)Λij(Rj®iy1(Im®Riy\
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where

In particular, we have

(3.14) λ% --
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i — d i a g ( A , i , λί2, •••, λin),

βj2, •••, μ j m ) .

2
(ί, j=l, 2, ..., 6).

When Mt) are non-singular, evidently their inverse matrices are given
by the formula

MjJ

M, 7 = Mn-(rUm + s U£)®I, Mt 8 = M, 4 - (r U

Mi9 = Mn - r Um<g)I, Mm = Mi5 - r

Since

matrices Mj}, Mji, Mj£ and Mjf0 can also be obtained by Lemma 5. In ad-
dition, since

(3.15) Mi, = /»®((α + λh2)I- bUp, q))- ljg>I

i = 7, 8, 9; j=l, 4, 5),

» = (σ ip, q),

Ωf/-1 are obtained by Lemma 3. Hence Mjl, Mj} and M^1 can be obtained
without knowledge of the eigenvalues of L{(p, q).

(II) Case where Hermitian difference formula is used. Put

-Tzλfl , «2 = = J-Ut? — Z — -7Γ- Ail .

3 6

Ϊ 2 Λ A ' 5

Then we have the formula

-b2

-h

-h

— α2

— O2 -h
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The partial derivatives ux and uy are to be approximated by the central
difference. Then we have the following results:

1°. when u is given on the whole boundary,

2°. when u is periodic in both directions,

M2 = Im®(flJ-a2U)-Z)

3°. when u is given on LH and UH and u is periodic in the ^-direction,

M3 = Im(g)A-L6(g)B.

4°. when u is given on LH and UH and ux is given on LV and RV,

5°. when uy is given on LH and UH and ux is given on RV and LV,

6°. when u is given on LH and £/#, w* + <r3w is given on ZΓand
is given on LV,

M6 = Lm(g)A - L8(p, 9)<g)J3, JD = 2/kr3, q = A

7°. when u is given on Lil, UH and i?Γ and ί̂  + σ3u is given on

M7 = Im<g)A - Zl0(p)<g)B, p = 2hσ3.

Since

Im<g>A-Zi<g)B = (I^Ri)(lm^(aiI-a2G)-Li^(b1I+b2G1)XL

(i = l ,3,4,6,7)

M5 = { {

each block of M* can be diagonalized.

3.2.2 Example 2

We consider the equation

— Au + dux + euy+ gu =f(x, y).

(I) Case where five point formula is used.
We assume first that

d = d(x\ e = const., g = g(x\
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The mesh-size h is to be chosen small so that

Then Ak, Bk and Ch become as follows:

A, = (a + h2

gl-r(l+ A d t y l - W p , q;a,β;r, δ),

M{p, q a, β;r,δ) (£ = 2,3, •••,

- « ( l - \ dmJjl-M(P, q;a,β;γ, 8),

i = ( 1 - -s- rfi + wf 1 + -^ d i ) ) / ,

) (ί = 2,3, . . . , 7 n -

The values of /?, r̂, α and β are determined according to the boundary condi-
tions as follows:

in the case (a), p = q = a = β=0;

in the case (c) (i), /> = 1, q = a = β = 0;

in the case (c) (ii), JD = O, g = 0, α = l , jff=0;

in the case (d) (i), p = q = l, a = β = 0;

in the case (d) (ii), p = q = 0, a = β = l;

in the case (e) (i), p = 1 + Ai(Ti, g = 1 + Ai<r2, α = ^ = 0

in the case (e) (ii), p =

in the case (f) (i), p

in the case (f) (ii), p = 2hi$u ? = 0, a = l, β = 0.'

If LH, UH, uy,p, q, a, β, σu σ2 and hi are replaced with LV, RV, ux, r, s, w,
z, (T3, (T4 and h respectively, then the values of r, 5, w, and z are determined
similarly.

In each case it is readily seen by Lemma 6 that Λι (ΐ = l, 2, •••, m) can be
diagonalized by the same similarity transformation.

By interchanging the roles of x and j , the case where

d = const, β = β(j), ^ = g ( y)

can be treated analogously.
Next we are concerned with the case where d, e and g are constants.
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We choose h small so that

and put

5 p , p 2 , •• ,

Then it is valid that

M= Im®((a + h2g)I-M(p, q a, β γ, δ))-M(r, s;w,z;j

Since

M= (IM<g>E)-KF<g>IT1Ω(F®iχim®E),

+ h2g)I-rδL(pδ-\ qδ; aδ'\ βδ2))-

-jupL(γp-\ sp; wρ~2, z

M can be reduced to the form (3.5).
(II) Case where Hermitian difference formula is used.
We assume that

d=d(x\ e = 0, g = g(x\

and put

of. = 10a-2hδxdi + Sh2gi + h2δ2

xgi+ 2h2d2-

h2,,, h"

7 2 7.2
sg +

where

ij — fίj + ι— 2/ f y + / t y_1
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Then we have the formula

-βi

— bi

-βi

-a{

ai

-a{

-ϊi

— Ci

-Ti

and the following results are obtained:

1°. when u is given on the whole bounary,

Ai = ail- aj (i = 1, 2, , m),

B> = biI+βJ (i=2, 3, •••,m),

d = c;I+ γj (i = 1, 2, ., m-1).

2°. when u is given on LHand UHand ux is given on LV and

Ai^aJ-aJ (i = 1, 2, , m),

C, = c, / + r*/, 5, = hl+βj (i = 2, 3, ..., m -1),

£OT - (*«+cw)/+09«+r«)/

3°. when uy is given on LH and t/ΐf and u^ is given on LF and

Ai — ail—aiLi ( ί = l , 2, •••, ?re),

C, = c, /+ rΛ, -δ. - 6,7+ βiU (/ = 2, 3, , m -1),

5 m = (δm + cm)I+<βm+r«)7.«.

In each case M can be reduced to the form (3.5).

3.2.3 Example 3

We consider the axially symmetric problem

where u(r, 0) is given and u is regular at r=0. Let h=l/n be the mesh-size
in the r-direction and hι = h/(ϊ be the mesh-size in the ^-direction. *If we use
five point formula, then M becomes as follows:
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where At and Bj are determined according to the boundary conditions in the
following manner:

(i) when u(l, z) is given,

VJ.
2(n-l)j

(ii) when ur(l, z) is given,

A2 = C-2V7.

(iii) when ur(l, z) + <ϊiu(l, z) is given,

A3 = C-2VJ+2hσ1(l+ * λϋJ.

1°. when u(r,(7τι + l)Ai) is given,

B\ = Jm.

2°. when uz(r, mhi) is given,

3°. when uz(r, mhι) + (Ϊ2u(r, mhi) is given,

where

2(2+0), - 4 ,

- | , 2(1 + 6), — I 0

^
2(n-2)> "^ ' "Λ * 2(^-2)

0, 2(1 + 0)

Let

Then since

0

j = SJΛJSJ1, Λj = άiagdju λj2, •••, λjm).

matrices My are of the form (3.2).



44 Hisayoshi SHINTANI

3.2.4 Example 4

We consider Poisson's equation in polar coordinates

d2u , 1 du , 1 d2u n, Λx

In the case where u(l, 0) is given, we have

where

Bh —

In the case where ur(l, θ) is given, we have

M =

1 - ; 1 + !

Since

- R ι

each block of Af can be diagonalized.

4. Fourth order elliptic equations

The problem of solving approximately the fourth order elliptic equations
is often reduced to that of solving the system of equations of the following
form:
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(4.1) Nx =

u -Cu E1

2i A2, —C2, E2

3, — B3, A3, —C3,
0

U
%) An

m

X\

X2

X3

Xm-2

Xm-l

h

fm-2

fm-l
sfm

n

In the case where all the block principal minor matrices of TV are non-
singular, iVcan be decomposed into the form LU, where

L =
-I , o

M3, -U, I

0 'Mm,'-LmI

P, -Uu \ 0

0 p - " p -

^Ci-LtEi-u (£ = 1,2, ...,7n).

This method is easily applied when J,-, Bi9 C, A and
by the same similarity transformation.

Example We consider the equation

,- can be diagonalized

where a and β are constants and u is given on the entire boundarj^. Put

A = (a2 + 2b2 + 2 + 2ah2a + βh')I- 2(α + αΛ2)ό/+ 02(/2 - 2/),

We consider the following three cases:
(i) when uxx is given on LV and RV and uyy is given on LHand UH,

Since

m® 2((α + αh2)I- bd) + (/^ - 2Im)®I)S-\

each block of iVican be diagonalized. In this case, moreover, it is valid that

7Vχ = SPΛP~ιS\
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A =

= diag(Λu Λ2, •••,Λm),

= (β- α*)h4 + Uα + αh2)I- bGx - 2 cos - - — /

i, λkZ, •••λkn),

(ii) when uyy is given on LHand UH&nά ux is given on LV and RV,

In this case each block of N2 can be diagonalized and since

N2 = S(PΛP-ι + 2(Um+ U£)®I)S-\

N21 can also be obtained by Lemma 5.

(iii) when uy is given on LH and UH and w* is given on LV and

where

In this case it is valid that

Ω = Im®(A-2I+2b\U+ U/))-

Ωh = ((2b + αh2 + Asin2 —J^—)l^ 6/V + (/?- α2)A4/+ 2δ2(EH- £/7)

Ωιι can be obtained either by Lemma 4 or by ZE/-decomposition, so that JVj1

can be obtained easily and then N^1 can be computed by Lemma 5. Lemma
10 and Lemma 11 can also be applied.

5. Parabolic equations

5.1 One-dimensional second order parabolic equation

Let us consider the equation

du d2u
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where u(x, 0) is given. Let h be the mesh-size in the Λ -direction and hi be
the mesh-size in the ί-direction and put r = hι/h2.

In the case where u(09 t) = u(l, t) = 0 (ί>0), using Crank-Nicolson's
formula, we have

where

In the case where the boundary conditions are given by

with constants Ai, fe, vi and v2, we have

n i = (4J-B2)uι+fι (1 = 0, 1, ...),

where

B2 = 2(l + r)I-rL(-2hku-2hk2; 1, 1).

Both cases can be treated easily.

5.2 Two-dimensional second order parabolic equation

We consider the equation

du d2u , d2u

with the initial conditions

u(x, y, 0)=f(x, y\

and boundary conditions

u(0, y, ί) = "(1, j , ί ) -

u(x9 0, t)=u(x, 1, ί) = 0 ( O ^ x ^ l , 0 ^ ί ^ Γ).

Put

Uijtk= u(ίh, jhiy kl\ ω = h2/l, γ =

Using the formula C38]
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we have

where

D = γI-~J, T=-AI+J.

A~ιB is easily obtained.

5.3 Fourth order parabolic equation

Let us consider the equation

with the initial conditions

u(x,0)=ga(x), |^(*,0)=#(*)

and boundary conditions

«(0, t)=fo(t), u(l,ί)=/i(O

Put

φ_du ψ_dH n-fφ\ c-ί°> -
, o/

Then the given equation can be rewritten as follows

dt dx2'

Let h be the mesh-size in the ^-direction and hi be the mesh-size in the ί-direc-
tion and put r = hι/h2.

When Crank-Nicolson method is used, we have

where

A =
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A1 = I2 + rC, A2=-r

6-C, Bx = l2-rC, B2=-A2.

Li

In this case it is valid that

A = (Rγ®h)D{R^I2y\ B = (^

A2 = I2+2rsin^
m~\-l 2(771

j 1 -J~Λ B2 = / 2 -2rs in 2 ^ζ- ϊ C.

m + 1 2(771 + 1)

When Douglas' high order correct method [8] is used, we have

A1 = 10/2 + 12rC, A2 = I2- 6rC,

Bι = 10/2 - 12rC, B2 = I2 + 6rC.

In this case it is valid that

Since

A~ιB can be obtained easily.

5.4 Periodic parabolic problem

We consider the equation

with the boundary condition C42]

u(0, t) =f(t\ u(l, *) = ^(ί), u(x, 0) - u(x, T\

where

Γ) =/(*), ^(ί+ Γ)=
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I = T/m, h = l/(n + 1), <r = I/A

and let Qm be an m. x m matrix denned by

0 1
1, 0

1, 0

0 l, oj

Then, according as explicit formula or implicit formula is used, the problem
is reduced to the solution of the following systems of equations:

(5.1)

or

(5.2)

where

JIf=(l-

(/»

-2σ)I+σJ

®I-Qm®M)x=f

L/2), N=(l+2a)I-σj.

Since

where

D = (l-2σ)I+σGu E-1

we can write (5.1) and (5.2) as follows:

(5.3) S(Im®I-Qm(g)D)S-ιx=f,

(5.4) S{Im^I-Qm^E){Im^E'1)S-ιx = g.

Then, for (5.3), it is valid that

because Qm=Im, and it follows that

* = S(Im®{I-D»Ύ'-){Im®I+Qm(&D+ •

Similarly for (5.4) we have

x = S(Im®E)(Im®(I-E'»)-i)(Im(g)I+Qm®E+
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5.5 Three level difference scheme

Let us consider the equation

duL_d2u
dt ~dx*

where boundary values are given. If Mitchell-Pearce nine point formula [24]
is used, we have

(4 = 1,2, ...),

where

J, C=eI+fJ

1 2 ^ < J

ϋ)P -84^-12600'

13
25200'

23 , 313

i+h3 ?2 p=2Pi+h3-2r 20^ 840^ 25200

Matrices A, B, and C can easily be diagonalized.
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