Direct Solution of Partial Difference Equations for a Rectangle

Hisayoshi Shintani

(Received February 20, 1968)

1. Introduction

In this paper, we are concerned with the direct solution of the systems of linear algebraic equations arising from the discretization of linear partial differential equations over a rectangle. Such a system is usually solved by means of the iterative methods, and the direct methods are rarely used because of storage capacity $[11]^{1)}$. Among the direct methods, however, there are known the square root method [11], the hypermatrix method [9, 36], the tensor product method [18], the method of summary representation [32], the method of lines $[12,20,25,26,27,37,46]$, and so on $[13,16,23,39,40,45]$.

Although the results stated in this paper are not all new, they are summarized in a somewhat unified form. The methods can easily be extended to the problems in higher dimensions and to the domains consisting of rectangles. Several examples to which the direct methods are applicable are presented.

2. Preliminaries

2.1 Tridiagonal matrices

Let x be a real number and let $U_{r}(x)$ and $V_{r}(x)$ be the solutions of the difference equation

$$
\begin{equation*}
y_{r+1}-x y_{r}+y_{r-1}=0 \quad(r=0,1, \ldots) \tag{2.1}
\end{equation*}
$$

satisfying the initial conditions $y_{-1}=0, y_{0}=1$ and $y_{-1}=1, y_{0}=x / 2$ respectively. Then, as is easily checked, we have the following

Lemma 1. $\quad U_{r}(x)$ and $V_{r}(x)$ are expressed as follows:

$$
U_{r}(x)=\left\{\begin{array}{lll}
\frac{\sinh (r+1) \omega}{\sinh \omega}, & 2 \cosh \omega=x & (x \geqq 2) \\
\frac{\sin (r+1) \theta}{\sin \theta}, & 2 \cos \theta=x & (|x|<2) \\
(-1)^{r} \frac{\sinh (r+1) \omega}{\sinh \omega}, & 2 \cosh \omega=|x| & (x \leqq-2)
\end{array}\right.
$$

[^0]\[

V_{r}(x)=\left\{$$
\begin{array}{lll}
\cosh (r+1) \omega, & 2 \cosh \omega=x & (x \geqq 2) \\
\cos (r+1) \theta, & 2 \cos \theta=x & (|x|<2) \\
(-1)^{r+1} \cosh (r+1) \omega, & 2 \cosh \omega=|x| & (x \leqq-2) .
\end{array}
$$\right.
\]

The general solution of the equation (2.1) is given by the formula

$$
\begin{equation*}
y_{r}=C_{1} U_{r-1}(x)+C_{2} V_{r-1}(x), \tag{2.2}
\end{equation*}
$$

where C_{1} and C_{2} are arbitrary constants.
We introduce the following $k \times k$ matrices $(k \geqq 3)$:

$$
\begin{aligned}
& I_{k}=\left(\begin{array}{ccc}
1 & 0 \\
1 & 0 \\
0 & \ddots & 1
\end{array}\right), \quad J_{k}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & \ddots & \ddots \\
0 & \ddots & \ddots \\
0 & 1 & 0
\end{array}\right), K_{k}=\left(\begin{array}{ccc}
0 & & 0 \\
1 & \ddots & 0 \\
0 & \ddots & \ddots \\
& 1 & 0
\end{array}\right), \quad Z_{k}=\binom{1}{0}, \\
& U_{k}=\left(\begin{array}{ccc}
1 & 0 \\
0 & 0 \\
0 & \ddots & 0
\end{array}\right), V_{k}=\left(\begin{array}{cccc}
0 & 1 & & 0 \\
0 & \ddots & 0 \\
& \ddots & \ddots & \\
0 & \ddots & 0
\end{array}\right), U_{k}^{J}=\left(\begin{array}{lll}
0 & \ddots & 0 \\
0 & 0 \\
0 & & 1
\end{array}\right), V_{k}^{J}=\left(\begin{array}{cccc}
0 & 0 & 0 \\
0 & \ddots & 0 \\
\ddots & \ddots & \\
0 & 0 & \ddots & \\
& & 1 & 0
\end{array}\right) \text {. }
\end{aligned}
$$

Let p, q, α and β be the real numbers such that

$$
\begin{equation*}
1+\alpha>0, \quad 1+\beta>0 \tag{2.3}
\end{equation*}
$$

and put

$$
\begin{aligned}
L=L(k ; p, q ; \alpha, \beta) & =J_{k}+p U_{k}+q U_{k}^{J}+\alpha V_{k}+\beta V_{k}^{J} \\
& =\left(\begin{array}{ccccc}
p, & 1+\alpha & & \\
1, & 0, & 1, & 0 \\
\ddots \ddots & \ddots & \ddots & \ddots \\
& \ddots & \ddots & \ddots & 1 \\
0 & & 1+\beta, & q
\end{array}\right)
\end{aligned}
$$

Then we have the following
Lemma 2. Under the condition (2.3), the eigenvalues of L are all real and distinct and they are the roots of the equation

$$
\begin{align*}
F_{k}(\lambda)= & U_{k}(\lambda)-(p+q) U_{k-1}(\lambda)+(p q-\alpha-\beta) U_{k-2}(\lambda)+ \tag{2.4}\\
& +(p \beta+q \alpha) U_{k-3}(\lambda)+\alpha \beta U_{k-4}(\lambda)=0 .
\end{align*}
$$

Let λ be an eigenvalue of L and put

$$
\begin{equation*}
x_{j}=U_{j-1}(\lambda)-p U_{j-2}(\lambda)-\alpha U_{j-3}(\lambda) \quad(j=1,2, \ldots, k), \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{x}^{T}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)_{2} \tag{2.6}
\end{equation*}
$$

then \boldsymbol{x} is an eigenvector corresponding to λ.
Proof. Let $L=\left(l_{i j}\right)$, then since L is a real tridiagonal matrix and $l_{i+1},{ }_{i} l_{i, i+1}>0(i=1,2, \ldots, k-1)$, the eigenvalues of L are all real and distinct [44].

Let λ be an eigenvalue of L and x be an eigenvector corresponding to λ. Then there holds the relation $(L-\lambda I) \boldsymbol{x}=\mathbf{0}$, namely

$$
\begin{equation*}
(p-\lambda) x_{1}+(1+\alpha) x_{2}=0 \tag{2.7}
\end{equation*}
$$

By (2.2) x_{j} satisfying $(2,8)$ can be written as follows:

$$
\begin{equation*}
x_{j}=C_{1} U_{j-1}(\lambda)+C_{2} V_{j-1}(\lambda) \tag{2.10}
\end{equation*}
$$

and, by (2.7) and (2.9), constants C_{1} and C_{2} must satisfy the equations

$$
\begin{align*}
& (p-\lambda) x_{1}+(1+\alpha) x_{2}=p x_{1}+\alpha x_{2}-x_{0} \tag{2.11}\\
& \quad=\left(p+\alpha U_{1}(\lambda)\right) C_{1}+\left(p V_{0}(\lambda)+\alpha V_{1}(\lambda)-1\right) C_{2}=0
\end{align*}
$$

and

$$
\begin{align*}
& (1+\beta) x_{k-1}+(q-\lambda) x_{k}=\beta x_{k-1}+q x_{k}-x_{k+1} \tag{2.12}\\
= & \left(\beta U_{k-2}(\lambda)+q U_{k-1}(\lambda)-U_{k}(\lambda)\right) C_{1}+\left(\beta V_{k-2}(\lambda)+q V_{k-1}(\lambda)-V_{k}(\lambda)\right) C_{2}=0 .
\end{align*}
$$

The necessary and sufficient condition for the equations (2.11) and (2.12) to have a non-trivial solution is that

$$
\begin{align*}
& \left(p V_{0}+\alpha V_{1}-1\right)\left(\beta U_{k-2}+q U_{k-1}-U_{k}\right)-\left(p U_{0}+\alpha U_{1}\right)\left(\beta V_{k-2}+q V_{k-1}-V_{k}\right) \tag{2.13}\\
= & U_{k}-p\left(V_{0} U_{k}-U_{0} V_{k}\right)-q U_{k-1}+p q\left(V_{0} U_{k-1}-U_{0} V_{k-1}\right)-\beta U_{k-2}- \\
& -\alpha\left(V_{1} U_{k}-U_{1} V_{k}\right)+p \beta\left(V_{0} U_{k-2}-U_{0} V_{k-2}\right)+q \alpha\left(V_{1} U_{k-1}-U_{1} V_{k-1}\right)+ \\
& +\alpha \beta\left(V_{1} U_{k-2}-U_{1} V_{k-2}\right)=0 .
\end{align*}
$$

Using Lemma 1 and addition theorems for trigonometric and hyperbolic functions, we can rewrite (2.13) as (2.4).

In the case where $p+\alpha U_{1}(\lambda) \neq 0$, from (2.11) we have

$$
C_{1}=C_{2}\left(1-p V_{0}(\lambda)-\alpha V_{1}(\lambda)\right) /\left(p+\alpha U_{1}(\lambda)\right)
$$

and, if we put $C_{2}=p+\alpha U_{1}(\lambda)$, then it follows from (2.10) that

$$
\begin{aligned}
x_{j} & =U_{j-1}(\lambda)-p\left(V_{0}(\lambda) U_{j-1}(\lambda)-V_{j-1}(\lambda)\right)-\alpha\left(V_{1}(\lambda) U_{j-1}(\lambda)-U_{1}(\lambda) V_{j-1}(\lambda)\right) \\
& =U_{j-1}(\lambda)-p U_{j-2}(\lambda)-\alpha U_{j-3}(\lambda)
\end{aligned}
$$

In the case where $p+\alpha U_{1}(\lambda)=0$, from (2.3) it follows that

$$
1-p V_{0}(\lambda)-\alpha V_{1}(\lambda)=1+\alpha\left(U_{1}(\lambda) V_{0}(\lambda)-V_{1}(\lambda)\right)=1+\alpha>0
$$

so that $C_{2}=0$ from (2.11). If we put $C_{1}=1+\alpha$, then we have

$$
\begin{aligned}
x_{j} & =C_{1} U_{j-1}(\lambda)=(1+\alpha) U_{j-1}(\lambda) \\
& =U_{j-1}(\lambda)-p U_{j-2}(\lambda)-\alpha U_{j-3}(\lambda) .
\end{aligned}
$$

Thus the vector \boldsymbol{x} given by (2.6) is an eigenvector corresponding to λ.
Corollary 1. Let $\lambda_{j}(j=1,2, \ldots, k)$ be the eigenvalues of L and put

$$
\begin{gathered}
G(k ; p, q ; \alpha, \beta)=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right), \\
R(k ; p, q ; \alpha, \beta)=\left(r_{i j}\right), \\
D(k ; \alpha, \beta)=\operatorname{diag}(1 /(1+\alpha), 1,1, \ldots, 1,1 /(1+\beta)),
\end{gathered}
$$

where

$$
\begin{gather*}
r_{i j}=c_{j} \tilde{r}_{i j}, \\
\tilde{r}_{i j}=U_{i-1}\left(\lambda_{j}\right)-p U_{i-2}\left(\lambda_{j}\right)-\alpha U_{i-3}\left(\lambda_{j}\right), \\
c_{j}=1 /\left(\sum_{i=2}^{k-1} \tilde{r}_{i j}^{2}+\tilde{r}_{1 j}^{2} /(1+\alpha)+\tilde{r}_{k j}^{2} /(1+\beta)\right)^{1 \cdot 2} \tag{2.14}
\end{gather*}
$$

Then it is valid that

$$
\begin{gathered}
L(k ; \mathrm{p}, q ; \alpha, \beta)=R(k ; p, q ; \alpha, \beta) G(k ; p, q ; \alpha, \beta) R(k ; p, q ; \alpha, \beta)^{-1} \\
R(k ; p, q ; \alpha, \beta)^{-1}=R(k ; p, q ; \alpha, \beta)^{T} D(k ; \alpha, \beta)
\end{gathered}
$$

Proof. Put

$$
F=\operatorname{diag}(1 / \sqrt{ } 1+\alpha, 1,1, \ldots, 1,1 / \sqrt{ } 1+\beta)
$$

Since $F L F^{-1}=S$ is a real symmetric matrix, there exists an orthogonal matrix T such that $S=T G T^{-1}$. If we put

$$
\tilde{\boldsymbol{r}}_{j}^{T}=\left(\tilde{r}_{1 j}, \tilde{r}_{2 j}, \cdots, \tilde{r}_{k j}\right)
$$

then $c \tilde{\boldsymbol{r}}_{j}(c \neq 0)$ is an eigenvector of L corresponding to λ_{j}. Let R be the matrix

$$
R=\left(c_{1} \tilde{\boldsymbol{r}}_{1}, c_{2} \tilde{\boldsymbol{r}}_{2}, \ldots, c_{k} \tilde{\boldsymbol{r}}_{k}\right),
$$

then it follows that

$$
L F^{-1} T=F^{-1} T G, L R=R G .
$$

Hence we can choose $c_{j}(j=1,2, \ldots, k)$ so that $F R=T$. Evidently such a c_{j}
is given by (2.14). Then it follows that

$$
R^{-1}=T^{-1} F=T^{T} F=R^{T} F^{T} F=R^{T} F^{2}=R^{T} D .
$$

From this corollary we directly obtain the following
Corollary 2. Suppose that the matrix $a I_{k}-L(k ; p, q ; \alpha, \beta)$ is nonsingular. Then

$$
\begin{aligned}
& \left(a I_{k}-L(k ; p, q ; \alpha, \beta)\right)^{-1} \\
& \quad=R(k ; p, q ; \alpha, \beta)\left(a I_{j}-G(k ; p, q ; \alpha, \beta)\right)^{-1} R(k ; p, q ; \alpha, \beta)^{-1}
\end{aligned}
$$

Differentiating the formula (2.4) and using the relation (2.1), we have
Corollary 3. The functions $F_{k}(\lambda), F_{k}^{*}(\lambda)$ and $F_{k}^{\prime \prime}(\lambda)$ satisfy the following recurrence formulas:

$$
\begin{aligned}
& F_{r}(\lambda)=\lambda F_{r-1}(\lambda)-F_{r-2}(\lambda), \\
& F_{r}^{\prime}(\lambda)=\lambda F_{r-1}^{\prime}(\lambda)-F_{r-2}^{\prime}(\lambda)+F_{r-1}(\lambda) \quad(r=3,4, \ldots, k), \\
& F_{r}^{\prime \prime}(\lambda)=\lambda F_{r-1}^{\prime \prime}(\lambda)-F_{r-2}^{\prime \prime}(\lambda)+2 F_{r-1}^{\prime}(\lambda),
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{1}(\lambda)=(1-\alpha \beta) \lambda-(p+q+p \beta+q \alpha), \\
& F_{2}(\lambda)=\lambda^{2}-(p+q) \lambda+p q-\alpha-\beta-\alpha \beta-1, \\
& F_{1}^{\prime}(\lambda)=1-\alpha \beta, \quad F_{2}^{\prime}(\lambda)=2 \lambda-(p+q), \\
& F_{1}^{\prime \prime}(\lambda)=0, \quad F_{2}^{\prime \prime}(\lambda)=2 .
\end{aligned}
$$

Now put

$$
\begin{gathered}
L_{1}(k)=L(k ; 0,0 ; 0,0), \quad L_{2}(k)=L(k ; 1,1 ; 0,0), \quad L_{3}(k)=L(k ; 1,0 ; 0,0) \\
L_{4}(k)=L(k ; 0,0 ; 1,1), \quad L_{5}(k)=L(k ; 0,0 ; 1,0), \quad L_{6}(k)=L_{1}(k)+Z_{k} \\
G_{i}(k)=\operatorname{diag}\left(2 \cos \theta_{i 1}, 2 \cos \theta_{i 2}, \ldots, 2 \cos \theta_{i k}\right)
\end{gathered}
$$

where

$$
\begin{gathered}
\theta_{1 j}=\frac{j \pi}{k+1}, \quad \theta_{2 j}=\frac{(j-1) \pi}{k}, \quad \theta_{3 j}=\frac{(2 j-1) \pi}{2 k+1}, \\
\theta_{4 j}=\frac{(j-1) \pi}{k-1}, \quad \theta_{5 j}=\frac{(2 j-1) \pi}{2 k}, \quad \theta_{6 j}=\frac{2(j-1) \pi}{k}
\end{gathered}
$$

Further put

$$
\begin{gathered}
R_{1}(k)=\left(\sin i \theta_{1 j}\right), \quad R_{2}(k)=\left(\sin \frac{(2 i-1)}{2} \theta_{2 j}\right), \\
R_{3}(k)=\left(\sin (k+1-i) \theta_{3 j}\right), \quad R_{4}(k)=\left(\cos (i-1) \theta_{4 j}\right), \\
R_{5}(k)=\left(\cos (i-1) \theta_{5 j}\right), \quad R_{6}(k)=\left(r_{i j}\right),
\end{gathered}
$$

where

$$
\begin{gathered}
r_{i 1}=1 / \sqrt{2}, \quad r_{i j}=\cos (i-1) \theta_{6 j} \quad(2 \leqq j \leqq l-1), \\
r_{i l}=\delta \cos (i-1) \theta_{6 l}, \quad r_{i j}=\sin (i-1) \theta_{6 j} \quad(l+1 \leqq j \leqq k), \\
l=[k / 2], \quad \delta=\left\{\begin{array}{cl}
1 & (k: \text { odd }) \\
1 / \sqrt{2} & (k: \text { even }) .
\end{array}\right.
\end{gathered}
$$

Then we have the following
Theorem 1. There holds the relation

$$
L_{i}(k)=R_{i}(k) G_{i}(k) R_{i}(k)^{-1} \quad(i=1,2, \ldots, 6),
$$

and $R_{i}(k)^{-1}$ are represented as follows:

$$
\begin{aligned}
& R_{1}(k)^{-1}=\frac{2}{k+1} R_{1}(k), \quad R_{2}(k)^{-1}=\frac{2}{k} R_{2}(k)^{T}, \quad R_{3}(k)^{-1}=\frac{4}{2 k+1} R_{3}(k)^{T}, \\
& R_{4}(k)^{-1}=\frac{2}{k-1} R_{4}(k)^{T} D_{1}, \quad R_{5}(k)^{-1}=\frac{2}{k} R_{5}(k)^{T} D_{2}, \quad R_{6}(k)^{-1}=\frac{2}{k} R_{6}(k)^{T},
\end{aligned}
$$

where

$$
D_{1}=\operatorname{diag}(1 / 2,1, \ldots, 1,1 / 2), \quad D_{2}=\operatorname{diag}(1 / 2,1, \ldots, 1)
$$

Proof. The results for $i=1,2, \ldots, 5$ follow directly from Corollary 1. The result for $i=6$ is obtained from the fact that $L_{6}(k)$ is a circulant matrix [19].

Now put

$$
\begin{aligned}
& L_{7}(k ; p, q)=L(k ; p, q ; 0,0), \\
& L_{8}(k ; p, q)=L(k ; p, q ; 1,1) \\
& L_{9}(k ; p)=L(k ; p, 0 ; 0,0),
\end{aligned} L_{10}(k ; p)=L(k ; p, 0 ; 1,0), ~ \$
$$

and let us define $G_{i}(k ; p, q), R_{i}(k ; p, q)(i=7,8), G_{j}(k ; p)$ and $R_{j}(k ; p)(j=9,10)$ likewise.

By Corollary 2 we can obtain the matrix $\left(a I_{k}-L\right)^{-1}$ in terms of the eigenvalues and eigenvectors of L. Without knowledge of eigenvalues, however, we can also write it explicitly by the following

Lemma 3. Under the condition (2.3), suppose that the matrix a $I_{k}-$ $L(k ; p, q ; \alpha, \beta)$ is non-singular. Then it is valid that

$$
\left(a I_{k}-L(k ; p, q ; \alpha, \beta)\right)^{-1}=\left(r_{i j}\right),
$$

where

$$
\begin{gathered}
r_{i 1}=\Delta^{-1}\left(U_{k-i}-q U_{k-i-1}-\beta U_{k-i-2}\right), \\
r_{i j}=\left\{\begin{array}{cc}
\Delta^{-1}\left(U_{i-1}-p U_{i-2}-\alpha U_{i-3}\right)\left(U_{k-j}-q U_{k-j-1}-\beta U_{k-j-2}\right) & (j \geqq i), \\
\Delta^{-1}\left(U_{k-i}-q U_{k-i-1}-\beta U_{k-i-2}\right)\left(U_{j-1}-p U_{j-2}-\alpha U_{j-3}\right) & (j<i), \\
(2 \leqq j \leqq k-1)
\end{array}\right. \\
r_{i k}=\Delta^{-1}\left(U_{i-1}-p U_{i-2}-\alpha U_{i-3}\right), \\
\Delta=F_{k}(a), \quad U_{j}=U_{j}(a) \quad(j=-2,-1,0, \ldots) .
\end{gathered}
$$

Proof. We consider the system of equations

$$
\begin{equation*}
\left(a I_{k}-L(k ; p, q ; \alpha, \beta)\right) \boldsymbol{x}=\boldsymbol{f} \tag{2.15}
\end{equation*}
$$

where

$$
\boldsymbol{x}^{T}=\left(x_{1}, x_{2}, \cdots, x_{k}\right), \quad \boldsymbol{f}^{T}=\left(f_{1}, f_{2}, \cdots, f_{k}\right) .
$$

From the first $k-1$ equations of (2.15) we obtain inductively

$$
\begin{array}{r}
x_{l}=-\sum_{i=2}^{l-1} U_{l-1-i} f_{i}-U_{l-2} f_{1} /(1+\alpha)+x_{1}\left(U_{l-1}-p U_{l-2}-\alpha U_{l-3}\right) /(1+\alpha) . \tag{2.16}\\
(l=1,2, \ldots, k)
\end{array}
$$

Substituting the expressions for x_{k-1} and x_{k} into the last equation of (2.15), we have

$$
\begin{align*}
\Delta x_{1} /(1+\alpha)= & f_{k}+\sum_{i=2}^{k-1}\left(U_{k-i}-q U_{k-i-1}-\beta U_{k-i-2}\right) f_{i}+ \tag{2.17}\\
& +\left(U_{k-1}-q U_{k-2}-\beta U_{k-3}\right) f_{1} /(1+\alpha) .
\end{align*}
$$

Multiplying (2.16) by Δ and substituting (2.17) into it, we have

$$
\begin{align*}
\Delta x_{l}= & \left(\left(U_{l-1}-p U_{l-2}-\alpha U_{l-3}\right)\left(U_{k-1}-q U_{k-2}-\beta U_{k-3}\right)-\Delta U_{l-2}\right) f_{1} /(1+\alpha)+ \tag{2.18}\\
& +\sum_{i=2}^{l-1}\left(\left(U_{k-i}-q U_{k-i-1}-\beta U_{k-i-2}\right)\left(U_{l-1}-p U_{l-2}-\alpha U_{l-3}\right)-\Delta U_{l-1-i}\right) f_{i}+ \\
& +\sum_{i=l}^{k-1}\left(U_{k-i}-q U_{k-i-1}-\beta U_{k-i-2}\right)\left(U_{l-1}-p U_{l-2}-\alpha U_{l-3}\right) f_{i}+ \\
& +\left(U_{k-1}-p U_{k-2}-\alpha U_{k-3}\right) f_{k} .
\end{align*}
$$

Using Lemma 1 and addition theorems for trigonometric and hyperbolic functions, we can rewrite (2.18) as follows:

$$
\begin{aligned}
\Delta x_{l}= & \left(U_{l-1}-p U_{l-2}-\alpha U_{l-3}\right)\left(f_{k}+\sum_{i=l}^{k-1}\left(U_{k-i}-q U_{k-1-i}-\beta U_{k-2-i}\right) f_{i}\right)+ \\
& +\left(U_{k-l}-q U_{k-1-l}-\beta U_{k-2-l}\right)\left(\sum_{i=2}^{l-1}\left(U_{i-1}-p U_{i-2}-\alpha U_{i-3}\right) f_{i}+f_{1}\right)
\end{aligned}
$$

This completes the proof of the lemma.
Lemma 4. Let W be $a k \times k$ non-singular matrix and let p and q be constants. Suppose that $\left(W-p U_{k}-q U_{k}^{J}\right)$ is non-singular. Then it is valid that

$$
\left(W-p U_{k}-q U_{k}^{J}\right)^{-1}=W^{-1}+W^{-1} Z W^{-1}
$$

where

$$
\begin{aligned}
& Z=\left(\begin{array}{cccc}
p \Delta^{-1}\left(1-q w_{k k}\right), & 0, & \cdots, & 0, \\
p q \Delta^{-1} w_{1 k} \\
0 & & 0 \\
\vdots & & \vdots \\
0 & & 0 \\
p q \Delta^{-1} w_{k 1}, & 0, & \ldots, & 0, q \Delta^{-1}\left(1-p w_{11}\right)
\end{array}\right) \\
& W^{-1}=\left(w_{i j}\right), \quad \Delta=\left(1-p w_{11}\right)\left(1-q w_{k k}\right)-p q w_{1 k} w_{k 1} .
\end{aligned}
$$

Proof. Consider the system of equations

$$
\left(W-p U_{k}-q U_{k}^{J}\right) \boldsymbol{x}=\boldsymbol{f}
$$

Then we have

$$
\begin{equation*}
A \boldsymbol{x}=\left(I_{k}-p W^{-1} U_{k}-q W^{-1} U_{k}^{J}\right) \boldsymbol{x}=W^{-1} \boldsymbol{f}=\boldsymbol{g} \tag{2.19}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{cccc}
1-p w_{11}, & & 0 & -q w_{1 k} \\
-p w_{21}, & 1 & 0 & \vdots \\
\vdots & & \ddots & \vdots \\
-p w_{k 1} & 0 & & 1, q w_{k-1 k} \\
1-q w_{k k}
\end{array}\right), \boldsymbol{g}=\left(\begin{array}{c}
g_{1} \\
g_{2} \\
\vdots \\
g_{k}
\end{array}\right)
$$

From the equations

$$
\begin{aligned}
& \left(1-p w_{11}\right) x_{1}-q w_{1 k} x_{k}=g_{1} \\
& -p w_{k 1} x_{1}+\left(1-q w_{k k}\right) x_{k}=g_{k}
\end{aligned}
$$

we have

$$
\begin{align*}
& x_{1}=\Delta^{-1}\left(1-q w_{k k}\right) g_{1}+\Delta^{-1} q w_{1 k} g_{k}, \tag{2.20}\\
& x_{k}=\Delta^{-1} p w_{k 1} g_{1}+\Delta^{-1}\left(1-p w_{11}\right) g_{k},
\end{align*}
$$

and substituting these into the remaining equations of (2.19), we obtain

$$
\begin{aligned}
x_{l} & =g_{l}+p w_{l 1} x_{1}+q w_{l k} g_{k} \\
& =g_{l}+\left(p w_{l 1} \Delta^{-1}\left(1-q w_{k k}\right)+q w_{l k} \Delta^{-1} p w_{k 1}\right) g_{1}+ \\
& +\left(p w_{l 1} \Delta^{-1} q w_{1 k}+q w_{l k} \Delta^{-1}\left(1-p w_{11}\right)\right) g_{k} \quad(l=2,3, \cdots, k-1) .
\end{aligned}
$$

Further (2.20) can be rewritten as follows:

$$
\begin{aligned}
& x_{1}=g_{1}+p \Delta^{-1}\left(w_{11}\left(1-q w_{k k}\right)+q w_{1 k} w_{k 1}\right) g_{1}+\Delta^{-1} q w_{1 k} g_{1}, \\
& x_{k}=g_{k}+p \Delta^{-1} w_{k 1} g_{1}+q \Delta^{-1}\left(w_{k k}\left(1-p w_{11}\right)+p w_{1 k} w_{k 1}\right) g_{k} .
\end{aligned}
$$

Hence it follows that $A^{-1}=I_{k}+W^{-1} Z$. Thus the lemma has been proved.
Let A be an $m \times m$ matrix and B be an $n \times n$ matrix. Then we define an $m n \times m n$ matrix $A \otimes B$ by

$$
A \otimes B=\left(a_{i j} B\right)
$$

For simplicity, in the sequel, the matrices $A_{k}, A_{j}(k)$ and $A_{j}(k ; p, q)$ are written as A, A_{j} and $A_{j}(p, q)$ respectively when $k=n$ and they are written as A_{m}, \hat{A}_{j} and $\hat{A}_{j}(p, q)$ respectively when $k=m$. Further we put

$$
\begin{equation*}
S=I_{m} \otimes R_{1}, \quad P=\hat{R}_{1} \otimes I . \tag{2.21}
\end{equation*}
$$

The following lemma is an extension of Lemma 4 and it can be proved analogously.

Lemma 5. Let W be an $m n \times m n$ matrix and let p and q be constants. Suppose that the matrix $W-\left(p U_{m}+q U_{m}^{J}\right) \otimes I$ is non-singular. Then it is valid that

$$
\left(W-\left(p U_{m}+q U_{m}^{J}\right) \otimes I\right)^{-1}=W^{-1}+W^{-1} Z W^{-1}
$$

where

$$
Z=\left(\begin{array}{cc}
p \Delta_{1}^{-1}, 0, & \ldots, \\
0 & 0, p q\left(I-p W_{11}\right)^{-1} W_{1 m} \Delta_{m}^{-1} \\
\vdots & 0 \\
0 & \vdots \\
p q\left(I-q W_{m m}\right)^{-1} W_{m 1} \Delta_{1}^{-1}, 0, \ldots, 0, q \Delta_{m}^{-1}
\end{array}\right),
$$

and $W_{i j}$'s are $n \times n$ matrices.
Let $p, q, \alpha, \beta, \gamma$ and δ be real numbers and put

$$
\begin{aligned}
M(k ; p, q ; \alpha, \beta ; \gamma, \delta) & =\gamma\left(K_{k}+p U_{k}+\alpha V_{k}\right)+\gamma \delta^{2}\left(K_{k}^{T}+q U_{k}^{J}+\beta V_{k}^{J}\right) \\
& =\left[\begin{array}{ccc}
\gamma p, & \gamma \delta^{2}+\gamma \alpha & \\
\gamma, & 0, & \gamma \delta^{2} \\
\ddots & \ddots & 0 \\
0 & \ddots, & 0, \\
0^{\gamma} & \gamma+\gamma \delta^{2} \beta, & \gamma \delta^{2} q
\end{array}\right]
\end{aligned}
$$

where it is assumed that

$$
\begin{equation*}
\gamma \neq 0, \quad \delta>0, \quad \delta \neq 1 \tag{2.22}
\end{equation*}
$$

Then, as is easily seen, we have the following
Lemma 6. Let E_{k} be the matrix defined by

$$
E_{k}=\operatorname{diag}\left(1, \delta, \delta^{2}, \ldots, \delta^{k-1}\right)
$$

Then, under the condition (2.22), it is valid that

$$
M(k ; p, q ; \alpha, \beta ; \gamma, \delta)=E_{k}^{-1} \gamma \delta L\left(k ; p \delta^{-1}, q \delta ; \alpha \delta^{-2}, \beta \delta^{2}\right) E_{k} .
$$

This lemma reduces the problem of finding Jordan's canonical form of M to that of finding the canonical form of $L\left(k ; p \delta^{-1}, q \delta ; \alpha \delta^{-2}, \beta \delta^{2}\right)$. As special cases of L, we consider two cases where $p=q=1, \alpha=\beta=0$ and $p=q=0, \alpha=$ $\beta=1$. Put

$$
\begin{gathered}
L_{11}(k ; \delta)=L\left(k ; \delta^{-1}, \delta ; 0,0\right), \quad L_{12}(k ; \delta)=L\left(k ; 0,0 ; \delta^{-2}, \delta^{2}\right), \\
G_{11}(k ; \delta)=\operatorname{diag}\left(2 \cos \frac{\pi}{k}, \cdots, 2 \cos \frac{(k-1) \pi}{k}, \delta+\delta^{-1}\right) \\
G_{12}(k ; \delta)=\operatorname{diag}\left(2 \cos \frac{\pi}{k-1}, \cdots, 2 \cos \frac{(k-2) \pi}{k-1}, \delta+\delta^{-1},-\left(\delta+\delta^{-1}\right)\right), \\
R_{11}(k ; \delta)=\left(r_{i j}\right), \quad R_{12}(k ; \delta)=\left(s_{i j}\right),
\end{gathered}
$$

where

$$
\begin{gathered}
r_{i j}=\sqrt{2 / k}\left(\delta \sin \frac{i j \pi}{k}-\sin \frac{(i-1) j \pi}{k}\right) /\left(1+\delta^{2}-2 \delta \cos \frac{j \pi}{k}\right)^{1 / 2} \quad(1 \leqq j \leqq k-1) \\
r_{i k}=\sqrt{\left(1-\delta^{2}\right) /\left(1-\delta^{2 k}\right)} \delta^{i-1} \\
s_{i j}=\left(\delta \sin \frac{i j \pi}{k-1}-\delta^{-1} \sin \frac{(i-2) j \pi}{k-1}\right) /\left(\left(\frac{k-1}{2}-\sin ^{2} \frac{j \pi}{k-1}\right)\left(\delta-\delta^{-1}\right)^{2}+\right. \\
\left.+\left(\delta+\delta^{-1}\right)^{2} \sin ^{2} \frac{j \pi}{k-1}\right)^{1 / 2} \quad(1 \leqq j \leqq k-2) \\
\left.s_{i k-1}=\sqrt{\left(1-\delta^{4}\right) /\left(2\left(\delta^{2}-\delta^{2 k}\right)\right.}\right) \delta^{i-1} \\
s_{i k}=\sqrt{\left(1-\delta^{4}\right) /\left(2\left(\delta^{2}-\delta^{2 k}\right)\right)}(-\delta)^{i-1}
\end{gathered}
$$

Then by Corollary 1 we have the following
Theorem 2. Under the condition (2.22), it is valid that

$$
\begin{aligned}
& L_{j}(k ; \delta)=R_{j}(k ; \delta) G_{j}(k ; \delta) R_{j}(k ; \delta)^{-1} \quad(j=11,12) \\
& R_{11}(k ; \delta)^{-1}=R_{11}(k ; \delta)^{T}, \quad R_{12}(k ; \delta)^{-1}=R_{12}(k ; \delta)^{T} D_{3}
\end{aligned}
$$

where

$$
D_{3}=\operatorname{diag}\left(\delta^{2} /\left(1+\delta^{2}\right), 1, \ldots, 1,1 /\left(1+\delta^{2}\right)\right)
$$

We consider further the matrices

$$
\begin{aligned}
& L_{13}(k ; p, q ; \delta)=L\left(k ; p \delta^{-1}, q \delta ; 0,0\right) \\
& L_{14}(k ; p, q ; \delta)=L\left(k ; p \delta^{-1}, q \delta ; \delta^{-2}, \delta^{2}\right),
\end{aligned}
$$

and define $G_{j}(k ; p, q ; \delta)$ and $R_{j}(k ; p, q ; \delta)(j=13,14)$ likewise.
Since

$$
a I_{k}-M(k ; p, q ; \alpha, \beta ; \delta)=E_{k}^{-1} \gamma \delta\left((\gamma \delta)^{-1} a I_{k}-L\left(k ; p \delta^{-1}, q \delta ; \alpha \delta^{-2}, \beta \delta^{2}\right)\right) E_{k},
$$

we can obtain $\left(a I_{k}-M\right)^{-1}$ by Lemma 3.

2.2 Quidiagonal matrices

Let A be the matrix defined by

$$
\begin{equation*}
A=a I-2 b J+\left(J^{2}-2 I\right) \tag{2.23}
\end{equation*}
$$

where

$$
J^{2}-2 I=\left(\begin{array}{rllll}
-1, & 0, & 1 & & \\
0, & 0, & 0, & 1 & 0 \\
1, & 0, & \ddots & \ddots & \ddots \\
& 1, & \ddots & \ddots & \ddots \\
& & \ddots & \ddots & \ddots \\
0 & & \ddots & \ddots & \ddots \\
0 & & \ddots & 1 \\
0 & & & 1, & 0, \\
0 & -1
\end{array}\right) .
$$

Then we have

$$
A=R_{1}\left(\left(a-2-b^{2}\right) I+(b I-J)^{2}\right) R_{1}^{-1}
$$

Thus the matrices of the form (2.23) can be diagonalized easily.
Let $S_{k}(\lambda)$ and $T_{k}(\lambda)$ be the solutions of the difference equation

$$
\begin{equation*}
y_{k+2}-2 a y_{k+1}+d y_{k}-2 a y_{k-1}+y_{k-2}=0 \quad(k=0,1,2, \ldots) \tag{2.24}
\end{equation*}
$$

satisfying the initial conditions

$$
y_{-1}=y_{0}=0, \quad y_{1}=1, \quad y_{2}=0
$$

and

$$
y_{-1}=y_{0}=y_{1}=0, \quad y_{2}=1
$$

respectively, where

$$
d=a^{2}+2-\lambda \quad(a>0) .
$$

Put

$$
R_{j}(\lambda)=T_{j}(\lambda) S_{j-1}(\lambda)-T_{j-1}(\lambda) S_{j}(\lambda)
$$

Then, as is easily checked, we have the following
Lemma 7. $\quad R_{j}(j=0,1,2, \ldots)$ are the solutions of the difference equation
(2.25) $R_{j+3}-d R_{j+2}+\left(4 a^{2}-1\right) R_{j+1}-\left(8 a^{2}-2 d\right) R_{j}+\left(4 a^{2}-1\right) R_{j-1}-d R_{j-2}+R_{j-3}=0$ satisfying the initial condition

$$
R_{-2}=1, \quad R_{-1}=R_{0}=R_{1}=0, \quad R_{2}=1, \quad R_{3}=d
$$

Moreover it is valid that

$$
R_{j}(\lambda)=T_{j}(\lambda)^{2}-T_{j-1}(\lambda) T_{j+1}(\lambda)
$$

Solving the characteristic equation of (2.25), we have the following
Lemma 8. $\quad R_{j}(\lambda)$ can be expressed as follows:
In the case where $\lambda>(a+2)^{2}$ or $\lambda<(a-2)^{2}$,

$$
\begin{aligned}
R_{j}(\lambda)=\frac{2}{(r-2)(s-2)} & +\frac{1}{(r-2)(r-s)}\left(U_{j}(r)-U_{j-2}(r)\right)- \\
& -\frac{1}{(s-2)(r-s)}\left(U_{j}(s)-U_{j-2}(s)\right)
\end{aligned}
$$

where

$$
r=\frac{1}{2}\left(a^{2}-\lambda+\sqrt{\left(a^{2}-4-\lambda\right)^{2}-16 \lambda}\right), \quad s=\frac{1}{2}\left(a^{2}-\lambda-\sqrt{\left(a^{2}-4-\lambda\right)^{2}-16 \lambda}\right) .
$$

In the case where $(a-2)^{2}<\lambda<(a+2)^{2}$,

$$
R_{j}(\lambda)=\frac{1}{4 \lambda}\left(2-2 U_{j-1}(r) U_{j-1}(s)+U_{j-2}(s) U_{j}(r)+U_{j}(s) U_{j-2}(r)\right),
$$

where

$$
r=a+\sqrt{\lambda}, \quad s=a-\sqrt{\lambda} .
$$

In the case where $\lambda=(a+2)^{2}$ or $\lambda=(a-2)^{2}$,

$$
R_{j}(\lambda)=\left\{\begin{array}{l}
\frac{2}{(r-2)^{2}}\left(1-U_{j-1}(r)\right)+\frac{1}{r-2} j U_{j-1}(r) \quad(r \neq 2) \\
\frac{1}{12} j^{2}\left(j^{2}-1\right) \quad(r=2)
\end{array}\right.
$$

where

$$
r=\left(a^{2}-\lambda\right) / 2
$$

Solving the characteristic equation of (2.24) and using the initial conditions, we have the following

Lemma 9. $\quad S_{k}(\lambda)$ and $T_{k}(\lambda)$ can be expressed explicitly as follous:
In the case where $\lambda>0$,

$$
\begin{gathered}
S_{k}(\lambda)=\frac{1}{2 c}\left(\rho U_{k-1}(\mu)-\mu U_{k-1}(\rho)+U_{k-2}(\mu)-U_{k-2}(\rho)\right) \\
T_{k}(\lambda)=\frac{1}{2 c}\left(U_{k-1}(\rho)-U_{k-1}(\mu)\right)
\end{gathered}
$$

where

$$
c=\sqrt{\lambda}, \quad \rho=a+c, \quad \mu=a-c
$$

In the case where $\lambda<0$,

$$
\begin{aligned}
S_{k}(\lambda)= & \frac{1}{4 c}\left(U_{k+1}(\mu) U_{k-3}(\rho)-U_{k-3}(\mu) U_{k+1}(\rho)+\right. \\
& \left.+U_{k-1}(\mu) U_{k-3}(\rho)-U_{k-3}(\mu) U_{k-1}(\rho)\right) \\
T_{k}(\lambda) & =\frac{1}{4 c}\left(U_{k-2}(\mu) U_{k}(\rho)-U_{k}(\mu) U_{k-2}(\rho)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \mu=2 \cos \theta=\frac{1}{2}\left((a+2)^{2}-\lambda-\sqrt{(a-2)^{2}}-\lambda\right) \\
& \rho=2 \cosh \sigma=\frac{1}{2}\left((a+2)^{2}-\lambda+\sqrt{(a-2)^{2}-\lambda}\right) \\
& c=\cosh ^{2} \sigma-\cos ^{2} \theta
\end{aligned}
$$

In the case where $\lambda=0$,

$$
\begin{aligned}
& S_{k}(\lambda)=\frac{1}{4-a^{2}}\left((2+2 k) U_{k+1}(a)+(k-2) U_{k-1}(a)-(2+2 k) U_{k-3}(a)\right) \\
& T_{k}(\lambda)=\frac{1}{4-a^{2}}\left((k+1) U_{k-2}(a)-U_{k}(a)\right)
\end{aligned}
$$

Put

$$
\begin{aligned}
& N(a ; p, q)=\left(a^{2}+2\right) I-2 a J+\left(J^{2}-2 I\right)+(p+1) U+(q+1) U^{J}
\end{aligned}
$$

Then there holds the following
Lemma 10. The eigenvalues of $N(a ; p, q)$ are all real and they are the solutions of the equation

$$
\begin{equation*}
H(\lambda)=R_{n+2}(\lambda)+(p+q) R_{n+1}(\lambda)+p q R_{n}(\lambda)=0 \tag{2.26}
\end{equation*}
$$

Let λ be an eigenvalue of $N(a ; p, q)$ and $x_{i}(i=1,2, \cdots, n)$ be the solution of the difference equation

$$
\begin{equation*}
x_{r+2}-2 a x_{r+1}+d x_{r}-2 a x_{r-1}+x_{r-2}=0 \quad(r=1,2, \cdots) \tag{2.27}
\end{equation*}
$$

satisfying the initial condition

$$
x_{-1}=p T_{n+1}(\lambda), \quad x_{0}=0, \quad x_{1}=T_{n+1}(\lambda), \quad x_{2}=-S_{n+1}(\lambda)+p T_{n}(\lambda)
$$

and put

$$
\boldsymbol{x}^{T}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Then \boldsymbol{x} is an eigenvector corresponding to λ.
Proof. Since $N(a ; p, q)$ is a real symmetric matrix, its eigenvalues are all real. The equation $N(a ; p, q) \boldsymbol{x}-\lambda \boldsymbol{x}=\mathbf{0}$ can be written as follows:

$$
\left\{\begin{array}{l}
(d+p) x_{1}-2 a x_{2}+x_{3}=0 \tag{2.28}\\
-2 a x_{1}+d x_{2}-2 a x_{3}+x_{4}=0 \\
x_{i-2}-2 a x_{i-1}+d x_{i}-2 a x_{i+1}+x_{i+2}=0 \quad(i=3,4, \cdots, n-2), \\
x_{n-3}-2 a x_{n-2}+d x_{n-1}-2 a x_{n}=0 \\
x_{n-2}-2 a x_{n-1}+(d+q) x_{n}=0
\end{array}\right.
$$

where $d=a^{2}+2-\lambda$. Then we have inductively

$$
\begin{equation*}
x_{j}=\left(S_{j}(\lambda)-p T_{j-1}(\lambda)\right) x_{1}+T_{j}(\lambda) x_{2} \quad(j=1,2, \ldots) \tag{2.29}
\end{equation*}
$$

and the last two equations of the system (2.28) become as follows:

$$
\begin{align*}
& x_{n-3}-2 a x_{n-2}+d x_{n-1}-2 a x_{n}=-x_{n+1}=0, \tag{2.30}\\
& x_{n-2}-2 a x_{n-1}+(d+q) x_{n}=q x_{n}+2 a x_{n+1}-x_{n+2}=0 \tag{2.31}
\end{align*}
$$

Subtracting (2.30) from (2.31) and substituting (2.29) into them, we have

$$
\begin{gather*}
\left(S_{n+1}(\lambda)-p T_{n}(\lambda)\right) x_{1}+T_{n+1}(\lambda) x_{2}=0 \tag{2.32}\\
\left(S_{n+2}(\lambda)-p T_{n+1}(\lambda)-q\left(S_{n}(\lambda)-p T_{n-1}(\lambda)\right)\right) x_{1}+\left(T_{n+2}(\lambda)-q T_{n}(\lambda)\right) x_{2}=0
\end{gather*}
$$

For these equations to have a non-trivial solution it is necessary and sufficient that

$$
\begin{aligned}
H(\lambda)= & T_{n+2}(\lambda) S_{n+1}(\lambda)-T_{n+1}(\lambda) S_{n+2}(\lambda)+p\left(T_{n+1}(\lambda)^{2}-T_{n}(\lambda) T_{n+2}(\lambda)\right)+ \\
& +q\left(T_{n+1}(\lambda) S_{n}(\lambda)-T_{n}(\lambda) S_{n+1}(\lambda)\right)+p q\left(T_{n}(\lambda)^{2}-T_{n-1}(\lambda) T_{n+1}(\lambda)\right)=0 .
\end{aligned}
$$

Using Lemma 7, we can rewrite this equation in the form (2.26).
Evidently $x_{i}(i=1,2, \ldots, n)$ defined by (2.29) satisfy the equation (2.27). By (2.32) we set

$$
x_{1}=T_{n+1}(\lambda), \quad x_{2}=-S_{n+1}(\lambda)+p T_{n}(\lambda) .
$$

Then we have from (2.29)

$$
\begin{aligned}
& x_{0}=\left(S_{0}(\lambda)-p T_{-1}(\lambda)\right) T_{n+1}(\lambda)+T_{0}(\lambda)\left(p T_{n}(\lambda)-S_{n+1}(\lambda)\right)=0, \\
& x_{-1}=\left(S_{-1}(\lambda)-p T_{-2}(\lambda)\right) T_{n+1}(\lambda)+T_{-1}(\lambda)\left(p T_{n}(\lambda)-S_{n+1}(\lambda)\right)=p T_{n+1}(\lambda) .
\end{aligned}
$$

This completes the proof of the lemma.
Now we consider the equation

$$
\begin{equation*}
(N(a ; p, q)-\lambda I) \boldsymbol{x}=\boldsymbol{f} \tag{2.33}
\end{equation*}
$$

where λ is a real number that is not an eigenvalue of $N(a ; p, q)$. Then we have the following

Lemma 11. The solution of the equation (2.33) is given by the formula

$$
\begin{gather*}
x_{r}=\sum_{j=1}^{r-2} T_{r-j}(\lambda) f_{j}+\left(S_{r}(\lambda)-p T_{r-1}(\lambda)\right) x_{1}+T_{r}(\lambda) x_{2}, \tag{2.34}\\
\quad(r=1,2, \cdots, n) \\
x_{1}=H(\lambda)^{-1} \sum_{j=1}^{n} X_{j} f_{n+1-j}, \tag{2.35}\\
x_{2}=H(\lambda)^{-1} \sum_{j=1}^{n} Y_{j} f_{n+1-j}, \tag{2.36}
\end{gather*}
$$

where X_{j} and Y_{j} are the solutions of the equation (2.24) satisfying the initial conditions

$$
X_{-1}=q T_{n+1}(\lambda), \quad X_{0}=0, \quad X_{1}=T_{n+2}(\lambda), \quad X_{2}=(d+q) T_{n}(\lambda)-2 a T_{n-1}(\lambda)+T_{n-2}(\lambda)
$$

and

$$
\begin{gathered}
Y_{-1}=-q S_{n+1}(\lambda)+p q T_{n}(\lambda), \quad Y_{0}=0, \quad Y_{1}=-S_{n+1}(\lambda)+p T_{n}(\lambda), \\
Y_{2}=S_{n+2}(\lambda)-2 a S_{n+1}(\lambda)-q S_{n}(\lambda)-p\left(T_{n+1}(\lambda)-2 a T_{n}(\lambda)-q T_{n-1}(\lambda)\right)
\end{gathered}
$$

respectively.
Proof. Form the system (2.33) we have inductively the formula (2.34), and from the last two equations of the system (2.33) it follows that

$$
\begin{aligned}
&\left(S_{n+1}(\lambda)-p T_{n}(\lambda)\right) x_{1}+T_{n+1}(\lambda) x_{2}=-\sum_{j=1}^{n} T_{n+1-j}(\lambda) f_{j}, \\
&\left(S_{n+2}(\lambda)-q S_{n}(\lambda)-p T_{n+1}(\lambda)+p q T_{n-1}(\lambda)\right) x_{1}+\left(T_{n+2}(\lambda)-q T_{n}(\lambda)\right) x_{2}= \\
&=-\sum_{j=1}^{n}\left(T_{n+2-j}(\lambda)-q T_{n-j}(\lambda)\right) f_{j} .
\end{aligned}
$$

Solving these equations, we have

$$
\begin{gathered}
H(\lambda) x_{1}=T_{n+1}(\lambda) \sum_{j=1}^{n}\left(T_{n+2-j}(\lambda)-q T_{n-j}(\lambda)\right) f_{j}- \\
-\left(T_{n+2}(\lambda)-q T_{n}(\lambda)\right) \sum_{j=1}^{n} T_{n+1-j}(\lambda) f_{j}, \\
H(\lambda) x_{2}=\left(S_{n+2}(\lambda)-q S_{n}(\lambda)-p T_{n+1}(\lambda)+p q T_{n-1}(\lambda)\right) \sum_{j=1}^{n} T_{n+1-j}(\lambda) f_{j}- \\
-\left(S_{n+1}(\lambda)-p T_{n}(\lambda)\right) \sum_{j=1}^{n}\left(T_{n+2-j}(\lambda)-q T_{n-j}(\lambda)\right) f_{j} .
\end{gathered}
$$

From these (2.35) and (2.36) are obtained.

3. Second order elliptic equations

3.1 Methods for the solution

The problem of solving approximately the second order elliptic equations is often reduced to that of solving the difference equations of the following form:
(3.1) $\left.\left.\quad M \boldsymbol{x}=\left(\begin{array}{llll}A_{1}, & & -C_{1}, & \\ -B_{2}, & A_{2}, & -C_{2}, \\ & \ddots & \ddots & \ddots \\ & -B_{m-1}, & A_{m-1}, & \ddots \\ & -C_{m-1}, & A_{m}\end{array}\right) \right\rvert\, \begin{array}{l}\boldsymbol{x}_{1} \\ \boldsymbol{x}_{2} \\ \vdots \\ \boldsymbol{x}_{m-1} \\ \boldsymbol{x}_{m}\end{array}\right)=\left(\left.\begin{array}{l}\boldsymbol{f}_{1} \\ \boldsymbol{f}_{2} \\ \vdots \\ \boldsymbol{f}_{m-1} \\ \boldsymbol{f}_{m}\end{array} \right\rvert\,=\boldsymbol{f}\right.$,

Where A_{i}, B_{i} and C_{i} are $n \times n$ matrices. For convenience we consider that $B_{1}=C_{m}=0$.

Methods for solving the equation (3.1) are considered in the following three cases:
1°. Case where M is similar to a block-diagonal matrix. When M is expressed as

$$
\begin{equation*}
M=E \operatorname{diag}\left(D_{1}, D_{2}, \ldots, D_{m}\right) E^{-1} \tag{3.2}
\end{equation*}
$$

since

$$
M^{-1}=E \operatorname{diag}\left(D_{1}^{-1}, D_{2}^{-1}, \ldots, D_{m}^{-1}\right) E^{-1}
$$

the problem is reduced to that of finding the matrices $D_{i}^{-1}(i=1,2, \ldots, m)$.
2°. Case where M is decomposed as $M=W+N$ and W^{-1} is easily obtained. The equation (3.1) can be rewritten as follows:

$$
\begin{equation*}
\left(I+W^{-1} N\right) \boldsymbol{x}=W^{-1} \boldsymbol{f} \tag{3.3}
\end{equation*}
$$

This decomposition is effective when the problem of solving (3.3) is reduced to that of solving the equations of the lower order.
3°. Case where all the block principal minor matrices

$$
M_{i}=\left(\begin{array}{ccc}
A_{1}, & -C_{1}, & \\
-B_{2}, & A_{2}, & -C_{2} \\
& \ddots, B_{i} & A_{i}
\end{array}\right) \quad(i=1,2, \ldots, m)
$$

of M are non-singular. M can be decomposed into the form $L U$, where

$$
\begin{align*}
& P_{1}=A_{1}, \\
& P_{k}=A_{k}-B_{k} P_{k-1}^{-1} C_{k-1} \quad(k=2,3, \ldots, m) . \tag{3.4}
\end{align*}
$$

Then since

$$
U \boldsymbol{x}=L^{-1} \boldsymbol{f}=\boldsymbol{g}, \quad \boldsymbol{x}=U^{-1} \boldsymbol{g}
$$

$\boldsymbol{x}_{i}(i=1,2, \ldots, m)$ can be obtained through the recurrence formulas

$$
\begin{aligned}
& \boldsymbol{g}_{1}=\boldsymbol{f}_{1}, \quad \boldsymbol{g}_{k}=\boldsymbol{f}_{k}+B_{k} P_{k-1}^{-1} \boldsymbol{g}_{k-1} \quad(k=2,3, \ldots, m), \\
& \boldsymbol{x}_{m}=P_{m}^{-1} \boldsymbol{g}_{m}, \quad \boldsymbol{x}_{k}=P_{k}^{-1}\left(\boldsymbol{g}_{k}+C_{k} \boldsymbol{x}_{k+1}\right) \quad(k=m-1, m-2, \ldots, 1) .
\end{aligned}
$$

In the case where A_{k}, B_{k}, and C_{k} can be diagonalized by the same similarity transformation, namely where there exists a matrix F such that

$$
A_{k}=F \hat{A}_{k} F^{-1}, \quad B_{k}=F \hat{B}_{k} F^{-1}, \quad C=F \hat{C}_{k} F^{-1} \quad(k=1,2, \ldots, m)
$$

with diagonal matrices \hat{A}_{k}, \hat{B}_{k} and \hat{C}_{k}, this method is easily applied. Since

$$
M=\left(I_{m} \otimes F\right)\left[\begin{array}{cccc}
\hat{A}_{1}, & -\hat{C}_{1}, & & 0 \tag{3.5}\\
-\hat{B}_{2}, & \hat{A}_{2}, & -\hat{C}_{2} & 0 \\
& \ddots & \ddots & \\
C & -\hat{B}_{m-1}, \hat{A}_{m-1}, & \ddots & -\hat{C}_{m-1}
\end{array}\right]\left(I_{m} \otimes F\right)^{-1},
$$

if we put $\boldsymbol{z}_{i}=F^{-1} \boldsymbol{x}_{i}$ and $\hat{\boldsymbol{f}}_{i}=F^{-1} \boldsymbol{f}_{i}$, then the system (3.1) can be rewritten as follows:

$$
\hat{M}_{\boldsymbol{z}}=\left(\begin{array}{cc}
\hat{A}_{1}, & -\hat{C}_{1}, \\
-\hat{B}_{2}, \ddots & \ddots \ddots \\
\ddots & \ddots \ddots \\
\ddots & \ddots \\
& -\hat{B}_{m}, \hat{A}_{m}
\end{array}\right]\left(\hat{C}_{m-1}\right)\left(\begin{array}{c}
\boldsymbol{z}_{1} \\
\boldsymbol{z}_{2} \\
\vdots \\
\boldsymbol{z}_{m-1} \\
\boldsymbol{z}_{m}
\end{array}\right)=\left(\begin{array}{c}
\hat{\boldsymbol{f}}_{1} \\
\hat{\boldsymbol{f}}_{2} \\
\vdots \\
\hat{\boldsymbol{f}}_{m-1} \\
\hat{\boldsymbol{f}}_{m}
\end{array}\right)=\hat{\boldsymbol{f}}
$$

P_{k} and P_{k}^{-1} are easily obtained because \hat{A}_{k}, \hat{B}_{k} and \hat{C}_{k} are diagonal matrices.
In the particular case where

$$
\begin{array}{ll}
\hat{A}_{i}=A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right) & \left(a_{j}>0 ; i=1,2, \ldots, m\right), \\
\hat{B}_{i}=B=\operatorname{diag}\left(b_{1}, b_{2}, \ldots, b_{n}\right) & \left(b_{j}>0 ; i=2,3, \ldots, m\right) \\
\hat{C}_{i}=C=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right) & \left(c_{j}>0 ; i=1,2, \ldots, m-1\right),
\end{array}
$$

we investigate the stability of this numerical process.

Theorem 3. Suppose that

$$
\begin{equation*}
a_{i} \geqq \max \left(2 \sqrt{b_{i} c_{i}}, 2 b_{i} c_{i}, 2 b_{i}, 2 c_{i}, b_{i}+c_{i}, 1+b_{i} c_{i}\right) \quad(i=1,2, \cdots, n) \tag{3.6}
\end{equation*}
$$

Then both the forward process

$$
\begin{equation*}
\boldsymbol{g}_{k}=\hat{\boldsymbol{f}}_{k}+B P_{k-1}^{-1} \boldsymbol{g}_{k-1} \quad(k=2,3, \cdots, m) \tag{3.7}
\end{equation*}
$$

and the backward process

$$
\begin{equation*}
\boldsymbol{z}_{k}=P_{k}^{-1} C \boldsymbol{z}_{k+1}+P_{k}^{-1} \boldsymbol{g}_{k} \quad(k=m, m-1, \ldots, 1) \tag{3.8}
\end{equation*}
$$

are numerically stable.
Proof. The vectors \boldsymbol{g}_{k} and \boldsymbol{z}_{k} are written explicitly in terms of $\hat{\boldsymbol{f}}_{j}$ and \boldsymbol{g}_{j} as follows:

$$
\begin{array}{ll}
\boldsymbol{g}_{k}=\hat{\boldsymbol{f}}_{k}+\sum_{j=1}^{k-1}\left(\sum_{l=j}^{k-1} B P_{l}^{-1}\right) P_{j}^{-1} \hat{\boldsymbol{f}}_{j} & (k=1,2, \ldots, m), \\
\boldsymbol{z}_{k}=\boldsymbol{P}_{k}^{-1} \boldsymbol{g}_{k}+\sum_{j=k+1}^{m}\left(\sum_{l=k}^{j-1} P_{l}^{-1} C\right) P_{j}^{-1} \boldsymbol{g}_{j} & (k=m, m-1, \ldots, 1) .
\end{array}
$$

Hence in order that the round-off errors incurred in the course of numerical computation may not grow, it is sufficient that the eigenvalues of $P_{l}^{-1}, B P_{l}^{-1}$ and $P_{l}^{-1} C(l=1,2, \ldots, m)$ are all less than one in modulus.

Put $P_{j}=Q_{j-1}^{-1} Q_{j}(j=1,2, \ldots)$, where Q_{j} are diagonal matrices. Then, in view of (3.5), we have

$$
\begin{aligned}
& Q_{j}=A Q_{j-1}-B C Q_{j-2} \quad(j=2,3, \ldots, m) \\
& Q_{0}=I, \quad Q_{1}=A .
\end{aligned}
$$

Since by (3.6) $a_{i} \geqq 2 d_{i}=2 \sqrt{b_{i} c_{i}}, Q_{j}$ can be written as follows:

$$
Q_{j}=\operatorname{diag}\left(\ldots, \frac{d_{i}^{j} \sinh (j+1) \omega_{i}}{\sinh \omega_{i}}, \ldots\right)
$$

where

$$
\mathrm{e}^{-\omega_{i}}=\frac{1}{2 d_{i}}\left(a_{i}-\sqrt{a_{i}^{2}-4 d_{i}^{2}}\right) .
$$

Hence we have

$$
P_{j}^{-1}=\operatorname{diag}\left(\cdots, \frac{\sinh j \omega_{i}}{d_{i} \sinh (j+1) \omega_{i}}, \cdots\right)
$$

On the other hand, since $\cosh (j+1) \omega / \sinh (j+1) \omega>1(\omega>0)$, it follows that

$$
\begin{gathered}
\frac{\sinh j \omega}{\sinh (j+1)}=\cosh \omega-\frac{\cosh (j+1) \omega}{\sinh (j+1) \omega} \sinh \omega \\
<\cosh \omega-\sinh \omega=\mathrm{e}^{-\omega} .
\end{gathered}
$$

Hence we have only to show that

$$
\mathrm{e}^{-\omega_{i}} / d_{i} \leqq 1, \quad b_{i} \mathrm{e}^{-\omega_{i}} / d_{i} \leqq 1, \quad c_{i} \mathrm{e}^{-\omega_{2}} / d_{i} \leqq 1
$$

Since $b_{i} \leqq a_{i}-c_{i}$, it follows that

$$
4 b_{i}^{2} \leqq 4 a_{i} b_{i}-4 d_{i}^{2}, \quad\left(a_{i}-2 b_{i}\right)^{2} \leqq a_{i}^{2}-4 d_{i}^{2}
$$

and so

$$
a_{i}-\sqrt{a_{i}^{2}-4 d_{i}^{2}} \leqq 2 b_{i}
$$

Similarly we obtain the result

$$
a_{i}-\sqrt{a_{i}^{2}-4 d_{i}^{2}} \leqq 2 c_{i}
$$

From these follows that

$$
b_{i} \mathrm{e}^{-\omega_{i}} / d_{i} \leqq 1, \quad c_{i} \mathrm{e}^{-\omega_{i}} / d_{i} \leqq 1
$$

Since $b_{i} c_{i}-a_{i}<-1$, it follows that

$$
4 b_{i}^{2} c_{i}^{2}-4 a_{i} b_{i} c_{i} \leqq-4 d_{i}^{2}, \quad\left(a_{i}-2 d_{i}^{2}\right)^{2} \leqq a_{i}^{2}-4 d_{i}^{2}
$$

so that

$$
a_{i}-\sqrt{a_{i}^{2}-4 d_{i}^{2}} \leqq 2 d_{i}^{2}
$$

This means that $\mathrm{e}^{-\omega_{i}} / d_{i} \leqq 1$. Thus the theorem has been proved.

3.2 Examples

In the following examples, we are concerned with partial differential
equations over a rectangle R with sides parallel to the x - and y-axes. We denote by $U H$ and $L H$ the upper and lower horizontal sides of R respectively and by $R V$ and $L V$ the right and left vertical sides respectively. Let h and h_{1} be the mesh-sizes in the x - and y-directions respectively, and put

$$
\begin{equation*}
\sigma=h / h_{1}, \quad b=\sigma^{2}, \quad a=2(1+b) \tag{3.9}
\end{equation*}
$$

Values of the unknown function $u_{i j}=u\left(x_{i}, y_{j}\right)$ are arranged in the following manner:

$$
\boldsymbol{x}_{i}^{T}=\left(u_{1 i}, u_{2 i}, \ldots, u_{n i}\right) \quad(i=1,2, \ldots, m)
$$

Laplace's operator Δ is approximated by the following two formulas:
(I) Five point formula

$$
-(\Delta u)_{i j}=h^{-2} H u_{i j}+O\left(h^{2}\right)
$$

$$
=\frac{1}{h^{2}} \begin{array}{|c|c|c|}
\hline & -b & \\
\hline-1 & a & -1 \\
\hline & -b & \\
\hline
\end{array} \mathrm{u}_{i j}+O\left(h^{2}\right)
$$

(II) Hermitian difference formula

$-\Omega(\Delta u)_{i j}=-\frac{1}{12}$| 1 | 10 | 1 |
| ---: | ---: | ---: |
| 10 | 100 | 10 |
| 1 | 10 | 1 |$(\Delta u)_{i j}$

$$
=\frac{1}{h^{2}} \begin{array}{|c|c|c|}
\hline-(1+b) & -(10 b-2) & -(1+b) \\
\hline-(10-2 b) & 10 a & -(10-2 b) \\
\hline-(1+b) & -(10 b-2) & -(1+b) \\
\hline
\end{array} u_{i j}+O\left(h^{4}\right) .
$$

3.2.1 Example 1

We consider the equation

$$
-\Delta u+\lambda u=f(x, y) \quad(\lambda \geqq 0)
$$

(I) Case where five point formula is used.

The matrix M takes the form

$$
M=I_{m} \otimes A-B \otimes I, \quad A=\left(a+\lambda h^{2}\right) I-b C
$$

where B is an $m \times m$ matrix, A and C are $n \times n$ matrices and, according to the boundary conditions imposed on $L H$ and $U H, C$ becomes as follows:
(a) when u is given on $L H$ and $U H, C=L_{1}$.
(b) when u is periodic in the y-direction, $C=L_{6}$.
(c) when u is given on $U H$ and u_{y} is given on $L H$,
(i) in the case where $u_{y}(x, y)$ is approximated by the forward difference $\left(u\left(x, y+h_{1}\right)-u(x, y)\right) / h_{1}$ or by the backward difference $(u(x, y)-$ $\left.u\left(x, y-h_{1}\right)\right) / h_{1}, C=L_{3}$.
(ii) in the case where $u_{y}(x, y)$ is approximated by the central difference $\left(u\left(x, y+h_{1}\right)-u\left(x, y-h_{1}\right)\right) /\left(2 h_{1}\right), C=L_{5}$.
(d) when u_{y} is given on $L H$ and $U H, C=L_{2}$ in the case (i) and $C=L_{4}$ in the case (ii).
(e) when $u_{y}+\sigma_{1} u$ is given on $L H$ and $u_{y}+\sigma_{2} u$ is given on $U H$,

$$
\begin{array}{ll}
C=L_{7}(p, q), \quad p=1+h_{1} \sigma_{1}, \quad q=1+h_{1} \sigma_{2} & \text { in the case (i); } \\
C=L_{8}(p, q), \quad p=2 h_{1} \sigma_{1}, \quad q=2 h_{1} \sigma_{2}, & \text { in the case (ii) }
\end{array}
$$

where σ_{1} and σ_{2} are constants.
(f) when u is given on $U H$ and $u_{y}+\sigma_{1} u$ is given on $L H$,

$$
\begin{array}{ll}
C=L_{9}(p), \quad p=1+h_{1} \sigma_{1} & \text { in the case (i) } \\
C=L_{10}(p), \quad p=2 h_{1} \sigma_{1} & \text { in the case (ii). }
\end{array}
$$

If $U H, L H, u_{y}, L_{i}, C, p, q, \mathrm{y}, \sigma_{1}$, and σ_{2} are replaced with $R V, L V, u_{x}, \hat{L}_{i}$, B, r, s, x, σ_{3} and σ_{4} respectively, then B is determined similarly.

Thus we have the matrices

$$
\begin{equation*}
M_{i j}=I_{m} \otimes\left(\left(a+\lambda h^{2}\right) I-b L_{i}\right)-\hat{L}_{j} \otimes I \quad(i, j=1,2, \ldots, 10) \tag{3.10}
\end{equation*}
$$

Since

$$
\begin{equation*}
M_{i j}=\left(I_{m} \otimes R_{i}\right)\left(I_{m} \otimes\left(\left(a+\lambda h^{2}\right) I-b G_{i}\right)-\hat{L}_{j} \otimes I\right)\left(I_{m} \otimes R_{i}\right)^{-1} \tag{3.11}
\end{equation*}
$$

matrices $M_{i j}$ are of the form (3.5) except for the case $j=6$.
On the other hand, since

$$
\begin{equation*}
M_{i j}=\left(\hat{R}_{j} \otimes I\right)\left(I_{m} \otimes\left(\left(a+\lambda h^{2}\right) I-b G_{i}\right)-\hat{G}_{j} \otimes I\right)\left(\hat{R}_{j} \otimes I\right)^{-1} \tag{3.12}
\end{equation*}
$$

matrices $M_{i j}$ are of the form (3.2). Moreover, it follows that

$$
\begin{gather*}
M_{i j}=\left(I_{m} \otimes R_{i}\right)\left(\hat{R}_{j} \otimes I\right) \Lambda_{i j}\left(\hat{R}_{j} \otimes I\right)^{-1}\left(I_{m} \otimes R_{i}\right)^{-1}, \tag{3.13}\\
\Lambda_{i j}=I_{m} \otimes\left(\left(a+\lambda h^{2}\right) I-b G_{i}\right)-\widehat{G}_{j} \otimes I, \\
=\operatorname{diag}\left(\Lambda_{i j}^{(1)}, \Lambda_{i j}^{(2)}, \cdots, \Lambda_{i j}^{(m)}\right), \\
\Lambda_{i j}^{(k)}=\operatorname{diag}\left(\lambda_{i j 1}^{(k)}, \lambda_{i j 2}^{(k)}, \cdots, \lambda_{i j n}^{(k)}\right), \\
\lambda_{i j l}^{(k)}=\left(a+\lambda h^{2}\right)-b \lambda_{i l}-\mu_{j k},
\end{gather*}
$$

where

$$
\begin{aligned}
G_{i} & =\operatorname{diag}\left(\lambda_{i 1}, \lambda_{i 2}, \ldots, \lambda_{i n}\right), \\
\widehat{G}_{j} & =\operatorname{diag}\left(\mu_{j 1}, \mu_{j 2}, \cdots, \mu_{j m}\right)
\end{aligned}
$$

In particular, we have

$$
\begin{equation*}
\chi_{i j l}^{(k)}=\lambda h^{2}+4 b \sin ^{2} \frac{\theta_{i l}}{2}+4 \sin ^{2} \frac{\theta_{j k}}{2} \quad(i, j=1,2, \ldots, 6) . \tag{3.14}
\end{equation*}
$$

When $M_{i j}$ are non-singular, evidently their inverse matrices are given by the formula

$$
M_{i j}^{-1}=\left(I_{m} \otimes R_{i}\right)\left(\hat{R}_{j} \otimes I\right) \Lambda_{i j}^{-1}\left(\hat{R}_{j} \otimes I\right)^{-1}\left(\hat{R}_{j} \otimes I\right)^{-1}
$$

Since

$$
\begin{aligned}
& M_{i 7}=M_{i 1}-\left(r U_{m}+s U_{m}^{J}\right) \otimes I, \quad M_{i 8}=M_{i 4}-\left(r U_{m}+s U_{m}^{J}\right) \otimes I, \\
& M_{i 9}=M_{i 1}-r U_{m} \otimes I, \quad M_{i 10}=M_{i 5}-r U_{m} \otimes I,
\end{aligned}
$$

matrices $M_{i 7}^{-1}, M_{i 8}^{-1}, M_{i 9}^{-1}$ and $M_{i 10}^{-1}$ can also be obtained by Lemma 5 . In addition, since

$$
\begin{align*}
M_{i j} & =I_{m} \otimes\left(\left(a+\lambda h^{2}\right) I-b L_{i}(p, q)\right)-\hat{L}_{j} \otimes I \tag{3.15}\\
& =\left(\hat{R}_{j} \otimes I\right) \Omega_{i j}\left(\hat{R}_{j} \otimes I\right)^{-1} \quad(i=7,8,9 ; j=1,4,5) \\
\Omega_{i j} & =I_{m} \otimes\left(\left(a+\lambda h^{2}\right) I-b L_{i}(p, q)\right)-\hat{G}_{j} \otimes I \\
& =\operatorname{diag}\left(\Omega_{i j}^{(1)}, \Omega_{i j}^{(2)}, \ldots, \Omega_{i j}^{(m)}\right) \\
& \Omega_{i j}^{(k)}=\left(a+\lambda h^{2}-\mu_{j k}\right) I-b L_{i}(p, q)
\end{align*}
$$

$\Omega_{i j}^{(k)-1}$ are obtained by Lemma 3. Hence $M_{i 1}^{-1}, M_{i 4}^{-1}$ and $M_{i 5}^{-1}$ can be obtained without knowledge of the eigenvalues of $L_{i}(p, q)$.
(II) Case where Hermitian difference formula is used. Put

$$
\begin{gathered}
a_{1}=10 a+\frac{25}{3} \lambda h^{2}, \quad a_{2}=10 b-2-\frac{5}{6} \lambda h^{2}, \\
b_{1}=10-2 b-\frac{5}{6} \lambda h^{2}, \quad b_{2}=1+b-\frac{1}{12} \lambda h^{2}, \\
A=a_{1} I-a_{2} J, \quad B=b_{1} I+b_{2} J .
\end{gathered}
$$

Then we have the formula

$-b_{2}$	$-a_{2}$	$-b_{2}$
$-b_{1}$	a_{1}	$-b_{1}$
$-b_{2}$	$-a_{2}$	$-b_{2}$

The partial derivatives u_{x} and u_{y} are to be approximated by the central difference. Then we have the following results:
1°. when u is given on the whole boundary,

$$
M_{1}=I_{m} \otimes A-\hat{L}_{1} \otimes B
$$

2°. when u is periodic in both directions,

$$
M_{2}=I_{m} \otimes\left(a_{1} I-a_{2} L_{6}\right)-\hat{L}_{6} \otimes\left(b_{1} I+b_{2} J\right)
$$

3°. when u is given on $L H$ and $U H$ and u is periodic in the x-direction,

$$
M_{3}=I_{m} \otimes A-\hat{L}_{6} \otimes B
$$

4°. when u is given on $L H$ and $U H$ and u_{x} is given on $L V$ and $R V$,

$$
M_{4}=I_{m} \otimes A-\hat{L}_{4} \otimes B
$$

5°. when u_{y} is given on $L H$ and $U H$ and u_{x} is given on $R V$ and $L V$,

$$
M_{5}=I_{m} \otimes\left(a_{1} I-a_{2} L_{4}\right)-\hat{L}_{4} \otimes\left(b_{1} I+b_{2} L_{4}\right)
$$

6°. when u is given on $L H$ and $U H, u_{x}+\sigma_{3} u$ is given on $L V$ and $u_{x}+\sigma_{4} u$ is given on $L V$,

$$
M_{6}=I_{m} \otimes A-\hat{L}_{8}(p, q) \otimes B, \quad p=2 h \sigma_{3}, \quad q=2 h \sigma_{4}
$$

7°. when u is given on $L H, U H$ and $R V$ and $u_{x}+\sigma_{3} u$ is given on $L V$,

$$
M_{7}=I_{m} \otimes A-\widehat{L}_{10}(p) \otimes B, \quad p=2 h \sigma_{3}
$$

Since

$$
\begin{gathered}
I_{m} \otimes A-\hat{L}_{i} \otimes B=\left(I_{m} \otimes R_{1}\right)\left(I_{m} \otimes\left(a_{1} I-a_{2} G\right)-\hat{L}_{i} \otimes\left(b_{1} I+b_{2} G_{1}\right)\right)\left(I_{m} \otimes R_{1}\right)^{-1}, \\
(i=1,3,4,6,7) \\
M_{2}=\left(I_{m} \otimes R_{6}\right)\left(I_{m} \otimes\left(a_{1} I-a_{2} G_{6}\right)-\hat{L}_{6} \otimes\left(b_{1} I+b_{2} G_{6}\right)\right)\left(I_{m} \otimes R_{6}\right)^{-1}, \\
M_{5}=\left(I_{m} \otimes R_{4}\right)\left(I_{m} \otimes\left(a_{1} I-a_{2} G_{4}\right)-\hat{L}_{4}\left(b_{1} I+b_{2} G_{4}\right)\right)\left(I_{m} \otimes R_{4}\right)^{-1},
\end{gathered}
$$

each block of M_{i} can be diagonalized.

3.2.2 Example 2

We consider the equation

$$
-\Delta u+d u_{x}+e u_{y}+g u=f(x, y)
$$

(I) Case where five point formula is used.

We assume first that

$$
d=d(x), \quad e=\text { const. }, \quad g=g(x)
$$

The mesh-size h is to be chosen small so that

$$
\gamma=\left(1-\frac{h}{2} e\right)>0, \quad \gamma \delta^{2}=\left(1+\frac{h}{2} e\right)>0 \quad(\delta>0)
$$

Then A_{k}, B_{k} and C_{k} become as follows:

$$
\begin{aligned}
& A_{1}=\left(a+h^{2} g_{1}-r\left(1+\frac{h}{2} d_{1}\right)\right) I-M(p, q ; \alpha, \beta ; \gamma, \delta), \\
& A_{i}=\left(a+h^{2} g_{i}\right) I-M(p, q ; \alpha, \beta ; \gamma, \delta) \quad(i=2,3, \cdots, m-1), \\
& A_{m}=\left(a+h^{2} g_{m}-s\left(1-\frac{h}{2} d_{m}\right)\right) I-M(p, q ; \alpha, \beta ; \gamma, \delta), \\
& C_{1}=\left(1-\frac{h}{2} d_{1}+u\left(1+\frac{h}{2} d_{1}\right)\right) I, \\
& C_{i}=\left(1-\frac{h}{2} d_{i}\right) I, \quad B_{i}=\left(1+\frac{h}{2} d_{i}\right) I \quad(i=2,3, \cdots, m-1), \\
& B_{m}=\left(1+\frac{h}{2} d_{m}+z\left(1-\frac{h}{2} d_{m}\right)\right) I .
\end{aligned}
$$

The values of p, q, α and β are determined according to the boundary conditions as follows:
in the case (a), $\quad p=q=\alpha=\beta=0 ;$
in the case (c) (i), $\quad p=1, \quad q=\alpha=\beta=0$;
in the case (c) (ii), $\quad p=0, \quad q=0, \quad \alpha=1, \quad \beta=0$;
in the case (d) (i), $\quad p=q=1, \quad \alpha=\beta=0$;
in the case (d) (ii), $\quad p=q=0, \quad \alpha=\beta=1$;
in the case (e) (i), $\quad p=1+h_{1} \sigma_{1}, \quad q=1+h_{1} \sigma_{2}, \quad \alpha=\beta=0$;
in the case (e) (ii), $\quad p=2 h_{1} \sigma_{1}, \quad q=2 h_{1} \sigma_{2}, \quad \alpha=\beta=1$;
in the case (f) (i), $\quad p=1+h_{1} \sigma_{1}, \quad q=0, \quad \alpha=\beta=0$;
in the case (f) (ii), $\quad p=2 h_{1} \sigma_{1}, \quad q=0, \quad \alpha=1, \quad \beta=0$.
If $L H, U H, u_{y}, p, q, \alpha, \beta, \sigma_{1}, \sigma_{2}$ and h_{1} are replaced with $L V, R V, u_{x}, r, s, w$, $z, \sigma_{3}, \sigma_{4}$ and h respectively, then the values of r, s, w, and z are determined similarly.

In each case it is readily seen by Lemma 6 that $A_{i}(i=1,2, \ldots, m)$ can be diagonalized by the same similarity transformation.

By interchanging the roles of x and y, the case where

$$
d=\text { const. }, \quad e=e(y), \quad g=g(y)
$$

can be treated analogously.
Next we are concerned with the case where d, e and g are constants.

We choose h small so that

$$
\mu=\left(1+\frac{h}{2} d\right)>0, \quad \mu \rho^{2}=\left(1-\frac{h}{2} d\right)>0 \quad(\rho>0)
$$

and put

$$
F=\operatorname{diag}\left(1, \rho, \rho^{2}, \cdots, \rho^{m-1}\right)
$$

Then it is valid that

$$
M=I_{m} \otimes\left(\left(a+h^{2} g\right) I-M(p, q ; \alpha, \beta ; \gamma, \delta)\right)-\hat{M}(r, s ; w, z ; \mu, \rho) \otimes I
$$

Since

$$
\begin{aligned}
M= & \left(I_{m} \otimes E\right)^{-1}(F \otimes I)^{-1} \Omega(F \otimes I)\left(I_{m} \otimes E\right), \\
\Omega=I_{m} \otimes & \left(\left(a+h^{2} g\right) I-\gamma \delta L\left(p \delta^{-1}, q \delta ; \alpha \delta^{-2}, \beta \delta^{2}\right)\right)- \\
& -\mu \rho \hat{L}\left(\gamma \rho^{-1}, s \rho ; w \rho^{-2}, z \rho^{2}\right) \otimes I,
\end{aligned}
$$

M can be reduced to the form (3.5).
(II) Case where Hermitian difference formula is used.

We assume that

$$
d=d(x), \quad e=0, \quad g=g(x)
$$

and put

$$
\begin{aligned}
a_{i}= & 10 a-2 h \delta_{x} d_{i}+8 h^{2} g_{i}+h^{2} \delta_{x}^{2} g_{i}+2 h^{2} d_{i}^{2}-\frac{1}{2} h^{3} d_{i} \delta_{x} g_{i}, \\
b_{i}= & (5-b)\left(2+h d_{i}\right)-h \delta_{x} d_{i}+\frac{h}{2} \delta_{x}^{2} d_{i}+h^{2}\left(d_{i}^{2}-g_{i}\right)+ \\
& +\frac{h^{2}}{2} \delta_{x} g_{i}-\frac{h^{2}}{4} d_{i} \delta_{x} d_{i}-\frac{h^{3}}{2} d_{i} g_{i}, \\
c_{i}= & (5-b)\left(2-h d_{i}\right)-h \delta_{x} d_{i}-\frac{h}{2} \delta_{x}^{2} d_{i}+h^{2}\left(d_{i}^{2}-g_{i}\right)- \\
& -\frac{h^{2}}{2} \delta_{x} g_{i}+\frac{h^{2}}{4} d_{i} \delta_{x} d_{i}+\frac{h^{3}}{2} d_{i} g_{i}, \\
\alpha_{i}= & 10 b-h^{2} g_{i}, \quad \beta_{i}=(1+b)\left(1+\frac{h}{2} d_{i}\right), \quad \gamma_{i}=(1+b)\left(1-\frac{h}{2} d_{i}\right),
\end{aligned}
$$

where

$$
\begin{array}{ll}
\delta_{x} f_{i j}=f_{i+1 j}-f_{i-1 j}, & \delta_{x}^{2} f_{i j}=f_{i+1 j}-2 f_{i j}+f_{i-1 j} \\
\delta_{y} f_{i j}=f_{i j+1}-f_{i j-1}, & \delta_{y}^{2} f_{i j}=f_{i j+1}-2 f_{i j}+f_{i j-1}
\end{array}
$$

Then we have the formula

$-\beta_{i}$	$-\alpha_{i}$	$-\gamma_{i}$		
$-b_{i}$	a_{i}	$-c_{i}$		
$-\beta_{i}$	$-\alpha_{i}$	$-\gamma_{i}$	$u_{i j}=$	$h^{2}\left(8 f_{i j}+f_{i j+1}+f_{i j-1}+\left(1+\frac{h}{2} d_{i}\right) f_{i-1 j}+\right.$
:---:				
$\left.+\left(1-\frac{h}{2} d_{i}\right) f_{i+1 j}\right)+O\left(h^{6}\right)$,				

and the following results are obtained:
1°. when u is given on the whole bounary,

$$
\begin{aligned}
A_{i} & =a_{i} I-\alpha_{i} J \quad(i=1,2, \ldots, m), \\
B_{i} & =b_{i} I+\beta_{i} J \quad(i=2,3, \ldots, m) \\
C_{i} & =c_{i} I+\gamma_{i} J \quad(i=1,2, \ldots, m-1)
\end{aligned}
$$

2°. when u is given on $L H$ and $U H$ and u_{x} is given on $L V$ and $R V$,

$$
\begin{aligned}
& A_{i}=a_{i} I-\alpha_{i} J \quad(i=1,2, \ldots, m) \\
& C_{1}=\left(b_{1}+c_{1}\right) I+\left(\beta_{1}+\gamma_{1}\right) J \\
& C_{i}=c_{i} I+\gamma_{i} J, \quad B_{i}=b_{i} I+\beta_{i} J \quad(i=2,3, \ldots, m-1) \\
& B_{m}=\left(b_{m}+c_{m}\right) I+\left(\beta_{m}+\gamma_{m}\right) J .
\end{aligned}
$$

3°. when u_{y} is given on $L H$ and $U H$ and u_{x} is given on $L V$ and $R V$,

$$
\begin{aligned}
A_{i} & =a_{i} I-\alpha_{i} L_{4} \quad(i=1,2, \ldots, m), \\
C_{1} & =\left(b_{1}+c_{1}\right) I+\left(\beta_{1}+\gamma_{1}\right) L_{4} \\
C_{i} & =c_{i} I+\gamma_{i} L_{4}, \quad B_{i}=b_{i} I+\beta_{i} L_{4} \quad(i=2,3, \ldots, m-1), \\
B_{m} & =\left(b_{m}+c_{m}\right) I+\left(\beta_{m}+\gamma_{m}\right) L_{4} .
\end{aligned}
$$

In each case M can be reduced to the form (3.5).

3.2.3 Example 3

We consider the axially symmetric problem

$$
\frac{1}{r} \frac{\partial u}{\partial r}+\frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=f(r, z) \quad(0<r<1,0<z<1)
$$

where $u(r, 0)$ is given and u is regular at $r=0$. Let $h=1 / n$ be the mesh-size in the r-direction and $h_{1}=h / \sigma$ be the mesh-size in the z-direction. 'If we use five point formula, then M becomes as follows:

$$
M_{i j}=I_{m} \otimes A_{i}-B_{j} \otimes b I
$$

where A_{i} and B_{j} are determined according to the boundary conditions in the following manner:
(i) when $u(1, z)$ is given,

$$
A_{1}=C+\left(-1+\frac{1}{2(n-1)}\right) V^{J}
$$

(ii) when $u_{r}(1, z)$ is given,

$$
A_{2}=C-2 V^{J} .
$$

(iii) when $u_{r}(1, z)+\sigma_{1} u(1, z)$ is given,

$$
A_{3}=C-2 V^{J}+2 h \sigma_{1}\left(1+\frac{1}{2(n-1)}\right) U^{J} .
$$

1°. when $u\left(r,(m+1) h_{1}\right)$ is given,

$$
B_{1}=J_{m} .
$$

2°. when $u_{z}\left(r, m h_{1}\right)$ is given,

$$
B_{2}=J_{m}+V_{m}^{J}
$$

3°. when $u_{z}\left(r, m h_{1}\right)+\sigma_{2} u\left(r, m h_{1}\right)$ is given,

$$
B_{3}=J_{m}+V_{m}^{J}-2 h \sigma_{2} U_{m}^{J},
$$

where

$$
C=\left(\right)
$$

Let

$$
B_{j}=S_{j} \Lambda_{j} S_{j}^{-1}, \quad \Lambda_{j}=\operatorname{diag}\left(\lambda_{j 1}, \lambda_{j 2}, \cdots, \lambda_{j m}\right) .
$$

Then since

$$
\begin{aligned}
M_{i j} & =\left(S_{j} \otimes I\right) \Omega_{i j}\left(S_{j} \otimes I\right)^{-1}, \\
\Omega_{i j} & =I_{m} \otimes A_{i}-\Lambda_{j} \otimes b I \\
& =\operatorname{diag}\left(\Omega_{i j}^{(1)}, \Omega_{i j}^{(2)}, \ldots, \Omega_{i j}^{(m)}\right), \\
\Omega_{i j}^{(k)} & =A_{i}-b \lambda_{j} I,
\end{aligned}
$$

matrices $M_{i j}$ are of the form (3.2).

3.2.4 Example 4

We consider Poisson's equation in polar coordinates

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=f(r, \theta) \quad(0<r<1)
$$

In the case where $u(1, \theta)$ is given, we have

$$
M=\left(\begin{array}{ccl}
B_{1}, & & \left(1+\frac{1}{2}\right) I \\
\left(1-\frac{1}{4}\right) I, & B_{2}, & \left(1+\frac{1}{4}\right) I \\
\ddots & \ddots & \ddots \\
\left(1-\frac{1}{2(m-1)}\right) I, B_{m-1}, & \left(1+\frac{1}{2(m-1)}\right) I \\
& \left(1-\frac{1}{2 m}\right) I, & B_{m}
\end{array}\right)
$$

where

$$
B_{p}=-2\left(1+\frac{1}{(p \delta \theta)^{2}}\right) I+\frac{1}{(p \delta \theta)^{2}} J .
$$

In the case where $u_{r}(1, \theta)$ is given, we have

$$
M=\left(\begin{array}{cccl}
B_{1}, & & \left(1+\frac{1}{2}\right) I \\
\left(1-\frac{1}{4}\right) I, & B_{2}, & & \left(1+\frac{1}{4}\right) I \\
\ddots & \ddots & \ddots & \\
\left(1-\frac{1}{2(m-1)}\right) I, & B_{m-1}, & \left(1+\frac{1}{2(m-1)}\right) I \\
2 I, & B_{m}
\end{array}\right)
$$

Since

$$
B_{p}=R_{1}\left(-2\left(1+\frac{1}{(p \delta \theta)^{2}}\right) I+\frac{1}{(p \delta \theta)^{2}} G_{1}\right) R_{1}^{-1}
$$

each block of M can be diagonalized.

4. Fourth order elliptic equations

The problem of solving approximately the fourth order elliptic equations is often reduced to that of solving the system of equations of the following form:

In the case where all the block principal minor matrices of N are nonsingular, N can be decomposed into the form $L U$, where

$$
L=\left(\begin{array}{ccc}
I & & 0 \\
-L_{2}, & I & 0 \\
M_{3}, & -L_{3}, & I \\
0 & \ddots & \ddots \\
0 & M_{m}, & -L_{m}, I
\end{array}\right), \quad U=\left(\begin{array}{cccc}
P, & -U_{1}, & E_{1} & 0 \\
\ddots & & \ddots & \ddots
\end{array}\right), ~(i=1,2, \cdots, m) .
$$

This method is easily applied when $A_{i}, B_{i}, C_{i}, D_{i}$ and E_{i} can be diagonalized by the same similarity transformation.

Example We consider the equation

$$
\Delta \Delta u+2 \alpha \Delta u+\beta u=f(x, y)
$$

where α and β are constants and u is given on the entire boundary. Put

$$
\begin{gathered}
A=\left(a^{2}+2 b^{2}+2+2 \alpha h^{2} a+\beta h^{4}\right) I-2\left(a+\alpha h^{2}\right) b J+b^{2}\left(J^{2}-2 I\right), \\
B=\left(a+\alpha h^{2}\right) I-b J .
\end{gathered}
$$

We consider the following three cases:
(i) when $u_{x x}$ is given on $L V$ and $R V$ and $u_{y y}$ is given on $L H$ and $U H$,

$$
N_{1}=I_{m} \otimes A-2 J_{m} \otimes B+\left(J_{m}^{2}-2 I_{m}\right) \otimes I
$$

Since

$$
\begin{aligned}
N_{1}= & S\left(I_{m} \otimes\left(\left(2+\left(\beta-\alpha^{2}\right) h^{4}\right) I+\left(\left(a+\alpha h^{2}\right) I-b G_{1}\right)^{2}\right)+\right. \\
& \left.+J_{m} \otimes 2\left(\left(a+\alpha h^{2}\right) I-b G_{1}\right)+\left(J_{m}^{2}-2 I_{m}\right) \otimes I\right) S^{-1}
\end{aligned}
$$

each block of N_{1} can be diagonalized. In this case, moreover, it is valid that

$$
N_{1}=S P \Lambda P^{-1} S^{-1},
$$

$$
\begin{aligned}
& \Lambda=I_{m} \otimes\left(\beta-\alpha^{2}\right) h^{4} I+\left(I_{m} \otimes\left(\left(a+\alpha h^{2}\right) I-b G_{1}\right)-\hat{G}_{1} \otimes I\right)^{2} \\
& =\operatorname{diag}\left(\Lambda_{1}, \Lambda_{2}, \cdots, \Lambda_{m}\right), \\
& \Lambda_{k}=\left(\beta-\alpha^{2}\right) h^{4}+\left(\left(a+\alpha h^{2}\right) I-b G_{1}-2 \cos \frac{k \pi}{m+1} I\right)^{2} \\
& =\operatorname{diag}\left(\lambda_{k 1}, \lambda_{k 2}, \cdots \lambda_{k n}\right), \\
& \lambda_{k j}= \\
& \left(\beta-\alpha^{2}\right) h^{4}+\left(\alpha h^{2}+4 b \sin ^{2} \frac{j \pi}{2(n+1)}+4 \sin ^{2} \frac{k \pi}{2(m+1)}\right)^{2} .
\end{aligned}
$$

(ii) when $u_{y y}$ is given on $L H$ and $U H$ and u_{x} is given on $L V$ and $R V$,

$$
N_{2}=N_{1}+2\left(U_{m}+U_{m}^{J}\right) \otimes I
$$

In this case each block of N_{2} can be diagonalized and since

$$
N_{2}=S\left(P \Lambda P^{-1}+2\left(U_{m}+U_{m}^{J}\right) \otimes I\right) S^{-1}
$$

N_{2}^{-1} can also be obtained by Lemma 5 .
(iii) when u_{y} is given on $L H$ and $U H$ and u_{x} is given on $L V$ and $R V$,

$$
N_{3}=N_{4}+2\left(U_{m}+U_{m}^{J}\right) \otimes I,
$$

where

$$
N_{4}=I_{m} \otimes\left(A+2 b^{2}\left(U+U^{J}\right)\right)-2 J_{m} \otimes B+\left(J_{m}^{2}-2 I_{m}\right) \otimes I .
$$

In this case it is valid that

$$
\begin{gathered}
N_{4}=P \Omega P^{-1}, \\
\Omega=I_{m} \otimes\left(A-2 I+2 b^{2}\left(U+U^{J}\right)\right)-2 \hat{G}_{1} \otimes B+\hat{G}_{1}^{2} \otimes I \\
=\operatorname{diag}\left(\Omega_{1}, \Omega_{2}, \ldots, \Omega_{m}\right) \\
\Omega_{k}=\left(\left(2 b+\alpha h^{2}+4 \sin ^{2} \frac{k \pi}{2(m+1)}\right) I-b J\right)^{2}+\left(\beta-\alpha^{2}\right) h^{4} I+2 b^{2}\left(U+U^{J}\right)
\end{gathered}
$$

Ω_{k}^{-1} can be obtained either by Lemma 4 or by $L U$-decomposition, so that N_{4}^{-1} can be obtained easily and then N_{3}^{-1} can be computed by Lemma 5. Lemma 10 and Lemma 11 can also be applied.

5. Parabolic equations

5.1 One-dimensional second order parabolic equation

Let us consider the equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<1)
$$

where $u(x, 0)$ is given. Let h be the mesh-size in the x-direction and h_{1} be the mesh-size in the t-direction and put $r=h_{1} / h^{2}$.

In the case where $u(0, t)=u(1, t)=0(t>0)$, using Crank-Nicolson's formula, we have [41]

$$
B_{1} \boldsymbol{u}_{l+1}=\left(4 I-B_{1}\right) \boldsymbol{u}_{l} \quad(l=0,1, \ldots),
$$

where

$$
B_{1}=2 I-r J .
$$

In the case where the boundary conditions are given by

$$
\frac{\partial u}{\partial x}(0, t)=k_{1}\left(u-v_{1}\right), \quad \frac{\partial u}{\partial x}(1, t)=-k_{2}\left(u-v_{2}\right) \quad(t>0),
$$

with constants k_{1}, k_{2}, v_{1} and v_{2}, we have

$$
B_{2} \boldsymbol{u}_{l+1}=\left(4 I-B_{2}\right) \boldsymbol{u}_{l}+\boldsymbol{f}_{l} \quad(l=0,1, \ldots),
$$

where

$$
B_{2}=2(1+r) I-r L\left(-2 h k_{1},-2 h k_{2} ; 1,1\right) .
$$

Both cases can be treated easily.

5.2 Two-dimensional second order parabolic equation

We consider the equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}, \quad(0<x, y<1,0<t \leqq T)
$$

with the initial conditions

$$
u(x, y, 0)=f(x, y)
$$

and boundary conditions

$$
\begin{array}{ll}
u(0, \mathrm{y}, t)=u(1, y, t)=0 & (0 \leqq y \leqq 1,0 \leqq t \leqq T) \\
u(x, 0, t)=u(x, 1, t)=0 & (0 \leqq x \leqq 1,0 \leqq t \leqq T)
\end{array}
$$

Put

$$
u_{i, j, k}=u\left(i h, j h_{1}, k l\right), \quad \omega=h^{2} / l, \quad \gamma=\omega+\alpha+\beta, \quad 0 \leqq \alpha, \beta \leqq 1
$$

Using the formula [38]

$$
\begin{aligned}
u_{i, j, k+1}= & \frac{1}{2 \gamma}\left(\alpha u_{i+1, j, k+1}+\alpha u_{i-1, j, k+1}+\beta u_{i, j+1, k+1}+\right. \\
& +\beta u_{i, j-1, k+1}+(2-\alpha) u_{i+1, j, k}+(2-\beta) u_{i, j+1, k}+ \\
& \left.+(2-\alpha) u_{i-1, j, k}+(2-\beta) u_{i, j-1, k}-2(4-\gamma) u_{i, j, k}\right),
\end{aligned}
$$

we have

$$
A \boldsymbol{u}_{p+1}=B \boldsymbol{u}_{p} \quad(p=0,1, \cdots),
$$

where

$$
\begin{gathered}
A=I \otimes D-J \otimes \frac{\beta}{2} I, \quad B=A+I \otimes T+J \otimes I \\
D=\gamma I-\frac{\alpha}{2} J, \quad T=-4 I+J
\end{gathered}
$$

$A^{-1} B$ is easily obtained.

5.3 Fourth order parabolic equation

Let us consider the equation

$$
\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{4} u}{\partial x^{4}}=0 \quad(0 \leqq x \leqq 1, t>0)
$$

with the initial conditions

$$
u(x, 0)=g_{0}(x), \quad \frac{\partial u}{\partial t}(x, 0)=g_{1}(x) \quad(0 \leqq x \leqq 1)
$$

and boundary conditions

$$
\begin{array}{cc}
u(0, t)=f_{0}(t), & u(1, t)=f_{1}(t) \\
\frac{\partial^{2} u}{\partial x^{2}}(0, t)=p_{0}(t), & \frac{\partial^{2} u}{\partial x^{2}}(1, t)=p_{1}(t) .
\end{array}
$$

Put

$$
\Phi=\frac{\partial u}{\partial t}, \quad \Psi=\frac{\partial^{2} u}{\partial x^{2}}, \quad \Omega=\binom{\Phi}{\Psi}, \quad C=\left(\begin{array}{rr}
0, & -1 \\
1, & 0
\end{array}\right) .
$$

Then the given equation can be rewritten as follows [10]:

$$
\frac{\partial \Omega}{\partial t}=C \frac{\partial^{2} \Omega}{\partial x^{2}}
$$

Let h be the mesh-size in the x-direction and h_{1} be the mesh-size in the t-direction and put $r=h_{1} / h^{2}$.

When Crank-Nicolson method is used, we have

$$
A \boldsymbol{\Omega}_{p+1}=B \boldsymbol{\Omega}_{p}+\boldsymbol{f}_{p} \quad(p=0,1, \cdots),
$$

where

$$
A=I_{m} \otimes A_{1}+J_{m} \otimes A_{2}, \quad B=I_{m} \otimes B_{1}+J_{m} \otimes B_{2}
$$

$$
\dot{A}_{1}=I_{2}+r C, \quad A_{2}=-\frac{r}{2} C, \quad B_{1}=I_{2}-r C, \quad B_{2}=-A_{2} .
$$

In this case it is valid that

$$
\begin{gathered}
A=\left(\hat{R}_{1} \otimes I_{2}\right) D\left(\hat{R}_{1} \otimes I_{2}\right)^{-1}, \quad B=\left(\hat{R}_{1} \otimes I_{2}\right) F\left(\hat{R}_{1} \otimes I_{2}\right)^{-1}, \\
D=I_{m} \otimes A_{1}+\hat{G}_{1} \otimes A_{2}=\operatorname{diag}\left(D_{1}, D_{2}, \ldots, D_{m}\right), \\
F=I_{m} \otimes B_{1}+\widehat{G}_{1} \otimes B_{2}=\operatorname{diag}\left(F_{1}, F_{2}, \ldots, F_{m}\right), \\
D_{j}=A_{1}+2 \cos \frac{j \pi}{m+1} A_{2}=I_{2}+2 r \sin ^{2} \frac{j \pi}{2(m+1)} C, \\
F_{j}=B_{1}+2 \cos \frac{j \pi}{m+1} B_{2}=I_{2}-2 r \sin ^{2} \frac{j \pi}{2(m+1)} C .
\end{gathered}
$$

When Douglas' high order correct method [8] is used, we have

$$
\begin{array}{ll}
A_{1}=10 I_{2}+12 r C, & A_{2}=I_{2}-6 r C, \\
B_{1}=10 I_{2}-12 r C, & B_{2}=I_{2}+6 r C .
\end{array}
$$

In this case it is valid that

$$
\begin{aligned}
& D_{j}=\left(8+4 \cos ^{2} \frac{j \pi}{2(m+1)}\right) I_{2}+24 r \sin ^{2} \frac{j \pi}{2(m+1)} C, \\
& F_{j}=\left(8+4 \cos ^{2} \frac{j \pi}{2(m+1)}\right) I_{2}-24 r \sin ^{2} \frac{j \pi}{2(m+1)} C .
\end{aligned}
$$

Since

$$
\left(I_{2}+\sigma C\right)^{-1}=\frac{1}{1+\sigma^{2}}\left(I_{2}-\sigma C\right)
$$

$A^{-1} B$ can be obtained easily.

5.4 Periodic parabolic problem

We consider the equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<1)
$$

with the boundary condition [42]

$$
u(0, t)=f(t), \quad u(1, t)=g(t), \quad u(x, 0)=u(x, T)
$$

where

$$
f(t+T)=f(t), g(t+T)=g(t) \quad(t \geqq 0)
$$

Put

$$
l=T / \mathrm{m}, \quad h=1 /(n+1), \quad \sigma=1 / h
$$

and let Q_{m} be an $m \times m$ matrix defined by

$$
Q_{m}=\left(\begin{array}{llllll}
0 & & & & 1 \\
1, & 0 & & & & \\
& 1, & 0 & & \\
& & \ddots & \ddots & \\
0 & & \ddots & 0 & \\
& & & & 0
\end{array}\right)
$$

Then, according as explicit formula or implicit formula is used, the problem is reduced to the solution of the following systems of equations:

$$
\begin{equation*}
\left(I_{m} \otimes I-Q_{m} \otimes M\right) \boldsymbol{x}=\boldsymbol{f} \tag{5.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(I_{m} \otimes N-Q_{m} \otimes I\right) \boldsymbol{x}=\boldsymbol{g} \tag{5.2}
\end{equation*}
$$

where

$$
M=(1-2 \sigma) I+\sigma J \quad(\sigma \leqq 1 / 2), \quad N=(1+2 \sigma) I-\sigma J .
$$

Since

$$
M=R_{1} D R_{1}^{-1}, \quad N=R_{1} E^{-1} R_{1}^{-1}
$$

where

$$
D=(1-2 \sigma) I+\sigma G_{1}, \quad E^{-1}=(1+2 \sigma) I-\sigma G_{1}
$$

we can write (5.1) and (5.2) as follows:

$$
\begin{gather*}
S\left(I_{m} \otimes I-Q_{m} \otimes D\right) S^{-1} \boldsymbol{x}=\boldsymbol{f} \tag{5.3}\\
S\left(I_{m} \otimes I-Q_{m} \otimes E\right)\left(I_{m} \otimes E^{-1}\right) S^{-1} \boldsymbol{x}=\boldsymbol{g} . \tag{5.4}
\end{gather*}
$$

Then, for (5.3), it is valid that

$$
\begin{aligned}
& \left(I_{m} \otimes I+Q_{m} \otimes D+\cdots+Q_{m}^{m-1} \otimes D^{m-1}\right) S^{-1} \boldsymbol{f}= \\
& =\left(I_{m} \otimes I-Q_{m}^{m} \otimes D^{m}\right) S^{-1} \boldsymbol{x}=I_{m} \otimes\left(I-D^{m}\right) S^{-1} \boldsymbol{x}
\end{aligned}
$$

because $Q_{m}^{m}=I_{m}$, and it follows that

$$
\boldsymbol{x}=S\left(I_{m} \otimes\left(I-D^{m}\right)^{-1}\right)\left(I_{m} \otimes I+Q_{m} \otimes D+\cdots+Q_{m}^{m-1} \otimes D^{m-1}\right) S^{-1} \boldsymbol{f}
$$

Similarly for (5.4) we have

$$
\boldsymbol{x}=S\left(I_{m} \otimes E\right)\left(I_{m} \otimes\left(I-E^{m}\right)^{-1}\right)\left(I_{m} \otimes I+Q_{m} \otimes E+\cdots+Q_{m}^{m-1} \otimes E^{m-1}\right) S^{-1} \boldsymbol{g}
$$

5.5 Three level difference scheme

Let us consider the equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<1)
$$

where boundary values are given. If Mitchell-Pearce nine point formula [24] is used, we have

$$
A \boldsymbol{u}_{k+1}=B \boldsymbol{u}_{k}+C \boldsymbol{u}_{k-1}+\boldsymbol{f}_{k+1} \quad(k=1,2, \ldots),
$$

where

$$
\begin{aligned}
A & =a I+b J, \quad B=c I+d J, \quad C=e I+f J \\
a & =4 p^{4}+5 p^{3}-\frac{1}{10} p^{2}-\frac{23}{84} p-\frac{313}{12600} \\
b & =-2 p^{4}+\frac{1}{2} p^{3}+\frac{1}{20} p^{2}-\frac{11}{840} p+\frac{13}{25200}, \\
c & =-16 p^{4}+p^{2}-\frac{313}{6300} \\
d & =8 p^{4}-\frac{1}{2} p^{2}+\frac{13}{12600}, \\
e & =-4 p^{4}+5 p^{3}+\frac{1}{10} p^{2}-\frac{23}{84} p+\frac{313}{12600}, \\
f & =2 p^{4}+\frac{1}{2} p^{3}-\frac{1}{20} p^{2}-\frac{11}{840} p-\frac{13}{25200} \quad(p \leqq \sqrt{5} / 10) .
\end{aligned}
$$

Matrices A, B, and C can easily be diagonalized.

References

[1] Asplund, S. O.: Finite boundary value problems solved by Green's matrix, Math. Scand., 7 (1959), 4956.
[2] Bublik, B. N. and G. N. Polozhii: Eigenvalues of the basic biharmonic problem for a rectangle, Dopovidi Akad. Nauk Ukrain, RSR, (1967), 3-6.
[3] Buledza, A. V.: On an approximate method of solving boundary problems for biharmonic equations, Dokl. Akad. Nauk SSSR, 170 (1966), 495-496.
[4] Buledza, A. V.: On difference methods for solution of boundary-value problems for differential equations of elliptic type, Differential'nye Uravnenija, 1 (1965), 687-691.
[5] Conte, S. D. and T. T. Dames: An alternating direction method for solving the biharmonic equation, Math. Tables Aids Comput., 12 (1958), 198-205.
[6] Cornock, A. F.: The numerical solution of Poisson's and bi-harmonic equations by matrices, Proc. Cambridge Philos. Soc., 50 (1954), 524-535.
[7] Didenko, V. I. and I. N. Lyashenko: On the numerical solution of boundary value problems for elliptic
differential equations uith constant coefficients, Dopovidi Akad. Nauk Ukrain. RSR, (1964), 12731276.
[8] Douglas, J: The solution of the diffusion equation by a high order correct difference equation, J. Math. Phys., 35 (1956), 145-151.
[9] Egérvary, E.: Über eine Methode zur numerischen Lösung der Poissonschen Differentialglevchung für beliebig Gebiete, Acta Math. Acad. Sci. Hungar., 11 (1960), 341-361.
]10] Fairweather, C. and A. R. Gourlay: Some stable difference approximation to a fcurth-order parabolic partial differential equation, Math. Comp., 21 (1967), 1-11.
[11] Forsythe, G. E. and W. R. Wasow: Finite difference methods for partial differential equations. John Wiley and Sons, 1960.
[12] Hicks, J. S. and J. Wei: Numerical solution of parabolic partial differential equations with two-point bcundary conditions by use of the method of lines, J. Assoc. Comput. Mach., 14 (1967), 549-562.
[13] Hockney, R. W.: A fast direct solution of Poisson's equation using Fourier analysis, J. Assoc. Comput. Mach., 12 (1965), 93-113.
[14] Keast, P. and A. R. Mitchell: On the instability of the Crank Nicholson formula under derivative boundary conditions, Computer J., 9 (1966), 110-114.
[15] Keast, P. and A. R. Mitchell: Finite difference solution of the third bcundary problem in elliptic and parabolic equations, Numer. Math., 10 (1967), 67-75.
[16] Lyashenko, I. N.: Remarks on the matrix driving thrcugh methnd, Dopovidi Akad. Nauk Ukrain. RSR, (1964), 458-461.
[17] Lyashenko, I. N.: On eigenvalues and eigenfunctions of finite difference Dirichlet's and Neumann's problems for Helmholtz's equation, Dopovidi Akad. Nauk Ukrain. RSR, (1967), 415-419.
[18] Lynch, R. E., J. R. Rice and D. H. Thomas: Direct solution of partial difference equations by tensor product methods, Numer. Math., 6 (1964), 185-199.
[19] Marcus, M.: Basic thecrems in matrix theory. Nat. Bur. Standards Appl. Math. Ser., 57 (1960).
[20] Martynovic, T. D. and M. Korduba: Solution of the spatial axially symmetric Dirichlet problem by the method of straight lines with higher accuracy of approximation, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1966) Suppl., 214-218.
[21] Meister, B. and W. Prager: On the construction of symmetric difference operators for square and cubic lattices, Z. Angew. Math. Phys., 16 (1965), 403-410.
[22] Merzrath, E.: Direct solution of partial difference equations, Numer. Math., 9 (1967), 431-436.
[23] Misnik, A. F.: On a technique of realizing the sweep method for solving Poisson's equations, Ž. Vyčisl. Mat. i Mat. Fiz., 5 (1965), 136-139.
[24] Mitchell, A. R. and R. P. Pearce: High accuracy difference formulae for the numerical solution of the heat conduction equation, Computer J., 5 (1962), 142-146.
[25] Nemchinov, S. V.: The solution of bcundary problems for partial differential equations of the second order of the elliptic type using the network nethod, Z̆. Vyčisl. Mat. i Mat. Fiz., 2 (1962), 418-436.
[26] Nemchinov, S. V. and S. L. Libov: A more accurate straight line method for the solution of boundary problems for the Helmholtz equation on a net of points in a rectangle, Ž. Vyčisl. Mat. i Mat. Fiz., 4 (1964), 771-773.
[27] Omarov, E. O.: Approximate solution by the straight line method of a partial differential equation of the first elliptic type, Ž. Vyčisl. Mat. i Mat. Fiz., 4. (1964), 585-592.
[28] Osborne, M. R.: Direct methods for the solution of finite-difference approximations to separable partial differential equations, Computer J., 8 (1965), 150-156.
[29] Osborne, M. R.: A note on the numerical solution of a periodic parabolec problem, Computer J., 7 (1964), 163-168.
[30] Parker, I. B. and J. Crank: Persistent discretization errors in partial differential equations of parabolic type, Computer J., 7 (1964), 155-158.
[31] Parter, S. V.: Some computational results on "two-line" iterative methods for the biharmonic difference equation, J. Assoc. Comput. Mach., 8 (1961), 359-362.
[32] Polozhii, G. N.: The method of summary representation for numerical solution of problems of mathemat ical physics. Pergamon Press, 1965.
[33] Polozhii, G. N. and I. N. Lyashenko: Eigenvalues of finite-difference Laplace operator for domains consisting of rectangles, Dopovidi Akad. Nauk Ukrain. RSR, (1967), 31-35.
[34] Prikhodko, E. M.: Application of the method of summary representation to the numerical solution of biharmonic equations, Dopovidi Akad. Nauk Ukrain. RSR, (1964), 856-860.
[35] Richtmyer, R. D.: Difference methods for initial value problems, Interscience, 1957.
[36] Rozsa, P. and I. Tóth: Über die direkte numerische Lösung von partiellen Differentialgleichungen mit Anwerdung der Hypermatrizen, Apl. Mat., 10 (1965), 289-292.
[37] Sarmin, E. N,: Application of straight line method to the solution of boundary value problem for some non-self-adjoint two-dimensional elliptic equations of the second order, Ž. Vyčisl. Mat. i Mat. Fiz., 5 (1965), 945-949.
[38] Saul'yev, V. K.: Integration of equations of parabolic type by the method of nets. Pergamon Press, 1964.
[39] Schechter, S.: Quasi-tridiagonal matrices and type-insensitive difference equations, Quart. Appl. Math., 18 (1960-1961), 258-295.
[40] Shintani,H.: Direct methods for the numerical solution of partial difference equations for a rectangle, J . Sci. Hiroshima Univ. Ser. A-I, 30 (1966), 75-90.
[41] Smith, G. D.: Numerical solution of partial differential equations. Oxford, 1965.
[42] Tee, G. J.: An application of p-cyclic matrices for solving periodic parabolic problems, Numer. Math., 6 (1954), 142-159.
[43] Tee, G. J.: A novel finite-difference approximation to the biharmonic operator, Computer J., 6 (1963), 177-192.
[44] Varga, R. S.: Matrix Iterative Analysis. Prentice-Hall, 1962.
[45] von Holdt, R. E.: Inversion of a triple-diagonal compound matrices, J. Assoc. Comput. Mach., 9 (1962), 71-83.
[46] Wadsworth, M. and A. Wragg: On matrix methods for the solution of partial differential equations, Proc. Cambridge Philos. Soc., 61 (1965), 129-132.

Department of Mathematics
Faculty of Science
Hiroshima University

[^0]: 1) Numbers in square brackets refer to the references listed at the end of this paper.
