The Rank of the Incidence Matrix of Points and d-Flats in Finite Geometries

Noboru Hamada
(Received September 26, 1968)

1. Introduction and Summary

The concept of majority decoding and, more generally, threshold decoding was introduced by Massey [3]. In order to obtain majority decodable codes such as (i) a d-th order Projective Geometry code (whose parity check matrix is the incidence matrix of points and d-flats in $\mathrm{PG}\left(t, p^{n}\right)$) and (ii) a d-th order Affine Geometry code (whose parity check matrix is the incidence matrix of points other than the origin and d-flats not passing through the origin in $\operatorname{EG}\left(t, p^{n}\right)$), it is necessary to investigate the rank of the incidence matrix of points and d-flats in $\mathrm{PG}\left(t, p^{n}\right)$ and in $\mathrm{EG}\left(t, p^{n}\right)$ over $\operatorname{GF}\left(p^{n}\right)$. An exact formula for the rank of the incidence matrix of points and hyperplanes ($(t-1)$-flats) has been obtained by Graham and MacWilliams [2] for the case $t=2$ and has been independently obtained by Smith [5] and by Goethals and Delsarte [1] for general t. An exact formula for the rank of the incidence matrix of points and d-flats in a special case $n=1$ has been obtained by Smith [5]. For general n, although an upper bound for the rank has been obtained by Smith, an explicit formula for the rank has not yet been obtained.*)

The purpose of this paper is to derive an explicit formula for the rank of the incidence matrix of points and d-flats in $\mathrm{PG}\left(t, p^{n}\right)$ and in $\mathrm{EG}\left(t, p^{n}\right)$ for the general case, by extending the methods used by Smith.

The main results are as follows.
(i) In the case of $\operatorname{PG}\left(t, p^{n}\right)$, we have the

Theorem 1. Over $\operatorname{GF}\left(p^{n}\right)$, the rank of the incidence matrix of points and d-flats in $\mathrm{PG}\left(t, p^{n}\right)$ is equal to

$$
R_{d}\left(t, p^{n}\right)=\sum_{s_{0}} \cdots \sum_{s_{n-1}} \prod_{j=0}^{n-1} \prod_{i=0}^{L\left(s_{j+1}, s_{j}\right)}(-1)^{i}\left({ }_{i}^{t+1}\right)\left(\begin{array}{l}
\left.t+s_{j+1} p_{t}^{-s_{j}-i p}\right) \tag{1.1}
\end{array}\right.
$$

where $s_{n}=s_{0}$ and summations are taken over all integers $s_{j}(j=0,1, \ldots, n-1)$ such that

$$
\begin{equation*}
d+1 \leqq s_{j} \leqq t+1 \quad \text { and } \quad 0 \leqq s_{j+1} p-s_{j} \leqq(t+1)(p-1) \tag{1.2}
\end{equation*}
$$

[^0]and $L\left(s_{j+1}, s_{j}\right)$ is the greatest integer not exceeding $\left(s_{j+1} p-s_{j}\right) / p$, i.e.,
\[

$$
\begin{equation*}
L\left(s_{j+1}, s_{j}\right)=\left[\frac{s_{j+1} p-s_{j}}{p}\right] \tag{1.3}
\end{equation*}
$$

\]

(ii) In the case of $\mathrm{EG}\left(t, p^{n}\right)$, we have the

Theorem 2. Over $\operatorname{GF}\left(p^{n}\right)$, the rank of the incidence matrix of $\left(p^{n}\right)^{t}-1$ points other than the origin and d-flats not passing through the origin in $\mathrm{EG}\left(t, p^{n}\right)$ is equal to $R_{d}\left(t, p^{n}\right)-R_{d}\left(t-1, p^{n}\right)-1$.

The process of deriving our explicit formulas and our results given in [6] may be useful to obtain majority decodable codes such as d-th order Projective Geometry codes and d-th order Affine Geometry codes. In section 2 and section 3, we shall prove Theorem 1 and Theorem 2, respectively.

2. Rank of the incidence matrix of points and d-flats in $\operatorname{PG}\left(t, p^{n}\right)$.

In this section, we investigate the rank of the incidence matrix of points and d-flats in $\mathrm{PG}\left(t, p^{n}\right)$ and prove Theorem 1.

With the help of the Galois field $\operatorname{GF}(q)$, where q is an integer of the form p^{n} (p being a prime), we can define a finite projective geometry $\mathrm{PG}(t, q)$ of t dimensions as a set of points satisfying the following conditions (a), (b) and (c):
(a) A point in $\operatorname{PG}(t, q)$ is represented by (ν) where ν is a non-zero element of $\mathrm{GF}\left(q^{t+1}\right)$.
(b) Two points (ν) and (μ) represent the same point when and only when there exists a non-zero element σ of $\mathrm{GF}(q)$ such that $\mu=\sigma \nu$.
(c) A d-flat, $0 \leqq d \leqq t$, in $\mathrm{PG}(t, q)$ is defined as a set of points

$$
\begin{equation*}
\left\{\left(a_{0} \nu_{0}+a_{1} \nu_{1}+\cdots+a_{d} \nu_{d}\right)\right\} \tag{2.1}
\end{equation*}
$$

where a 's run independently over the elements of $\operatorname{GF}(q)$ and are not all simultaneously zero and $\left(\nu_{0}\right),\left(\nu_{1}\right), \ldots,\left(\nu_{d}\right)$ are linearly independent over the coefficient field $\mathrm{GF}(q)$, in other words, they do not lie on a $(d-1)$-flat.

It is well known that the number, v, of points in $\operatorname{PG}(t, q)$ is equal to

$$
\begin{equation*}
v=\left(q^{t+1}-1\right) /(q-1) \tag{2.2}
\end{equation*}
$$

and the number, b, of d-flats in $\operatorname{PG}(t, q)$ is equal to

$$
\begin{equation*}
b=\phi(t, d, q)=\frac{\left(q^{t+1}-1\right)\left(q^{t}-1\right) \cdots\left(q^{t-d+1}-1\right)}{\left(q^{d+1}-1\right)\left(q^{d}-1\right) \cdots(q-1)} . \tag{2.3}
\end{equation*}
$$

After numbering v points and $b d$-flats in $\operatorname{PG}(t, q)$ in some way, we define
the incidence matrix of v points and $b d$-flats in $\mathrm{PG}(t, q)$ to be the matrix

$$
\begin{equation*}
N=\left\|n_{i j}\right\| ; \quad i=1,2, \ldots, b \quad \text { and } \quad j=1,2, \ldots, v \tag{2.4}
\end{equation*}
$$

where

$$
n_{i j}= \begin{cases}1, & \text { if the } j \text {-th point is incident with the } i \text {-th } d \text {-flat } \\ 0, & \text { otherwise }\end{cases}
$$

In order to obtain an explicit formula for the rank of the incidence matrix N over GF (q), we start with the following proposition summarizing the essential results due to Smith [5].

Proposition 1 (Smith). Over $\mathrm{GF}(q)$, the rank of the incidence matrix N of v points and b d-flats in $\operatorname{PG}(t, q)$ is equal to the number of integers m such that (i) $1 \leqq m \leqq v$ and (ii) there exists a set of $d+1$ positive integers $m_{k} \quad(k=0$, $1, \ldots, d)$ which satisfies

$$
\begin{equation*}
m=\sum_{k=0}^{d} m_{k} \quad \text { and } \quad D_{p}[m(q-1)]=\sum_{k=0}^{d} D_{p}\left[m_{k}(q-1)\right] \tag{2.5}
\end{equation*}
$$

where $D_{p}[M]$ is defined for a non-negative integer M having the p-adic representation

$$
\begin{equation*}
M=c_{0}+c_{1} p+\cdots+c_{u} p^{u} \quad\left(0 \leqq c_{i}<p, \text { for all } i=0,1, \ldots, u\right) \tag{2.6}
\end{equation*}
$$

by

$$
\begin{equation*}
D_{p}[M]=c_{0}+c_{1}+\cdots+c_{u} . \tag{2.7}
\end{equation*}
$$

The following two theorems play an important role in proving Theorem 1.

Theorem 2.1. Let m be a positive integer such that $1 \leqq m \leqq v$ and let the p-adic representation of $m(q-1)$ be

$$
\begin{equation*}
m(q-1)=\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{i n+j} \tag{2.8}
\end{equation*}
$$

where $c_{i j}$'s are non-negative integers less than p.
If there exists a set of $d+1$ positive integers $m_{k}(k=0,1, \ldots, d)$ which satisfies

$$
\begin{equation*}
m=\sum_{k=0}^{d} m_{k} \quad \text { and } \quad D_{p}[m(q-1)]=\sum_{k=0}^{d} D_{p}\left[m_{k}(q-1)\right] \text {, } \tag{2.9}
\end{equation*}
$$

then there exists a unique set of $n+1$ positive integers $s_{l}(l=0,1, \ldots, n)$ such that

$$
\begin{equation*}
s_{n}=s_{0}, d+1 \leqq s_{j} \leqq t+1 \quad \text { and } \quad \sum_{i=0}^{t} c_{i j}=s_{j+1} p-s_{j} \tag{2.10}
\end{equation*}
$$

for each $j=0,1, \ldots, n-1$.
Note that $0 \leqq s_{j+1} p-s_{j} \leqq(t+1)(p-1)$ must hold for each $j=0,1, \cdots, n-1$, since $0 \leqq c_{i j} \leqq p-1$ for all i and j.

Theorem 2.2. Let $s_{l}(l=0,1, \ldots, n)$ be a set of $n+1$ positive integers such that

$$
\begin{equation*}
s_{n}=s_{0}, \quad d+1 \leqq s_{j} \leqq t+1 \quad \text { and } \quad 0 \leqq s_{j+1} p-s_{j} \leqq(t+1)(p-1) \tag{2.11}
\end{equation*}
$$

for each $j=0,1, \ldots, n-1$. Let $c_{i j}(i=0,1, \cdots, t, j=0,1, \cdots, n-1)$ be a set of non-negative integers less than p satisfying

$$
\begin{equation*}
\sum_{i=0}^{t} c_{i j}=s_{j+1} p-s_{j} \tag{2.12}
\end{equation*}
$$

for each $j=0,1, \ldots, n-1$. Then,
(i) $\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{i n+j}$ is a multiple of $p^{n}-1$, that is, there exists an integer m, $1 \leqq m \leqq v$, such that

$$
\begin{equation*}
\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{i n+j}=m\left(p^{n}-1\right) \tag{2.13}
\end{equation*}
$$

(ii) There exists a set of $d+1$ positive integers $m_{k}(k=0,1, \ldots, d)$ which satisfies (2.9) for the integer m.

At first, we prove the following two lemmas.
Lemma 2.1. Let m be a positive integer such that $1 \leqq m \leqq v$ and let the p adic representation of $m(q-1)$ be

$$
m(q-1)=\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{i n+j}
$$

then there exists a unique set of $n+1$ positive integers $s_{l}(l=0,1, \ldots, n)$ such that

$$
\begin{equation*}
s_{n}=s_{0}, \quad 1 \leqq s_{j} \leqq t+1 \quad \text { and } \quad \sum_{i=0}^{t} c_{i j}=s_{j+1} p-s_{j} \tag{2.14}
\end{equation*}
$$

for each $j=0,1, \ldots, n-1$.
Proof. Since

$$
\begin{equation*}
\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{j}=\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{i n+j}-\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j}\left(p^{i n}-1\right) p^{j} \tag{2.15}
\end{equation*}
$$

and ($p^{i n}-1$) is a multiple of $p^{n}-1, \sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{j}$ is a multiple of $p^{n}-1$ by assumption (2.13'), that is, there exists a positive integer $r, 1 \leqq r \leqq t+1$, such that

$$
\begin{equation*}
\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{j}=r\left(p^{n}-1\right) \tag{2.16}
\end{equation*}
$$

The equation (2.16) can be expressed as

$$
\begin{equation*}
r+\sum_{i=0}^{t} \sum_{j=0}^{j_{0}-1} c_{i j} p^{j}=r p^{n}-\sum_{i=0}^{t} \sum_{j=j_{0}}^{n-1} c_{i j} p^{j} \tag{2.17}
\end{equation*}
$$

for any integer $j_{0}\left(1 \leqq j_{0} \leqq n-1\right)$. Since the right hand side of equation (2.17) is a multiple of $p^{j_{0}}$, its left hand side must be a multiple of $p^{j_{0}}$, that is, there exist $n-1$ positive integers $s_{j_{0}}, 1 \leqq s_{j_{0}} \leqq t+1,\left(j_{0}=1,2, \cdots, n-1\right)$ such that

$$
\begin{equation*}
r+\sum_{i=0}^{t} \sum_{j=0}^{j_{0}-1} c_{i j} p^{j}=s_{j_{0}} p^{j_{0}} \tag{2.18}
\end{equation*}
$$

for each $j_{0}=1,2, \ldots, n-1$. Solving $n-1$ equations (2.18), we obtain

$$
\begin{equation*}
\sum_{i=0}^{t} c_{i j}=s_{j+1} p-s_{j} \tag{2.19}
\end{equation*}
$$

for each $j=0,1, \ldots, n-1$ where $s_{n}=s_{0}$ and $s_{0}=r$.
The uniqueness of the set of integers $s_{l}(l=0,1, \ldots, n)$ can be proved as follows.

Let $s_{l}^{*}(l=0,1, \ldots, n)$ be another set of $n+1$ positive integers such that

$$
\begin{equation*}
s_{n}^{*}=s_{0}^{*} \quad \text { and } \quad \sum_{i=0}^{t} c_{i j}=s_{j+1}^{*} p-s_{j}^{*} \tag{2.20}
\end{equation*}
$$

for $j=0,1, \ldots, n-1$. Then, from (2.19) and (2.20), we have $s_{j+1} p-s_{j}=s_{j+1}^{*} p-s_{j}^{*}$ $(j=0,1, \ldots, n-1)$ and $\sum_{j=0}^{n-1} \sum_{i=0}^{t} c_{i j} p^{j}=s_{0}\left(p^{n}-1\right)=s_{0}^{*}\left(p^{n}-1\right)$. This implies that $s_{l}^{*}=s_{l}$ for all $l=0,1, \cdots, n$. This completes the proof.

Lemma 2.2. Let M and $M_{k}(k=0,1, \ldots, d)$ be positive integers and let the p-adic representations of M and M_{k} be

$$
\begin{equation*}
M=\sum_{l=0}^{u} c_{l} p^{l} \quad \text { and } \quad M_{k}=\sum_{l=0}^{u} c_{l}^{(k)} p^{l} \tag{2.21}
\end{equation*}
$$

Then, $M=\sum_{k=0}^{d} M_{k}$ and $D_{p}[M]=\sum_{k=0}^{d} D_{p}\left[M_{k}\right]$ if and only if $c_{l}=\sum_{k=0}^{d} c_{l}^{(k)}$ for each $l=0,1, \cdots, u$.

Proof. If $M=\sum_{k=0}^{d} M_{k}$ and $D_{p}[M]=\sum_{k=0}^{d} D_{p}\left[M_{k}\right]$, then,

$$
\begin{equation*}
\sum_{l=0}^{u} c_{l} p^{l}=\sum_{k=0}^{d} \sum_{l=0}^{u} c_{l}^{(k)} p^{l} \tag{2.22}
\end{equation*}
$$

and

$$
\sum_{l=0}^{u} c_{l}=\sum_{k=0}^{d} \sum_{l=0}^{u} c_{l}^{(k)}
$$

Since c_{l} 's are non-negative integers less than p, it follows from (2.22) that $c_{l}(l=0,1, \ldots, u)$ must be expressed as

$$
\begin{equation*}
c_{l}=\sum_{k=0}^{d} c_{l}^{(k)}+\alpha_{l-1}-\alpha_{l} p \tag{2.23}
\end{equation*}
$$

for some non-negative integers $\alpha_{l}(l=-1,0, \ldots, u)$ where $\alpha_{-1}=\alpha_{u}=0$. Taking summation of (2.23) over l, we have

$$
\begin{equation*}
\sum_{l=0}^{u} c_{l}=\sum_{l=0}^{u} \sum_{k=0}^{d} c_{l}^{(k)}-(p-1) \sum_{l=0}^{u-1} \alpha_{l} \tag{2.24}
\end{equation*}
$$

The equations (2.22') and (2.24) show that ($p-1)_{l=0}^{u-1} \alpha_{l}=0$. This implies that all integers α_{l} must be zero since they are non-negative integers and $p \geqq 2$. Thus we have $c_{l}=\sum_{k=0}^{d} c_{l}^{(k)}$ for each $l=0,1, \ldots, u$.

The converse is obvious.
(Proof of Theorem 2.1) Let the p-adic representation of $m_{k}(q-1)$ be

$$
\begin{equation*}
m_{k}(q-1)=\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j}^{(k)} p^{i n+j} \quad(k=0,1, \ldots, d) \tag{2.25}
\end{equation*}
$$

then from lemma 2.2, we have

$$
\begin{equation*}
c_{i j}=\sum_{k=0}^{d} c_{i j}^{(k)} \tag{2.26}
\end{equation*}
$$

for all $i=0,1, \ldots, t$ and $j=0,1, \ldots, n-1$. Since m_{k} is a positive integer such that $1 \leqq m_{k} \leqq v$, it follows from lemma 2.1 that for each $k=0,1, \ldots, d$, there exists a unique set of $n+1$ positive integers $s_{l}^{(k)}(l=0,1, \ldots, n)$ such that

$$
\begin{equation*}
s_{n}^{(k)}=s_{0}^{(k)}, 1 \leqq s_{j}^{(k)} \leqq t+1 \quad \text { and } \quad \sum_{i=0}^{t} c_{i j}^{(k)}=s_{j+1}^{(k)} p-s_{j}^{(k)} \tag{2.27}
\end{equation*}
$$

for each $j=0,1, \ldots, n-1$. From (2.26) and (2.27), we have

$$
\begin{equation*}
\sum_{i=0}^{t} c_{i j}=\left(\sum_{k=0}^{d} s_{j+1}^{(k)}\right) p-\left(\sum_{k=0}^{d} s_{j}^{(k)}\right) \tag{2.28}
\end{equation*}
$$

Let $s_{l}=\sum_{k=0}^{d} s_{l}^{(k)}$ for each $l=0,1, \cdots, n$, then it holds that

$$
\begin{equation*}
s_{n}=s_{0} \quad \text { and } \quad \sum_{i=0}^{t} c_{i j}=s_{j+1} p-s_{j} \tag{2.29}
\end{equation*}
$$

for $j=0,1, \ldots, n-1$. Since the set of integers $s_{l}(l=0,1, \ldots, n)$ for m is unique and all $s_{l}^{(k)}$'s are positive, it follows that $d+1 \leqq s_{j} \leqq t+1$ for each $j=0,1$, $\ldots, n-1$. This completes the proof.

For the proof of Theorem 2.2, we shall prove the following three lemmas.

Lemma 2.3. For any set of $n+1$ positive integers $s_{l}(l=0,1, \ldots, n)$ which satisfies the conditions:

$$
\begin{equation*}
s_{n}=s_{0}, \quad 1 \leqq s_{j} \leqq t+1 \quad \text { and } \quad 0 \leqq s_{j+1} p-s_{j} \leqq(t+1)(p-1) \tag{2.30}
\end{equation*}
$$

for all $j=0,1, \ldots, n-1$, there exists a set of non-negative integers $c_{i j}, 0 \leqq c_{i j} \leqq$ $p-1,(i=0,1, \ldots, t, j=0,1, \ldots, n-1)$ satisfying

$$
\begin{equation*}
\sum_{i=0}^{t} c_{i j}=s_{j+1} p-s_{j} \tag{2.31}
\end{equation*}
$$

for $j=0,1, \ldots, n-1$, and $\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{i n+j}$ is a multiple of $p^{n}-1$, i.e.,

$$
\begin{equation*}
\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{i n+j}=m\left(p^{n}-1\right) \quad \text { and } \quad 1 \leqq m \leqq v \tag{2.32}
\end{equation*}
$$

Proof. The existence of non-negative integers $c_{i j}$ less than p is obvious since $0 \leqq s_{j+1} p-s_{j} \leqq(t+1)(p-1)$.

From (2.31), we have

$$
\begin{equation*}
\sum_{j=0}^{n-1} \sum_{i=0}^{t} c_{i j} p^{j}=\sum_{j=0}^{n-1}\left(s_{j+1} p-s_{j}\right) p^{j}=s_{n} p^{n}-s_{0}=s_{0}\left(p^{n}-1\right) \tag{2.33}
\end{equation*}
$$

Thus, we get the required result from (2.15) and (2.33).
Lemma 2.4. Let $s_{l}(l=0,1, \ldots, n)$ be $n+1$ positive integers which satisfies the conditions:

$$
\begin{equation*}
s_{n}=s_{0}, \quad d+1 \leqq s_{j} \leqq t+1 \quad \text { and } \quad 0 \leqq s_{j+1} p-s_{j} \leqq(t+1)(p-1) \tag{2.34}
\end{equation*}
$$

for all $j=0,1, \ldots, n-1$, then there exist $d+1$ sets of $n+1$ positive integers $s_{l}^{(k)}(k=0,1, \ldots, d, l=0,1, \ldots, n)$ such that

$$
\begin{gather*}
\sum_{k=0}^{d} s_{l}^{(k)}=s_{l} \quad(l=0,1, \ldots, n) \tag{2.35}\\
s_{n}^{(k)}=s_{0}^{(k)}, \quad 1 \leqq s_{j}^{(k)} \leqq t+1 \quad \text { and } \quad 0 \leqq s_{j+1}^{(k)} p-s_{j}^{(k)} \leqq(t+1)(p-1) \tag{2.36}
\end{gather*}
$$

for all $j=0,1, \ldots, n-1$ and $k=0,1, \ldots, d$.
Proof. The case $d=0$ is trivial. We, therefore, assume that $1 \leqq d \leqq t$ and give a step by step method of constructing a series of positive integers $s_{j_{0}+1}^{(k)}, s_{j_{0}}^{(k)}, \ldots, s_{0}^{(k)}=s_{n}^{(k)}, s_{n-1}^{(k)}, \ldots, s_{j_{0}+2}^{(k)}(k=0,1, \ldots, d)$ having required properties by starting with the decomposition of $s_{j_{0}+1}$ into $d+1$ positive integers $s_{j_{0}+1}^{(k)}$, where $s_{j_{0}+1}$ is one of the least integers among $s_{1}, s_{2}, \ldots, s_{n}$.
(i) Construction of $s_{j_{0}+1}^{(k)}(k=0,1, \ldots, d)$

Since $s_{j_{0}+1} \geqq d+1$, we can define $s_{j_{0}+1}^{(k)}(k=0,1, \ldots, d)$ satisfying the follow-
ing conditions:

$$
\begin{equation*}
1 \leqq s_{j_{0}+1}^{(k)} \leqq t+1 \quad \text { and } \quad \sum_{k=0}^{d} s_{j_{0}+1}^{(k)}=s_{j_{0}+1} \tag{2.37}
\end{equation*}
$$

(ii) Construction of $s_{j_{0}}^{(k)}$ by using $s_{j_{0}+1}^{(k)}(k=0,1, \ldots, d)$

Since $s_{j_{0}} \geqq s_{j_{0}+1}$, there exist a positive integer $Q_{j_{0}}$ and a non-negative integer $R_{j_{0}}$ less than $s_{j_{0}+1}$ such that

$$
\begin{equation*}
s_{j_{0}}=Q_{j_{0}} s_{j_{0}+1}+R_{j_{0}} \tag{2.38}
\end{equation*}
$$

Thus if we define $s_{j_{0}}^{(k)}$ by the sum of $s_{j_{0}+1}^{(k)} Q_{j_{0}}$ and a non-negative integer $\alpha_{k} s_{j_{0}+1}^{(k)}$ not greater than $s_{j_{0}+1}^{(k)}$, i.e.,

$$
\begin{equation*}
s_{j_{0}}^{(k)}=s_{j_{0}+1}^{(k)} Q_{j_{0}}+\alpha_{k} s_{j_{0}+1}^{(k)} \quad\left(0 \leqq \alpha_{k} \leqq 1\right) \tag{2.39}
\end{equation*}
$$

such that $\sum_{k=0}^{d} \alpha_{k} s_{j_{0}+1}^{(k)}=R_{j_{0}}$, then we have

$$
\begin{equation*}
\sum_{k=0}^{d} s_{j_{0}}^{(k)}=s_{j_{0}} \quad \text { and } \quad 1 \leqq s_{j_{0}+1}^{(k)} \leqq s_{j_{0}}^{(k)} \leqq t+1 \tag{2.40}
\end{equation*}
$$

Since $s_{j_{0}+1} p-s_{j_{0}} \geqq 0$, we have $Q_{j_{0}} \leqq p$. Whenever $s_{j_{0}}$ is not a multiple of $s_{j_{0}+1}$, the equality does not hold, i.e., $Q_{j_{0}}<p$. When $s_{j_{0}}$ is a multiple of $s_{j_{0}+1}$, the equality may holds but we have $\alpha_{0}=\alpha_{1}=\cdots=\alpha_{d}=0$. Anyway, we have

$$
\begin{equation*}
s_{j_{0}+1}^{(k)} p-s_{j_{0}}^{(k)}=s_{j_{0}+1}^{(k)}\left(p-Q_{j_{0}}-\alpha_{k}\right) \geqq 0 \tag{2.41}
\end{equation*}
$$

Combining the results with $s_{j_{0}+1} p-s_{j_{0}} \leqq(t+1)(p-1), \sum_{k=0}^{d} s_{j_{0}+1}^{(k)}=s_{j_{0}+1}$ and (2.40), we have

$$
s_{j_{0}+1}^{(k)} p-s_{j_{0}}^{(k)} \leqq(t+1)(p-1)
$$

(iii) Construction of $s_{l}^{(k)}$ by using $s_{l+1}^{(k)}$ (general case)

In general, two cases can occur, i.e., (a) $s_{l}<s_{l+1}$ and (b) $s_{l} \geqq s_{l+1}$.
(a) The case $s_{l}<s_{l+1}$

In this case, we can easily decompose s_{l} into $d+1$ positive integers $s_{l}^{(k)}$ ($k=0,1, \ldots, d$) such that

$$
\begin{equation*}
\sum_{k=0}^{d} s_{l}^{(k)}=s_{l}, \quad 1 \leqq s_{j_{0}+1}^{(k)} \leqq s_{l}^{(k)} \leqq s_{l+1}^{(k)} \leqq t+1 \tag{2.42}
\end{equation*}
$$

and we can easily show that

$$
\begin{equation*}
0 \leqq s_{l+1}^{(k)} p-s_{l}^{(k)} \leqq(t+1)(p-1) \tag{2.43}
\end{equation*}
$$

(b) The case $s_{l} \geqq s_{l+1}$

In this case, we can apply the same method described in (ii), for the construction of $s_{l}^{(k)}$ having required properties by using $s_{l+1}^{(k)}$.

Using these methods described in (i), (ii) and (iii), we can construct integers $s_{l}^{(k)}$ step by step until $s_{j_{0}+2}^{(k)}(k=0,1, \ldots, d)$ have been constructed. Now, we have to verify that the inequalities

$$
\begin{equation*}
0 \leqq s_{j_{0}+2}^{(k)} p-s_{j_{0}+1}^{(k)} \leqq(t+1)(p-1) \tag{2.44}
\end{equation*}
$$

hold for all k. Since the construction process shows that $s_{l}^{(k)} \geqq s_{j_{0}+1}^{(k)}$ holds for each $l=0,1, \ldots, n$ and $k=0,1, \ldots, d$, we can see that the inequalities (2.44) hold. This completes the proof.

The following lemma seems to be not so trivial. But we can construct a set of non-negative integers satisfying the required conditions by an elementary method.

Lemma 2.5. Let $u_{\alpha}(\alpha=0,1, \ldots, t)$ and $w_{\beta}(\beta=0,1, \ldots, d)$ be non-negative integers such that $\sum_{\alpha=0}^{t} u_{\alpha}=\sum_{\beta=0}^{d} w_{\beta}$,

$$
\begin{equation*}
0 \leqq u_{\alpha} \leqq p-1 \quad \text { and } \quad 0 \leqq w_{\beta} \leqq(t+1)(p-1) \tag{2.45}
\end{equation*}
$$

then there exists a set $\left\{x_{\alpha \beta}: \alpha=0,1, \ldots, t, \beta=0,1, \ldots, d\right\}$ of non-negative integers less than p which satisfies the conditions:

$$
\begin{equation*}
\sum_{\beta=0}^{d} x_{\alpha \beta}=u_{\alpha} \quad(\text { for } \alpha=0,1, \ldots, t) \tag{2.46}
\end{equation*}
$$

and

$$
\sum_{\alpha=0}^{t} x_{\alpha \beta}=w_{\beta} \quad(\text { for } \beta=0,1, \ldots, d)
$$

Using the above three lemmas, we now prove Theorem 2.2.
(Proof of Theorem 2.2) Lemma 2.3 shows that (i) holds.
Lemma 2.4 shows that each $s_{l}(0 \leqq l \leqq n)$ can be decomposed into $d+1$ positive integers $s_{l}^{(k)}(k=0,1, \ldots, d)$ such that $\sum_{k=0}^{d} s_{l}^{(k)}=s_{l}$ and that

$$
\begin{equation*}
s_{n}^{(k)}=s_{0}^{(k)}, 1 \leqq s_{j}^{(k)} \leqq t+1 \quad \text { and } \quad 0 \leqq s_{j+1}^{(k)} p-s_{j}^{(k)} \leqq(t+1)(p-1) \tag{2.47}
\end{equation*}
$$

for all $j=0,1, \ldots, n-1$ and $k=0,1, \ldots, d$.
Since for each $j(0 \leqq j \leqq n-1), c_{\alpha j}(\alpha=0,1, \ldots, t)$ and $\left(s_{j+1}^{(\beta)} p-s_{j}^{(\beta)}\right)(\beta=0$, $1, \ldots, d)$ satisfy the conditions of Lemma 2.5, there exists a set $\left\{c_{\alpha_{j}}^{(\beta)}: \alpha=0,1\right.$, $\cdots, t, \beta=0,1, \ldots, d\}$ of non-negative integers less than p which satisfy the conditions:

$$
\begin{equation*}
\sum_{\alpha=0}^{t} c_{\alpha}^{(\beta)}=s_{j+1}^{(\beta)} p-s_{j}^{(\beta)} \quad(\text { for } \beta=0,1, \ldots, d) \tag{2.48}
\end{equation*}
$$

and

$$
\sum_{\beta=0}^{d} c_{\alpha j}^{(\beta)}=c_{\alpha j} \quad(\text { for } \alpha=0,1, \ldots, t)
$$

For each $k(0 \leqq k \leqq d)$, since $c_{i j}^{(k)}(i=0,1, \ldots, t, j=0,1, \ldots, n-1)$ satisfy the conditions of lemma 2.3 , there exists a positive integer $m_{k}, 1 \leqq m_{k} \leqq v$, such that

$$
\begin{equation*}
\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j}^{(k)} p^{i n+j}=m_{k}\left(p^{n}-1\right) \tag{2.49}
\end{equation*}
$$

From (2.49), (2.48') and the equation

$$
\begin{equation*}
\sum_{i=0}^{t} \sum_{j=0}^{n-1} c_{i j} p^{i n+j}=m\left(p^{n}-1\right) \tag{2.50}
\end{equation*}
$$

we have

$$
\begin{equation*}
m=\sum_{k=0}^{d} m_{k} \quad \text { and } \quad D_{p}\left[m\left(p^{n}-1\right)\right]=\sum_{k=0}^{d} D_{p}\left[m_{k}\left(p^{n}-1\right)\right] . \tag{2.51}
\end{equation*}
$$

This completes the proof.
Theorem 2.1 shows that for each m satisfying the requirement (2.9), there exists a unique set of $s_{l}(l=0,1, \ldots, n)$ satisfying (2.10). On the other hand, Theorem 2.2 shows that for each set of s_{l} satisfying (2.10), there exist a number of integers m satisfying the requirement (2.9).

In order to enumerate the number of m for each set of s_{l}, we introduce the following notation. For a set of non-negative integers $u_{j}(j=0,1, \ldots$, $n-1)$, we denote by $N_{t}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ the number of ordered sets or vectors $\underline{c}(t, n-1)=\left(c_{00}, c_{10}, \ldots, c_{t 0} ; \ldots ; c_{0 n-1}, c_{1 n-1}, \ldots, c_{t n-1}\right)$ of non-negative integers less than p which satisfy

$$
\begin{equation*}
\sum_{i=0}^{t} c_{i j}=u_{j} \tag{2.52}
\end{equation*}
$$

for all $j=0,1, \ldots, n-1$. It can easily be seen that, for $0 \leqq u_{j} \leqq(t+1)(p-1)$, there exists at least one set $\underline{c}(t, n-1)$ and, otherwise, there does not exist such an ordered set.

Using the notation, we have the following theorem.
Theorem 2.3. The number of integers m such that (i) $1 \leqq m \leqq v$ and (ii) m can be decomposed into $d+1$ positive integers $m_{k}(k=0,1, \ldots, d)$ satisfying the following conditions:

$$
\begin{equation*}
m=\sum_{k=0}^{d} m_{k} \quad \text { and } \quad D_{p}[m(q-1)]=\sum_{k=0}^{d} D_{p}\left[m_{k}(q-1)\right] \tag{2.53}
\end{equation*}
$$

is equal to

$$
\begin{equation*}
\sum_{s_{0}=d+1}^{t+1} \ldots \sum_{s_{n-1}=d+1}^{t+1} N_{t}\left(s_{1} p-s_{0}, \ldots, s_{n} p-s_{n-1}\right) \tag{2.54}
\end{equation*}
$$

where $s_{n}=s_{0}$.
The following well known lemma is useful in the determination of N_{t} (u_{0}, \cdots, u_{n-1}).

Lemma 2.6. Let u be a non-negative integer such that $0 \leqq u \leqq(t+1)(p-1)$. Then the number, $B_{u}(t, p)$, of ordered sets $\left(x_{0}, x_{1}, \cdots, x_{t}\right)$ of $t+1$ non-negative integers $x_{i}(i=0,1, \cdots, t)$ such that $0 \leqq x_{i} \leqq p-1$ and $\sum_{i=0}^{t} x_{i}=u$, is equal to

$$
\begin{equation*}
B_{u}(t, p)=\sum_{i=0}^{L(u)}(-1)^{i}\left({ }_{i}^{t+1}\right)\left({ }^{t+u-i p}\right) \tag{2.55}
\end{equation*}
$$

where $L(u)$ is the greatest integer not exceeding u / p, i.e. $L(u)=\left[\frac{u}{p}\right]$.
(Proof of Theorem 1) We can easily see that

$$
\begin{equation*}
N_{t}\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)=\prod_{j=0}^{n-1} B_{u_{j}}(t, p) . \tag{2.56}
\end{equation*}
$$

Applying (2.56) and lemma 2.6 to Theorem 2.3, we get Theorem 1.
When $d \leqq\left[\frac{t}{2}\right]$, the following identity may be useful, i.e.,

$$
\begin{equation*}
R_{d}\left(t, p^{n}\right)=v-R_{d}^{*}\left(t, p^{n}\right) \tag{2.57}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{d}^{*}\left(t, p^{n}\right)=\sum_{s_{0}^{*}} \cdots \sum_{s_{n-1}^{*}} \prod_{j=0}^{n-1} \sum_{i=0}^{L\left(s_{j+1}^{*}, s_{j}^{*}\right)}(-1)^{i}\left({ }_{i}^{t+1}\right)\left(t+s_{j+1 p_{t}^{*}}^{t-s_{j}^{*}-i p}\right), \tag{2.58}
\end{equation*}
$$

$s_{n}^{*}=s_{0}^{*}$ and summations are taken over all integers $s_{j}^{*}(j=0,1, \ldots, n-1)$ such that

$$
\begin{equation*}
1 \leqq s_{j}^{*} \leqq d \quad \text { and } \quad 0 \leqq s_{j+1}^{*} p-s_{j}^{*} \leqq(t+1)(p-1) \tag{2.59}
\end{equation*}
$$

Corollary 2.1. In the special case $q=p$, i.e., $n=1$, the rank of the incidence matrix N of v points and $b d$-flats in $\mathrm{PG}(t, p)$ is equal to

$$
\begin{align*}
R_{d}(t, p) & =\sum_{s=d+1}^{t+1} \sum_{i=0}^{L(s, s)}(-1)^{i}\binom{t+1}{i}\left(\begin{array}{c}
t+s(p-1)-i p
\end{array}\right) \tag{2.60}\\
& =v-\sum_{s=1}^{d} \sum_{i=0}^{L(s, s)}(-1)^{i}\binom{t+1}{i}\left(\begin{array}{c}
t+s(p-1)-i p
\end{array}\right)
\end{align*}
$$

where $L(s, s)=\left[\frac{s(p-1)}{p}\right]$.
This result has been obtained by Smith [5].
Corollary 2.2. In the special case $d=t-1$, the rank of the incidence
matrix N of v points and v hyperplanes $((t-1)$-flats) in $\mathrm{PG}(t, q)$ is equal to

$$
\begin{equation*}
R_{t-1}\left(t, p^{n}\right)=\left({ }^{t+p-1}\right)^{n}+1 . \tag{2.61}
\end{equation*}
$$

In the case $t=2$, this result has been obtained by Graham and MacWilliams [2] and, for general t, was conjectured by Rudolph [4] to be true and has been independently obtained by Smith [5] and by Goethals and Delsarte [1].

3. Rank of the incidence matrix of points and d-flats in $\operatorname{EG}\left(\boldsymbol{t}, \boldsymbol{p}^{\boldsymbol{n}}\right)$

We consider the affine case.
The affine geometry of t-dimensions, denoted by $\operatorname{EG}(t, q)$, is a set of points which satisfy the following two conditions:
(a) A point is represented by (ν) where ν is an element of $\operatorname{GF}\left(q^{t}\right)$ and each element represents a unique point.
(b) A d-flat is defined as a set of points

$$
\begin{equation*}
\left\{\left(a_{0} \nu_{0}+a_{1} \nu_{1}+\cdots+a_{d} \nu_{d}\right)\right\} \tag{3.1}
\end{equation*}
$$

where $\left(\nu_{0}\right),\left(\nu_{1}\right), \ldots,\left(\nu_{d}\right)$ are linearly independent over the coefficient field $\mathrm{GF}(q)$ and a 's run over the elements of $\mathrm{GF}(q)$ subject to the restriction $\sum_{i=0}^{d} a_{i}=1$.

Because of difficulties arising in constructing an analytical expression for the incidence relation between the origin and d-flats in $\mathrm{EG}(t, q)$, we shall analyze separately the incidence matrix of points and d-flats passing through the origin and the incidence matrix of points and d-flats not passing through the origin.
(I) The case of the incidence matrix of points and d-flats passing through the origin

We define the incidence matrix of q^{t} points and $b_{0}=\phi(t-1, d-1, q) d$ flats passing through the origin to be the matrix

$$
\begin{equation*}
N_{0}=\left\|n_{i j}\right\| ; i=1,2, \ldots, b_{0} \quad \text { and } \quad j=0,1,2, \cdots, q^{t}-1 \tag{3.2}
\end{equation*}
$$

where

$$
n_{i j}= \begin{cases}1, & \text { if the } j \text {-th point is incident with the } i \text {-th } d \text {-flat }, \\ 0, & \text { otherwise }\end{cases}
$$

and define the incidence matrix of $v^{*}=q^{t}-1$ points other than the origin and $b_{0} d$-flats passing through the origin to be the matrix

$$
\begin{equation*}
N_{0}^{*}=\left\|n_{i j}^{*}\right\| ; i=1,2, \ldots, b_{0} \quad \text { and } \quad j=1,2, \ldots, q^{t}-1 . \tag{3.3}
\end{equation*}
$$

Since $n_{i 0}=1$ and $\sum_{j=1}^{q^{t}-1} n_{i j}=q^{d}-1$ for all $i=1,2, \ldots, b_{0}$, the rank of N_{0} is
equal to the rank of N_{0}^{*}. It is known [6] that the structure of the matrix N_{0}^{*} is the same as the incidence matrix N of points and ($d-1$)-flats in $\mathrm{PG}(t-1, q)$ except for ($q-1$ times) duplications of each column of N_{0}^{*}. The rank of the matrix N_{0}^{*}, therefore, is equal to the rank of the incidence matrix N.

The following theorem is an immediate consequence of Theorem 1.
Theorem 3.1. Over $\mathrm{GF}(q)$, the rank of the incidence matrices N_{0} and N_{0}^{*} of points and d-flats passing through the origin in $\operatorname{EG}(t, q)$ is equal to $R_{d-1}\left(t-1, p^{n}\right)$ where $R_{d}\left(t, p^{n}\right)$ is given by equation (1.1).
(II) The case of the incidence matrix of points and d-flats not passing through the origin

We define the incidence matrix of $v^{*}=q^{t}-1$ points other than the origin and $b_{1} d$-flats not passing through the origin in $\operatorname{EG}(t, q)$ to be the matrix N_{1} where b_{1} is the number of d-flats not passing through the origin, i.e.,

$$
\begin{equation*}
b_{1}=\phi(t, d, q)-\phi(t-1, d, q)-\phi(t-1, d-1, q) \tag{3.4}
\end{equation*}
$$

By the similar methods used in $\mathrm{PG}(t, q)$, Smith [5] showed the following proposition.

Proposition 2 (Smith). Over $\operatorname{GF}(q)$, the rank, $r_{d}\left(t, p^{n}\right)$, of the incidence matrix N_{1} is equal to the number of integers m such that (i) $1 \leqq m \leqq v^{*}-1$ and (ii) there exists a set of one non-negative integer m_{0} and d positive integers $m_{k}(q-1)(k=1,2, \ldots, d)$ which satisfies the following conditions:

$$
\begin{equation*}
m=m_{0}+\sum_{k=1}^{d} m_{k}(q-1) \quad \text { and } \quad D_{p}[m\rfloor=D_{p}\left[m_{0}\right]+\sum_{k=1}^{d} D_{p}\left[m_{k}(q-1)\right] \tag{3.5}
\end{equation*}
$$

where $0 \leqq m_{0} \leqq m$ and $0<m_{k}(q-1)<m$ for any $k=1,2, \ldots, d$.
Since in the special case $m=v^{*}\left(v^{*}=q^{t}-1\right), m$ satisfies the condition (3.5), the rank of the incidence matrix N_{1} is equal to

$$
\begin{equation*}
r_{d}\left(t, p^{n}\right)=r_{d}^{*}\left(t, p^{n}\right)-1 \tag{3.6}
\end{equation*}
$$

where $r_{d}^{*}\left(t, p^{n}\right)$ is the number of integers m such that (i) $1 \leqq m \leqq v^{*}$ and (ii) there exists a set of one non-negative integer m_{0} and d positive integers $m_{k}(q-1)(k=1,2, \ldots, d)$ satisfying the condition (3.5).

From Proposition 2, lemma 2.2, Theorem 2.1 and Theorem 2.2, we have the following theorem.

Theorem 3.2. A necessary and sufficient condition for an integer m such that $1 \leqq m \leqq v^{*}$ to be decomposed into one non-negative integer m_{0} and d positive integers $m_{k}(q-1)(k=1,2, \ldots, d)$ satisfying the condition (3.5) is that there exist $n+1$ positive integers $s_{l}(l=0,1, \ldots, n)$ satisfying the following conditions:

$$
\begin{equation*}
s_{n}=s_{0}, \quad d \leqq s_{j} \leqq t, \quad 0 \leqq s_{j+1} p-s_{j} \leqq t(p-1) \tag{i}
\end{equation*}
$$

and
(ii)

$$
\begin{equation*}
\sum_{i=0}^{t-1} c_{i j} \geqq s_{j+1} p-s_{j} \tag{3.7'}
\end{equation*}
$$

for all $j=0,1, \ldots, n-1$ where $c_{i j}$'s $\left(0 \leqq c_{i j}<p\right)$ are coefficients of $p^{i n+j}$ of the p-adic representation for m, i.e.,

$$
\begin{equation*}
m=\sum_{i=0}^{t-1} \sum_{j=0}^{n-1} c_{i j} p^{i n+j} . \tag{3.8}
\end{equation*}
$$

We prove the following lemmas, which will be used in the proof of theorem 2.

Lemma 3.1. Let $u_{j}(j=0,1, \ldots, n-1)$ be a set of non-negative integers such that $0 \leqq u_{j} \leqq(t-1)(p-1)$. Then the number of ordered sets or vectors $\underline{c}(t-1$, $n-1)=\left(c_{00}, c_{10}, \ldots, c_{t-10} ; \ldots ; c_{0 n-1}, c_{1 n-1}, \ldots, c_{t-1 n-1}\right)$ of tn non-negative integers $c_{i j}$ less than p such that

$$
\begin{equation*}
u_{j} \leqq \sum_{i=0}^{t-1} c_{i j} \leqq u_{j}+(p-1) \quad(j=0,1, \cdots, n-1) \tag{3.9}
\end{equation*}
$$

and that

$$
\sum_{i=0}^{t-1} c_{i j}<u_{j}+(p-1)
$$

for some j, is equal to

$$
N_{t}\left(u_{0}+(p-1), \cdots, u_{n-1}+(p-1)\right)-N_{t-1}\left(u_{0}+(p-1), \cdots, u_{n-1}+(p-1)\right) .
$$

Proof. For any set $\left\{c_{\alpha j}: \alpha=0,1, \ldots, t-1\right\}$ of t non-negative integers $c_{\alpha j}$ less than p such that $u_{j} \leqq \sum_{\alpha=0}^{t-1} c_{\alpha j} \leqq u_{j}+(p-1)$, there exists a non-negative integer $c_{t j}(0 \leqq j \leqq n-1)$ less than p such that

$$
\begin{equation*}
\sum_{\alpha=0}^{t-1} c_{\alpha j}+c_{t j}=u_{j}+(p-1) \tag{3.10}
\end{equation*}
$$

The number of ordered sets $\underline{c}(t-1, n-1)$ of $t n$ non-negative integers $c_{i j}$ less than p satisfying the conditions (3.9) is, therefore, equal to the number of ordered sets $\underline{c}(t, n-1)$ of $(t+1) n$ non-negative integers less than p satisfying the equations (3.10). Thus we have lemma 3.1.

Lemma 3.2. For any set $\left\{c_{i j}: i=0,1, \ldots, t-1, j=0,1, \ldots, n-1\right\}$ of nonnegative integers less than p such that there exists a set of integers $s_{l}(l=0 ; 1$, \ldots, n) satisfying the condition (3.7) and (3.7'), there exists a unique set of integers $s_{l}^{*}(l=0,1, \ldots, n)$ satisfying the following condition:

$$
\begin{equation*}
s_{n}^{*}=s_{0}^{*}, \quad d \leqq s_{j}^{*} \leqq t, \quad 0 \leqq s_{j+1}^{*} p-s_{j}^{*} \leqq t(p-1) \tag{3.11}
\end{equation*}
$$

for $j=0,1, \ldots, n-1$ and that

$$
s_{j+1} p-s_{j} \leqq s_{j+1}^{*} p-s_{j}^{*} \leqq \sum_{i=0}^{t-1} c_{i j} \leqq\left(s_{j+1}^{*}+1\right) p-\left(s_{j}^{*}+1\right)
$$

for all $j=0,1, \ldots, n-1$ and

$$
\sum_{i=0}^{t-1} c_{i j}<\left(s_{j+1}^{*}+1\right) p-\left(s_{j}^{*}+1\right)
$$

for some j.
Proof. From $s_{n}^{*}=s_{0}^{*}$ and inequalities (3.11') and (3.11"), we have
and we can show that these $s_{l}^{*}(l=0,1, \ldots, n)$ satisfy the condition (3.11).
(Proof of Theorem 2). From Theorem 3.2, lemma 3.1 and lemma 3.2, we have

$$
\begin{align*}
r_{d}^{*}\left(t, p^{n}\right)= & \sum_{s_{0}=d+1}^{t} \cdots \sum_{s_{n-1}=d+1}^{t} N_{t}\left(s_{1} p-s_{0}, \cdots, s_{n} p-s_{n-1}\right) \\
& -\sum_{s_{0}=d+1}^{t-1} \cdots \sum_{s_{n-1}=d+1}^{t-1} N_{t-1}\left(s_{1} p-s_{0}, \cdots, s_{n} p-s_{n-1}\right) \\
= & \sum_{s_{0}=d+1}^{t+1} \cdots \sum_{s_{n-1}=d+1}^{t+1} N_{t}\left(s_{1} p-s_{0}, \cdots, s_{n} p-s_{n-1}\right) \\
& -\sum_{s_{0}=d+1}^{t} \cdots \sum_{s_{n-1}=d+1}^{t} N_{t-1}\left(s_{1} p-s_{0}, \cdots, s_{n} p-s_{n-1}\right) \\
= & R_{d}\left(t, p^{n}\right)-R_{d}\left(t-1, p^{n}\right) \tag{3.12}
\end{align*}
$$

Combining (3.12) with (3.6), we have Theorem 2.
Corollary 3.1. In the special case $d=t-1$, the rank of the incidence matrix N_{1} is equal to $\left({ }_{(t+p-1}^{t}\right)^{n}-1$.

This result has been independently obtained by Smith [5] and by Goethals and Delsarte [1].

Acknowledgement. The author expresses his thanks to Prof. S. Yamamoto, Hiroshima University for his valuable advices and helpful discussions.

References

[1] Goethals, J. M. and Delsarte, P. (1967). On a class of majority logic decodable cyclic codes. presented at the San Remo International Symposium on Information Theory, September, 1967.
[2] Graham, R. L. and MacWilliams, J. (1966). On the number of information symbols in differenceset cyclic codes. Bell System Technical Journal 45 1057-1070.
[3] Massey, J. C. (1963). Threshold decoding. The M. I. T. Press, Cambridge, Massachusetts.
[4] Rudolph, L. D. (1967). A class of majority logic decodable codes. IEEE Transactions on Information Theory IT-13 305-307.
[5] Smith, K. J. C. (1967). Majority decodable codes derived from finite geometries. Inst. Statist. mimeo. series 561, Chapel Hill, N. C.
[6] Yamamoto, S., Fukuda, T. and Hamada, N. (1966). On finite geometries and cyclically generated incomplete block designs. J. Sci. Hiroshima Univ. Ser. A-I 30 137-149.

Department of Mathematics, Faculty of Science Hiroshima University

[^0]: *) This problem was suggested by Professor R. C. Bose during his visit to Hiroshima, May 1968.

