Multiplication Rings Containing Only Finitely Many Minimal Prime Ideals

Joe Leonard Motт
(Received October 12, 1968)

1. Introduction

A commutative ring R is called an $A M$-ring if whenever A and B are ideals of R with A properly contained in B, then there is an ideal C of R such that $A=B C$. An $A M$-ring in which $R A=A$ for each ideal A of R is called a multiplication ring. This paper is principally concerned with the results of a paper by Gilmer and Mott [7] when the ring R is assumed to contain only a finite number of minimal prime ideals. One of the principal results of this paper is that a multiplication ring R is Noetherian if and only if R contains only finitely many minimal prime ideals. Unless otherwise stated, all rings considered in this paper are assumed to be commutative and to contain an identity. However, on some occasions it will be pointed out that the theorem proved can be proved when R does not necessarily contain an identity.

2. Preliminary results and definitions

Two very important properties to be considered are the properties that will be called (*) and (**) throughout this paper. A ring R satisfies (*) if an ideal of R with prime radical is primary, and (**) is the property that an ideal of R with prime radical is a prime power. Also important is the notion of the kernel of an ideal, which is defined as follows: if $\left\{P_{\alpha}\right\}$ is the collection of all minimal prime ideals of an ideal A of R, then by an isolated $P_{\alpha^{-}}$ primary component of A we mean the intersection Q_{α} of all P_{α}-primary ideals which contain A. The kernel of A is the intersection of all $Q_{\alpha}{ }^{\prime} s$.

The relationship between properties (*) and (**) and the kernel of an ideal were studied in [7]. We list here those results which are used most frequently in this paper.

Theorem 1. A ring R satisfies (*) if and only if R is one of the following:
a) a zero-dimensional ring,
or
b) a one-dimensional ring in which each non-maximal prime ideal P of R has the property that if M is a maximal ideal such that $P<M<R$ and if $p \in P$, then $p \in p M$.

In Theorem 1, b) is equivalent to c) R is one-dimensional and if P and M
are prime ideals of R such that $P<M<R, P R_{M}$ is the zero ideal of R_{M}.
For the proof of Theorem 1, see [5].
The next theorem does not appear in [7] but it follows easily from Theorem 1 and we omit the proof.

Theorem 2. Suppose R is a ring. The following are equivalent:
a) R satisfies ($*$).
b) R_{M} satisfies (*) for each maximal ideal M of R.
c) $\quad R_{M}$ is either a one-dimensional integral domain or a primary ring for each maximal ideal M of R.

Theorem 3. A ring R satisfies (*) if and only if each ideal of R is equal to its kernel. (See [7; 43]).

Theorem 4. Suppose R is a ring. The following are equivalent.
a) R satisfies ($* *$).
b) R satisfies (*) and primary ideals are prime powers.
c) R_{M} is a multiplication ring for each maximal ideal M of R.
d) R_{M} is a Dedekind domain or a special primary ring for each maximal ideal M of R. (Compare [7; 46-49]).

Theorem 5. A multiplication ring satisfies (**).
All of the above theorems can be proved in a more general situation; namely, when R does not necessarily contain an identity, but is a u-ring [7; 41]. (A u-ring is a commutative ring R such that if A is a proper ideal of $R, \sqrt{A} \neq R$.)

This paper contains results obtained independently by Larsen and McCarthy [8]. One pertinent observation to make relative to this paper and to theirs is that a ring R which satisfies (**) has only finitely minimal prime ideals if and only if R has few zero-divisors.

3. Principal results

The following theorem will be useful throughout the remainder of the paper.

Theorem 6. If R is a ring with only a finite number of minimal prime ideals P_{1}, \ldots, P_{n}, the following are equivalent:
a) R is a finite direct sum of integral domains and primary rings.
b) $(0)=Q_{1} \cap Q_{2} \cdots \cap Q_{k} \cap Q_{k+1} \cap \cdots \cap Q_{n}$ where
i) $Q_{i}+Q_{j}=R$ for $i \neq j$
ii) Q_{i} is a prime ideal for $1 \leq i \leq k$, and
iii) Q_{i} is a primary ideal belonging to a maximal ideal for

$$
k+1 \leq i \leq n .
$$

c) $\quad R_{M}$ is either an integral domain or a primary ring for each maximal ideal M of R.

Proof. It is well known that (a) and (b) are equivalent [11; thm. 32]. We show that (b) implies (c). Since R is a direct sum of integral domains D_{i} and primary rings R_{j} and since $(0)=Q_{1} \cap \ldots \cap Q_{k} \cap \ldots \cap Q_{n}$ where $D_{i} \simeq R / Q_{i}$ for $1 \leq i \leq k$ and $R_{j}=R / Q_{j}$ for $k+1 \leq j \leq n$, it follows that the minimal prime ideals of R are precisely $Q_{1}, \cdots, Q_{k}, M_{k+1}, \cdots, M_{n}$ where $M_{j}=\sqrt{Q_{j}}$ for $j \geq k+1$. Furthermore, if M is a maximal ideal of R, then M contains exactly one minimal prime ideal $P_{i_{0}}$. Let $A_{M}=\{a \in R \mid a s=0$ for some $s \in R M\}$ be contraction of the extension of (0) relative to $R_{M}[11 ; 218-224]$. If M properly contains $P_{i_{0}}$, then $A_{M}=P_{i_{0}}$ and R_{M} is an integral domain. If $M=P_{i_{0}}$, then M is a minimal prime ideal of R and A_{M} is an isolated M-primary component of (0) [8; thm. 6]. In this case, R_{M} is a primary ring.

Next we show that (c) implies (b). For each maximal ideal M_{α} of R, let $A_{M_{\alpha}}$ be the extension of the contraction of (0) relative to $R_{M_{\alpha}}$ and let $A=$ $\bigcap_{\alpha} A_{M_{\alpha}}$. If $a \in A$ and $C=\{c \in R \mid c a=0\}$, then C is an ideal of R which is not contained in any maximal ideal of R. Hence $C=R$ and $A=(0)$.

Let P_{1}, \ldots, P_{k} be the minimal prime ideals of R which are not maximal and P_{k+1}, \ldots, P_{n} be those which are also maximal.

Let M be a maximal ideal of R. If M is a minimal prime ideal then $M=$ P_{i} for some i between $k+1$ and n, and A_{M} is an isolated M-primary component of (0). In this case, we shall write $A_{M}=Q_{i}$. If M is not a minimal prime ideal of R, then R_{M} is an integral domain and A_{M} is a minimal prime ideal of R contained in M. In this case, $A_{M}=P_{j}$ for some j between 1 and k. Thus $P_{1} \cap \ldots P_{k} \cap Q_{k+1} \ldots \cap Q_{n}=\bigcap_{\alpha} A_{M_{\alpha}}=(0)$ and (b) follows.

It should be observed that either (a) or (b) implies that R has only finitely many minimal prime ideals.

Lemma 7. If $R=R_{1} \oplus R_{2} \ldots \oplus R_{n}$ and if M is a maximal ideal of R such that $M=R_{1} \oplus \cdots \oplus M_{i} \oplus \cdots \oplus R_{n}$ where M_{i} is a maximal ideal of R_{i}, then $R_{M} \simeq$ $\left(R_{i}\right)_{M_{i}}$.

This is an immediate consequence of properties of direct sums and quotient ring formation [11; 221-227] and the proof is omitted.

We use the above lemma and Theorem 6 to obtain the following corollary.

Corollary 8. Suppose R is a ring. Then R is a finite direct sum of integral domains if and only if R contains only finitely many minimal prime ideals and R_{M} is an integral domain for each maximal ideal M of R.

Proof. If R is a finite direct sum of integral domains D_{k}, then (0)= $P_{1} \cap \cdots \cap P_{n}$ where P_{i} is a prime ideal of R for each i and $P_{i}+P_{j}=R$ for $i \neq j$.

Furthermore $D_{k} \simeq R / P_{k}$ for each k. Clearly, $\left\{P_{1}, \ldots, P_{n}\right\}$ is the set of minimal prime ideals of R. If M is a maximal ideal of R, then for some i between 1 and n, and for some maximal ideal M_{i} of $D_{i}, M=D_{1} \oplus \cdots \oplus M_{i} \oplus \cdots \oplus D_{n}[11$; 175]. Lemma 7 then shows that $R_{M} \simeq\left(D_{i}\right)_{M_{i}}$. And since D_{i} is an integral domain it follows then that R_{M} is also an integral domain.

Conversely, suppose R contains only finitely many minimal prime ideals and R_{M} is an integral domain for each maximal ideal M of R. By Theorem 6, $R=D_{1} \oplus \cdots \oplus D_{n} \oplus R_{1} \oplus \cdots \oplus R_{k}$ where D_{i} is an integral domain and R_{i} is a primary ring for each i.

We show that each R_{i} is a field in this case. For let M_{i} be a maximal ideal of R_{i} and M the corresponding maximal ideal of R. Lemma 7 implies that $R_{M} \simeq\left(R_{i}\right)_{M_{i}}$. Since R_{M} is an integral domain and R_{i} is a primary ring, it follows that M_{i} is the zero ideal of R_{i} and that R_{i} is a field. Hence each summand in the direct sum representation of R is an integral domain.

Theorem 9. In the ring R, these conditions are equivalent:
a) R satisfies (*) and contains only finitely many minimal prime ideals.
b) R is a finite direct sum of one-dimensional integral domains and primary rings.

Proof. Suppose R satisfies (*) and contains only finitely many minimal prime ideals. By Theorem 2, R_{M} is a one-dimensional domain or a primary ring for each maximal ideal M of R. Therefore, by Theorem $6, R$ is a finite direct sum of integral domains D_{i} and primary rings. Since each D_{i} is a homomorphic image of R, each D_{i} satisfies (*). Hence each D_{i} is one-dimensional by Theorem 1. (Note that if D_{i} is zero-dimensional, then D_{i} is a field and, hence, is a primary ring.)

Clearly, (b) implies (a).
Part (c) of Theorem 1 shows that if M is a maximal ideal of a ring R which satisfies $\left(^{*}\right)$ and if M properly contains a prime ideal P, then P is the unique prime ideal properly contained in P. The next corollary follows immediately from this fact and from Theorem 9.

Corollary 10. In the ring R, these conditions are equivalent:
a) R satisfies $\left(^{*}\right)$ and contains only finitely many maximal ideals.
b) R is a finite direct sum of semi-quasi-local one-dimensional integral domains and primary rings.

Theorem 11. Suppose R is a ring. The following are equivalent:
a) R is a multiplication ring containing only finitely many minimal prime ideals.
b) R is a multiplication ring and the zero ideal of R is a finite intersection of primary ideals.
c) R is a Noetherian multiplication ring.
d) ' R is a finite direct sum of Dedekind domains and special primary rings.

Proof. It is well-known that (c) and (d) are equivalent [1; thm. 5]. That (d) implies (a) is clear. We show (a) implies (b).

The kernel of (0) is the intersection of all isolated P_{α}-primary components of (0) where P_{α} is a minimal prime ideal of (0). Since a minimal prime ideal of (0) is a minimal prime ideal of R we see that the kernel of (0) is a finite intersection of primary ideals. In a multiplication ring each ideal is equal to its kernel by Theorems 5 , 4 , and 3 . Thus (b) follows.

We show (b) implies (d). If a prime ideal P of R is such that $P<M<R$ where M is a maximal ideal of R, then P is the unique prime ideal properly contained in M and, in fact, P is contained in every M-primary ideal of R since R satisfies (*). By hypothesis (0) is a finite intersection of primary ideals and since primary ideals of a multiplication ring are prime ideals powers, it follows that (0) $=P_{1} \cap \cdots \cap P_{k} \cap M_{k+1}^{s_{k+1}} \ldots \cap M_{n}^{s_{n}}$ where each P_{i} is a non-maximal prime and each M_{j} is both a maximal ideal and a minimal prime ideal. It is clear that $P_{1}, \ldots, P_{k}, M_{k+1}, \ldots, M_{n}$ are pairwise comaximal. Thus $R=D_{1} \oplus \cdots \oplus D_{k} \oplus R_{k+1} \oplus \cdots \oplus R_{n}$ where $D_{i} \simeq R / P_{i}$ and $R_{j} \simeq R / M_{j}^{s_{j}}$. Since each D_{i} is a multiplication ring and an integral domain, each D_{i} is a Dedekind domain. Similarly, each R_{j} is a multiplication ring and a primary ring, and is therefore a special primary ring.

Definition. An integral domain D is an almost Dedekind domain if D_{M} is a Dedekind domain for each maximal ideal M of D. A Noetherian almost Dedekind domain is Dedekind [3; thm. 8].

Theorem 12. Suppose R is a ring containing only finitely many minimal prime ideals. The following are equivalent:
a) R is a finite direct sum of almost Dedekind domains and special primary rings.
b) R satisfies (${ }^{* *}$).

Proof. Suppose (a) holds and let $R=R_{1} \oplus \cdots \oplus R_{k} \oplus R_{k+1} \oplus \cdots \oplus R_{n}$ where R_{i} is an almost Dedekind domain for $1 \leq i \leq k$ and R_{i} is a special primary ring for $k+1 \leq j \leq n$. Let M be a maximal ideal of R and M_{i} be the corresponding maximal ideal of R_{i}. By Lemma 7, $R_{M} \simeq\left(R_{i}\right)_{M_{i}}$. If $i \leq k,\left(R_{i}\right)_{M_{i}}$ is a Dedekind domain, and if $k+1 \leq i$, then $\left(R_{i}\right)_{M_{i}}=R_{i}$, a special primary ring. Thus by Theorem $4, R$ satisfies ($* *$).

Conversely suppose R satisfies (**). Since R also satisfies (*), Theorem 9 implies that R is a finite direct sum of one-dimensional integral domains $\left\{R_{i}\right\}_{i=1}^{k}$ and primary rings $\left\{R_{j}\right\}_{j=k+1}^{n}$. Let M_{i} be a maximal ideal of some R_{i} and M the corresponding maximal ideal of R. If $i \leq k,\left(R_{i}\right)_{M_{\imath}}$ is a one-dimensional integral domain. Since $R_{M} \simeq\left(R_{i}\right)_{M_{i}}$ and R_{M} is either a Dedekind domain or special primary ring, it follows that $\left(R_{i}\right)_{M_{i}}$ is a Dedekind domain. If $k+1$
$\leq i,\left(R_{i}\right)_{M_{i}}=R_{i}$ since R_{i} is a primary ring. In this case it follows that R_{i} is a special primary ring. Therefore (b) implies (a).

Theorem 13. Suppose R is a ring. The following are equivalent:
a) R is a Noetherian multiplication ring.
b) Every ideal is a finite product of prime ideals.
c) Every ideal of R is a finite intersection of powers of prime ideals.
d) R satisfies ${ }^{(* *)}$ and every ideal of R is a finite intersection of primary ideals.
e) R is Noetherian and satisfies (**).
f) R is Noetherian and R_{M} is a multiplication ring for each maximal ideal Mor R.

Proof. It is well known that (a) and (b) are equivalent [1, thm. 5]. Recently, Butts and Gilmer have shown that (b) and (c) are equivalent [2; cor. 6]. Clearly (a) implies (d). It is clear from the definition (**), however, that (d) implies (c). It is also clear that (a) implies (e). Theorem 4 shows that (e) and (f) are equivalent. Finally, we show that (e) implies (a).

Since a Noetherian ring contains only finitely many minimal prime ideals, Theorem 12 shows that (e) implies that R is a finite direct sum of almost Dedekind domains and special primary rings. However, since R is Noetherian, each almost Dedekind summand is in fact a Dedekind domain. Thus R is a finite direct sum of Dedekind domains and special primary rings and by Theorem 11, R is a Noetherian multiplication ring.

Theorem 14. Suppose R is a ring containing only finitely many maximal ideals. Then R satisfies (**) if and only if R is a principal ideal ring.

Proof. A principal ideal ring R is a multiplication ring, and hence, $\left({ }^{* *}\right)$ holds in any principal ideal ring.

On the other hand, since R contains only finitely many maximal ideals and since a maximal ideal of a ring satisfying $\left({ }^{*}\right)$ or $\left({ }^{* *)}\right.$ contains a unique minimal prime ideal, it follows that R contains only finitely many minimal prime ideals. Thus, R is a finite direct sum of almost Dedekind domains and special primary rings by Theorem 12. By [6, thm. 3], an almost Dedekind domain with only a finite number of maximal ideals is a principal ideal domain. Therefore, R is a finite direct sum of principal ideal domains and special primary rings. By [11; thm. 33], R is a principal ideal ring.

The above theorem can be proved when R need not contain an identity but is assumed to be a u-ring. The more general form of Theorem 14 will be apparent from the following theorem and the fact that in a u-ring which satisfies $(*)$, proper ideals are contained in maximal ideals [7; 41].

Theorem 15. If R is a u-ring containing only finitely many maximal ideals and if each proper ideal of R is contained in a maximal ideal, then R
contains, an identity.
Proof. Since R is a u-ring, a) $R=R^{2}$ and b) maximal ideals are prime [7; thm. 2]. The union of all maximal ideals of R is a proper subset of R. Otherwise, R is contained in the finite union of prime ideals and hence is contained in one of them [11; 215]. This, of course, violates the fact that a maximal ideal is a proper ideal. By hypothesis, if x is not in any maximal ideal of R, then $R=(x)$. Therefore, R is a finitely generated idempotent ideal, and by $[4 ; 185]$ or $[1 ; 86], R$ is generated by a single idempotent element e. This element e is the identity of R.

The assumption that each proper ideal is contained in a maximal ideal is a necessary one as is shown by example 4 of [4].

We prove the next theorem in its most general form also.
Theorem 16. An AM-ring R containing only finitely many maximal ideals is a principal ideal ring.

Proof. If $R \neq R^{2}$, then $R=(r)$ where $r \in R \backslash R^{2}$ and each ideal of R is a power of $R\left[17 ;\right.$ thm. 10]. If $R=R^{2}$, then R is a u-ring in which each proper ideal is contained in a maximal ideal [7; 45]. Hence by Theorem $16, R$ contains an identity. Since a multiplication ring satisfies ($* *$), R is a principal ideal ring by Theorem 15.

We return now to our original convention of assuming that the ring R contains an identity.

The following theorem is an immediate consequence of Corollary 8 and Theorem 12.

Theorem 17. A ring R containing only finitely many minimal prime ideals is a finite direct sum of almost Dedekind domains if and only if R_{M} is a Dedekind domain for each maximal ideal M of R.

Corollary 18. A Noetherian ring R is a finite direct sum of Dedekind domains if and only if R_{M} is a Dedekind domain for each maximal ideal M of R.

4. Related results

We consider in this section conditions other than those given in Corollary 18 in order that a ring R be a finite direct sum of Dedekind domains. Our main result in this vein is the following theorem.

Theorem 19. If R is a Noetherian ring and R is not a field, then the following are equivalent:
a) R is a finite direct sum of proper Dedekind domains.
b) Every maximal ideal of R is invertible.
c) There are no ideals between a maximal ideal M and its square, and M properly contains a prime ideal P such that the only primary ideal for P is P itself.
d) R is integrally closed, and one of the following holds:
i) each maximal ideal M of R properly contains exactly one other prime ideal P, and $M P=P$.
ii) each maximal ideal M of P properly contains exactly one other prime ideal P, and P is contained in every primary ideal contained in M.
Before proceeding with the proof of this theorem some definitions and basic results will be required.

If A is an ideal of the ring R and F is the total quotient ring of R, let $A^{-1}=\{x \in F \mid x A \subset R\}$. We say A is invertible if $A A^{-1}=R$. Equivalently A is invertible if $A C=(\mathrm{d})$ for some regular element $d \in A$ and some ideal C of R. An ideal A of R is a reqular ideal if A contains a regular element.

An integral domain D is said to be proper if D is not a field. This terminology is convenient since some of the following theorems are false for fields.

It is clear that if A is an ideal of R contained in the invertible ideal B, then there is an ideal C such that $A=B C$. Other properties of invertible ideals can be found in [11;272]; of particular importance is the fact that an invertible ideal has a finite basis. The following general fact will be useful.

Lemma 20. If Q is a primary ideal for the prime ideal P and A is an invertible ideal such that $A \not \subset P$, then $A \cap Q=A Q$.

Proof. Since $A \cap Q \subset A$ and A is invertible, there is an ideal C such that $A \cap Q=A C$. Furthermore, since $A Q \subset A \cap Q=A C$, on multiplying by A^{-1}, we see that $Q \subset C$.

On the other hand, $A C \subset Q$ and $A \not \subset P$ imply that $C \subset Q$ since Q is primary for P. Hence $C=Q$ and the lemma is proved.

The following is a list of generally known properties of invertible prime ideals but the author is unaware of a reference in the literature.

Lemma 21. Suppose P is a proper invertible prime ideal of R.
a) If $P=A B$ where A and B are ideals of R, then either $A=R$ or $B=R$.
b) If A is an invertible ideal of R properly containing P, then $A=R$.
c) If $P^{\prime}=\bigcap_{n=1}^{n} P^{n}$, then P^{\prime} is a prime ideal, and if $P^{\prime \prime}$ is a prime ideal properly contained in P, then $P^{\prime \prime} \subset P^{\prime}$. If P^{\prime} has a finite basis and H is a primary ideal contained in P, then $P^{\prime} \subset H$; in fact, $P^{\prime}=H$ or the radical of H is P. In particular if P^{\prime} has a finite basis, then P^{\prime} is the only prime ideal properly contained in P.
d) An ideal Q is P-primary if and only if Q is a power of P.
e) The only invertible ideals between P and P^{n}, where n is a positive in-

- teger, are powers of P.
f) If P is a maximal ideal, the only ideals between P and P^{n} are powers of P.

Proof. The proofs of (a) and (b) are quite straightforward and so we proceed to prove (c). The proof that P^{\prime} is a prime ideal is identical with a proof given by Nakano in [10; thm. 4]. Furthermore, Lemma 20 implies that $P^{\prime \prime}=P^{\prime \prime} P$ if $P^{\prime \prime}$ is a prime ideal properly contained in P. From this if follows that $P^{\prime \prime}=P P^{\prime \prime}=P^{2} P^{\prime \prime}=\cdots$, etc. so that $P^{\prime \prime} \subset P^{\prime}$.

Now suppose P^{\prime} has a finite basis and H is a primary ideal contained in P. Lemma 2 of $[11 ; 215]$ implies there is an element $z \in P$ such that $(1-z) P^{\prime}$ $=(0)$ since $P P^{\prime}=P^{\prime}$. Therefore, $(1-z)$ is not contained in the radical of H since $(1-z) \not \subset P$. Thus, $P^{\prime} \subset H$ since $(1-z) P^{\prime} \subset H$. In particular, the first part of (c) implies that P^{\prime} is the only prime ideal properly contained in P. Thus, if H is a primary ideal properly containing P^{\prime}, then the radical of H must be P.

To show (d) we first show that P^{n} is P-primary for each positive integer n. Suppose A and B are ideals such that $A B \subset P^{n}$ and suppose further that $A \not \subset P^{n}$. To show that P^{n} is primary, it will be sufficient to show that $B \subset P$. Since $A B \subset P^{n}$ and P^{n} is invertible, there is an ideal C such that $A B=P^{n} C$. Furthermore, since $A \nsubseteq P^{n}$, there is a non-negative integer $k<n$ such that $A \subset P^{k}$ but $A \not \subset P^{k+1}$ (here we mean that $P^{0}=R$). Therefore, there is an ideal C^{\prime} such that $A=P^{k} C^{\prime}$ where $C^{\prime} \not \subset P$ (if $k=0$, then $P^{k}=R$ and $C^{\prime}=A$). Consequently, $P^{n} C=A B=P^{k} C^{\prime} B$ and $P^{n-k} C=B C^{\prime} \subset P$ since $n-k>0$. From this it follows that $B \subset P$ since $C^{\prime} \not \subset P$.

Next suppose Q is P-primary. Since P is invertible, P has finite basis, and therefore it is clear that Q contains a power of P. Consequently, there is an integer n such that $Q \subset P^{n}$ but $Q \nsubseteq P^{n+1}$. Then $Q=P^{n} Q^{\prime}$ where $Q^{\prime} \nsubseteq P$. But since Q is P-primary, $P^{n} \subset 0$. Hence $Q=P^{n}$.

We will prove (e) by induction on n. We first prove there is no invertible ideals between P and P^{2}. Suppose $P^{2}<A \subset P$ where A is an invertible ideal. There is an ideal A^{\prime} such that $A=P A^{\prime}$ and $A^{\prime} \not \subset P$. But then $P=P^{-1} P^{2} \subset P^{-1} A$ $=A^{\prime}$. Since A is invertible, A^{\prime} is also, and according to (b), $A^{\prime}=R$ or $A^{\prime}=P$. However, $A^{\prime} \not \subset P$ so that $A^{\prime}=R$ and $A=P$.

Suppose for $n \geq 2$, there are no invertible ideals between P and P^{n} except powers of P. Then if $P^{n+1}<A \subset P$ and if A is invertible, we will show that A is a power of P. Since $A \subset P$, there is an ideal A^{\prime} such that $A=P A^{\prime}$ and $A^{\prime} \not \subset P^{n}$. Furthermore, there is an ideal B such that $P^{n+1}=A B$. Therefore, $P^{n}=A^{\prime} B$ so that $P^{n} \subset A^{\prime}$. If $A^{\prime} \subset P$, then the inductive hypothesis implies that A^{\prime} is a power of P and hence that A is also. Suppose $A^{\prime} \not \subset P$. Since P^{n} is P-primary, it follows that $B \subset P^{n}$ and hence that $B=P^{n}$. It follows that $A^{\prime}=R$ and, as a result, $A=P$.

To show (f) it is sufficient to show there are no ideals between the maximal ideal P and its square $[1 ; 83]$. If $P^{2} \subset A \subset P$, there is an ideal A^{\prime} such that $A=P A^{\prime}$ and $P=P^{-1} P^{2} \subset P^{-1} A=A^{\prime}$. Therefore since P is a maximal ideal,
$A^{\prime}=R$, or $A^{\prime}=R$. Hence $A=P$ or $A=P^{2}$.
Lemma 22. A Noetherial domain D is a Dedekind domain if and only if every non-zero maximal ideal of D is invertible.

Proof. This result is well-known, but the proof follows immediately from part (iii) of Lemma 21.

The proof of the following lemma is straightforward and will be omitted. See $[11 ; 256]$ for the definition of integral closure.

Lemma 23. If $R=R_{1} \oplus R_{2} \oplus \ldots \oplus R_{n}$, then R is integrally closed if and only if each R_{i} is integrally closed.

We are now prepared to give the proof of Theorem 19.
Assume, first, that R is a finite direct sum of proper Dedekind domains, $R=R_{1} \oplus R_{2} \oplus \cdots \oplus R_{n}$. If M is a maximal ideal of R, M is of the form.

$$
M=R_{1} \oplus R_{2} \oplus \cdots \oplus R_{k-1} \oplus M_{k} \oplus R_{k+1} \oplus \cdots \oplus R_{n}
$$

where M_{k} is a maximal ideal of R_{k}. Since R_{k} is a proper Dedekind domain, M_{k} is invertible. Therefore, there is an ideal C_{k} of R_{k} such that $M_{k} C_{k}=\left(d_{k}\right)$ where $d_{k} \neq 0$ in R_{k}. Hence, the ideal

$$
C=R_{1} \oplus R_{2} \oplus \cdots \oplus R_{k-1} \oplus C_{k} \oplus R_{k+1} \cdots \oplus R_{n}
$$

is such that $M C$ is a principal ideal generated by the regular element

$$
e_{1}+e_{2}+\cdots+e_{k-1}+d_{k}+e_{k+1} \cdots+e_{n},
$$

where e_{i} is the identity element of R_{i}. It follows, then, that M is invertible.
If every maximal ideal of the Noetherian ring R is invertible and (0)= $Q_{1} \cap Q_{2} \cap \cdots \cap Q_{n}$ is an irredundant representation of (0) by primary components, where P_{i} is the radical of Q_{i}, then it is clear that no P_{i} is a maximal ideal since each P_{i} consists entirely of zero-divisors [11; 214]. Therefore each P_{i} is properly contained in a maximal ideal M_{i}, and by Lemma $21, P_{i}$ is the only prime properly contained in M_{i} and $Q_{i}=P_{i}$. Then (c) follows from (b).

Assuming (c), Lemma 4 of $[1 ; 86]$ implies that in the Noetherian ring R, if M is a maximal ideal properly containing a prime ideal P, then, since there are no ideals between M and M^{2}, P is the only prime ideal properly contained in P and $P=\bigcap_{n=1}^{\infty} M^{n}$. Furthermore, by hypothesis, the only ideal primary for P is P itself. Thus, (0) can be represented as an irredundant intersection of non-maximal prime ideals. These prime ideals are pairwise comaximal since each maximal ideal properly contains only one prime ideal. Consequently, R is a finite direct sum of proper Noetherian domains. Further more, since there are no ideals between a maximal and its square, Theorem 8 of $[3 ; 33]$ implies that each summand is a Dedekind domain. Thus (a) fol-
lows from (c).
If R is a finite direct sum of proper Dedekind domains, then Lemma 23 implies that R is integrally closed. Furthermore, it is clear that every maximal ideal M properly contains exactly one prime ideal P and $P=M P$.

From Lemma 2 of $[11 ; 215]$ it follows that (di) implies (dii) in any Noetherian ring.

Assume that R is integrally closed and (dii) is valid in R. We will show that (a) follows. Let $(0)=Q_{1} \cap Q_{2} \cdots \cap Q_{n}$ be an irredundant representation of (0) by primary components. Since every maximal ideal properly contains only one prime ideal it follows that each $Q_{i} \subset M_{i}$ where M_{i} is a maximal ideal and $M_{i} \neq M_{j}$ for $i \neq j$. Let P_{i} be the prime ideal properly contained in M_{i}. Then since $P_{i} \subset Q_{i}$ it follows that $(0)=P_{1} \cap P_{2} \ldots \cap P_{n}$. Refine this representation to an irredundant one, say (0) $=P_{1} \cap P_{2} \cdots \cap P_{k}$. These prime ideals are pairwise comaximal since each maximal ideal properly contains only one prime ideal. Thus R is a direct sum of proper Noetherian integrally closed domains in which proper prime ideals are maximal. Consequently, each summand is a Dedekind domain [11; thm. 13], and (a) follows. This completes the proof of the theorem.

We also wish to remark that if R is a Noetherian ring in which every maximal ideal is a regular ideal and any one of the conditions $1-8$ of Theorem 5 of [$1 ; 89$] is valid in R, then R is a finite direct sum of proper Dedekind domains, and conversely.

References

[1] K. Asano, Über kommutative Ringe, in denen jedes Ideal als Produkt von Primidealen darstellenbar ist, J. Math Soc. of Japan, 1 (1951), 82-90.
[2] H. S. Batts and R. W. Gilmer, Jr., Primary ideals and prime power ideals, Canadian J. Math., 18 (1966), 1183-1195.
[3] I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J., 17 (1950), 27-42.
[4] R. W. Gilmer, Jr., Eleven nonequivalent conditions on a commutative ring, Nagoya Math. J., 26 (1966), 183-194.
[5] R. W. Gilmer, Jr., Extensions of results concerning rings in which semi-primary ideals are primary, Duke Math J. 31 (1964), 73-78.
[6] R. W. Gilmer, Jr., Integral domains which are almost Dedekind, Proc. Amer. Math. Soc. 15 (1964), 813-818.
[7] R. W. Gilmer, Jr., and J. L. Mott, Multiplication rings as rings in which ideals with prime radical are primary, Trans. Amer. Math. Soc., 114 (1965), 40-52.
[8] W. Krull, Idealtheorie in Ringen Ohne Endlichkeitbedingung, Math. Ann., 29 (1928), 729-744.
[9] M. D. Larsen and P. J. McCarthy, Overrings of almost multiplication rings, J. Sci. Hiroshima, Series A-I, 31 (1967), 123-129.
[10] N. Nakano, Über die Umkehrbarkeit der Ideale im Integritatsbereiche, Proc. Imperial Academy of Tokyo, 19 (1943), 230-234.
[11] O. Zariski and P. Samuel, Commutative Algebra I, (Van Nostrand, Princeton, 1958).

Florida State University
Tallahassee, Florida

