
J. Sci. HIROSHIMA UNIV. SER. A-I

33 (1969) 73-83

Multiplication Rings Containing Only

Finitely Many Minimal Prime Ideals

Joe Leonard MOTT

(Received October 12, 1968)

1. Introduction

A commutative ring R is called an AM-ring if whenever A and B are
ideals of R with A properly contained in B, then there is an ideal C of R such
that A = BC. An AM-ring in which RA = A for each ideal A of R is called a
multiplication ring. This paper is principally concerned with the results of
a paper by Gilmer and Mott Q7] when the ring R is assumed to contain only
a finite number of minimal prime ideals. One of the principal results of this
paper is that a multiplication ring R is Noetherian if and only if R contains
only finitely many minimal prime ideals. Unless otherwise stated, all rings
considered in this paper are assumed to be commutative and to contain an
identity. However, on some occasions it will be pointed out that the theorem
proved can be proved when R does not necessarily contain an identity.

2. Preliminary results and definitions

Two very important properties to be considered are the properties that
will be called (*) and (**) throughout this paper. A ring R satisfies (*) if an
ideal of R with prime radical is primary, and (**) is the property that an
ideal of R with prime radical is a prime power. Also important is the no-
tion of the kernel of an ideal, which is defined as follows: if {Pa} is the collec-
tion of all minimal prime ideals of an ideal A of R, then by an isolated Pa-
primary component of A we mean the intersection Qa of all Pa-primary ideals
which contain A. The kernel of A is the intersection of all Qa's.

The relationship between properties (*) and (**) and the kernel of an
ideal were studied in [Ί^\. We list here those results which are used most
frequently in this paper.

THEOREM 1. A ring R satisfies (*) if and only if R is one of the following:
a) a zero-dimensional ring,

or
b) a one-dimensional ring in which each non-maximal prime ideal P of

R has the property that if M is a maximal ideal such that P<M<R and if
p e P, then p e pM.

In Theorem 1, b) is equivalent to c) R is one-dimensional and if P and M
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are pγime ideals of R such that P< M< R, PRM is the zero ideal of RM.

For the proof of Theorem 1, see []5].

The next theorem does not appear in Q7] but it follows easily from Theo-

rem 1 and we omit the proof.

THEOREM 2. Suppose R is a ring. The following are equivalent:
a) R satisfies (*).
b) RM satisfies (*)for each maximal ideal M of R.
c) RM is either a one-dimensional integral domain or a primary ring for

each maximal ideal M of R.

THEOREM 3. A ring R satisfies (*) if and only if each ideal of R is equal
to its kernel (See [7 43]).

THEOREM 4. Suppose R is a ring. The following are equivalent.
a) R satisfies (**).
b) R satisfies (*) and primary ideals are prime powers.
c) RM is a multiplication ring for each maximal ideal M of R.
d) RM is a Dedekind domain or a special primary ring for each maximal

ideal M of R. (Compare [7 46-49]).

THEOREM 5. A multiplication ring satisfies (**).

All of the above theorems can be proved in a more general situation
namely, when R does not necessarily contain an identity, but is a w-ring
[7 41]. (A u-ring is a commutative ring R such that if A is a proper ideal of

R, yfAφR.)
This paper contains results obtained independently by Larsen and

McCarthy [8]. One pertinent observation to make relative to this paper
and to theirs is that a ring R which satisfies (**) has only finitely minimal
prime ideals if and only if R has few zero-divisors.

3. Principal results

The following theorem will be useful throughout the remainder of the
paper.

THEOREM 6. If R is a ring with only a finite number of minimal prime
ideals Pu ..., Pm the following are equivalent:

a) R is a finite direct sum of integral domains and primary rings.

b) (0)=ρinρ 2".nρAnρ*+ in...nρ l l

where i) Q{ + Qj = R for i φ j
ii) Qi is a prime ideal for l<^ί <&, and

iii) Qi is a primary ideal belonging to a maximal ideal for
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c) RM is either an integral domain or a primary ring for each maximal
ideal M of R.

PROOF. It is well known that (a) and (b) are equivalent Qll thm. 32].
We show that (b) implies (c). Since R is a direct sum of integral domains D{

and primary rings Rj and since (0)=Q1 Π ••• Γ\Qk Π ••• Γ\Qn where Di^iR/Qi
for 1<C/<A; and Rj = R/Qj for & + l < / < t t , it follows that the minimal prime
ideals of R are precisely Qu• ••, Qk, Mk+u , Mn where Mj = ^Qj for ;>A; + 1.
Furthermore, if M is a maximal ideal of R, then M contains exactly one
minimal prime ideal P, o. Let AM = {a e R \ as = 0 for some s e RM}be contraction
of the extension of (0) relative to RM[11; 218-224]. If M properly contains
P, o, then AM = Pio and RM is an integral domain. If M=Pio, then M is a mini-
mal prime ideal of R and AM is an isolated M-primary component of (0) [β
thm. 6]. In this case, RM is a primary ring.

Next we show that (c) implies (b). For each maximal ideal Ma of R, let
AMa be the extension of the contraction of (0) relative to RMa and let A =
Γ\AM . If a e A and C= {c e R | cα = 0}, then C is an ideal of R which is not
a a

contained in any maximal ideal of R. Hence C=R and Λ = (0).
Let Pi, , Pk be the minimal prime ideals of R which are not maximal

and Pk+u ? Pn be those which are also maximal.
Let M be a maximal ideal of R. If M is a minimal prime ideal then M=

Pi for some ί between A + l and n, and AM is an isolated M-primary com-
ponent of (0). In this case, we shall write AM=Qi. If M is not a minimal
prime ideal of R, then RM is an integral domain and AM is a minimal prime
ideal of R contained in M. In this case, AM = Pj for some j between 1 and k.
Thus Pi n • Pk n Qk+1 n Qn = f\AMa = (0) and (b) follows.

a

It should be observed that either (a) or (b) implies that R has only finite-
ly many minimal prime ideals.

LEMMA 7. // R = RιφR2 - -φRn and if M is a maximal ideal of R such
that M=Rι($ ••©Λίjφ - φi?» where M{ is a maximal ideal of Rh then RM —
{Ri)Mi-

This is an immediate consequence of properties of direct sums and quo-
tient ring formation \Λ1 221-227] and the proof is omitted.

We use the above lemma and Theorem 6 to obtain the following corol-
lary.

COROLLARY 8. Suppose R is a ring. Then R is a finite direct sum of
integral domains if and only if R contains only finitely many minimal prime
ideals and RM is an integral domain for each maximal ideal M of R.

PROOF. If R is a finite direct sum of integral domains Dk, then (0)=
Pi Π ••• ΠPW where P t is a prime ideal of R for each i and P{ + Pj = R for iφj.
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Furthermore Dk^iR/Pk for each k. Clearly, {Pu ,Pn} is the set of minimal
prime ideals of R. If M is a maximal ideal of R, then for some ί between 1
and n, and for some maximal ideal M{ of Dh M=Dι® Q)Mi® ®Dn Qll;
175]. Lemma 7 then shows that RM — (AOΛ^ And since A is an integral
domain it follows then that RM is also an integral domain.

Conversely, suppose R contains only finitely many minimal prime ideals
and RM is an integral domain for each maximal ideal M of R. By Theorem 6,
Λ = -DiΘ Θ-D»ΘΛi0 φΛΛ where D{ is an integral domain and R{ is a pri-
mary ring for each i.

We show that each R{ is a field in this case. For let Λf, be a maximal
ideal of i?f and M the corresponding maximal ideal of R. Lemma 7 implies
that RM — iRdMf Since i?M is an integral domain and R> is a primary ring, it
follows that Mi is the zero ideal of Ri and that R{ is a field. Hence each sum-
mand in the direct sum representation of R is an integral domain.

THEOREM 9. In the ring R, these conditions are equivalent:

a) R satisfies (*) and contains only finitely many minimal prime ideals.
b) R is a finite direct sum of one-dimensional integral domains and

primary rings.

PROOF. Suppose R satisfies (*) and contains only finitely many minimal
prime ideals. By Theorem 2, RM is a one-dimensional domain or a primary
ring for each maximal ideal M of R. Therefore, by Theorem 6, R is a finite
direct sum of integral domains Ό{ and primary rings. Since each D{ is a
homomorphic image of R, each D{ satisfies (*). Hence each D{ is one-dimen-
sional by Theorem 1. (Note that if D{ is zero-dimensional, then D{ is a field
and, hence, is a primary ring.)

Clearly, (b) implies (a).

Part (c) of Theorem 1 shows that if M is a maximal ideal of a ring R
which satisfies (*) and if M properly contains a prime ideal P, then P is the
unique prime ideal properly contained in P. The next corollary follows im-
mediately from this fact and from Theorem 9.

COROLLARY 10. In the ring R, these conditions are equivalent:

a) R satisfies (*) and contains only finitely many maximal ideals.
b) R is a finite direct sum of semi-quasi-local one-dimensional integral

domains and primary rings.

THEOREM 11. Suppose R is a ring. The following are equivalent:

a) R is a multiplication ring containing only finitely many minimal
prime ideals.

b) R is a multiplication ring and the zero ideal of R is a finite intersec-
tion of primary ideals.

c) R is a Noetherian multiplication ring.
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d) 'R is a finite direct sum of Dedekind domains and special primary
rings.

PROOF. It is well-known that (c) and (d) are equivalent [1 thm. 5]. That
(d) implies (a) is clear. We show (a) implies (b).

The kernel of (0) is the intersection of all isolated Pα-primary com-
ponents of (0) where Pa is a minimal prime ideal of (0). Since a minimal
prime ideal of (0) is a minimal prime ideal of R we see that the kernel of (0)
is a finite intersection of primary ideals. In a multiplication ring each ideal
is equal to its kernel by Theorems 5, 4, and 3. Thus (b) follows.

We show (b) implies (d). If a prime ideal P of R is such that P< M< R
where M is a maximal ideal of R, then P is the unique prime ideal properly
contained in M and, in fact, P is contained in every M-primary ideal of R
since R satisfies (*). By hypothesis (0) is a finite intersection of primary
ideals and since primary ideals of a multiplication ring are prime ideals
powers, it follows that (0) = Pi Π ••• ΠPk Π Ms

kiγ- - Π Ms

n

n where each P{ is a
non-maximal prime and each Mj is both a maximal ideal and a minimal prime
ideal. It is clear that Pi, •••, Pk, Mk+1, • •-, Mn are pairwise comaximal. Thus
Λ = £ i 0 φI>Λ©ΛΛ +i® ••©/?,, where Di^R/Pi and Rj — R/Mγ. Since each
Di is a multiplication ring and an integral domain, each D{ is a Dedekind
domain. Similarly, each Rj is a multiplication ring and a primary ring, and
is therefore a special primary ring.

DEFINITION. An integral domain D is an almost Dedekind domain if DM

is a Dedekind domain for each maximal ideal M of D. A Noetherian almost
Dedekind domain is Dedekind [3 ; thm. 8].

THEOREM 12. Suppose R is a ring containing only finitely many minimal
prime ideals. The following are equivalent:

a) R is a finite direct sum of almost Dedekind domains and special pri-
mary rings.

b) R satisfies (**).

PROOF. Suppose (a) holds and let R = Λi® ®Rk®Rk,i® ®Rn where R{

is an almost Dedekind domain for 1 < ί <& and Ri is a special primary ring
for k + l<j<n. Let M be a maximal ideal of R and M{ be the corresponding
maximal ideal of Ri. By Lemma 7, RM — (Ri)Mt If *'<!&, (RdMz is a Dedekind
domain, and if k + 1 <ί, then (Ri)Mi = Rh & special primary ring. Thus by The-
orem 4, R satisfies (**).

Conversely suppose R satisfies (**). Since R also satisfies (*), Theorem 9
implies that R is a finite direct sum of one-dimensional integral domains
{Ri}k

i = 1 and primary rings {Rj}n

j=k+ι. Let Mi be a maximal ideal of some Ri
and Mthe corresponding maximal ideal of R. If i<^k, (Ri)Mt is a one-dimen-
sional integral domain. Since RM~(Ri)Mi and RM is either a Dedekind domain
or special primary ring, it follows that (Ri)Mt is a Dedekind domain. If k + 1
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< i , ('Ri)Mi = Ri since Ri is a primary ring. In this case it follows that Ri is a
special primary ring. Therefore (b) implies (a).

THEOREM 13. Suppose R is a ring. The following are equivalent:
a) R is a Noetherian multiplication ring.
b) Every ideal is a finite product of prime ideals.
c) Every ideal of R is a finite intersection of powers of prime ideals.
d) R satisfies (**) and every ideal of R is a finite intersection of primary

ideals.
e) R is Noetherian and satisfies (**).
f) R is Noetherian and RM is a multiplication ring for each maximal

ideal M or R.

PROOF. It is well known that (a) and (b) are equivalent [1, thm. 5].
Recently, Butts and Gilmer have shown that (b) and (c) are equivalent [2
cor. 6]. Clearly (a) implies (d). It is clear from the definition (**), however,
that (d) implies (c). It is also clear that (a) implies (e). Theorem 4 shows
that (e) and (f) are equivalent. Finally, we show that (e) implies (a).

Since a Noetherian ring contains only finitely many minimal prime ideals,
Theorem 12 shows that (e) implies that R is a finite direct sum of almost
Dedekind domains and special primary rings. However, since R is Noetherian,
each almost Dedekind summand is in fact a Dedekind domain. Thus R is a
finite direct sum of Dedekind domains and special primary rings and by
Theorem 11, R is a Noetherian multiplication ring.

THEOREM 14. Suppose R is a ring containing only finitely many maximal
ideals. Then R satisfies (**) if and only if R is a principal ideal ring.

PROOF. A principal ideal ring R is a multiplication ring, and hence, (**)
holds in any principal ideal ring.

On the other hand, since R contains only finitely many maximal ideals
and since a maximal ideal of a ring satisfying (*) or (**) contains a unique
minimal prime ideal, it follows that R contains only finitely many minimal
prime ideals. Thus, R is a finite direct sum of almost Dedekind domains and
special primary rings by Theorem 12. By [6, thm. 3], an almost Dedekind
domain with only a finite number of maximal ideals is a principal ideal
domain. Therefore, R is a finite direct sum of principal ideal domains and
special primary rings. By [11 thm. 33], R is a principal ideal ring.

The above theorem can be proved when R need not contain an identity
but is assumed to be a u-ring. The more general form of Theorem 14 will be
apparent from the following theorem and the fact that in a u-ring which
satisfies (*), proper ideals are contained in maximal ideals [7 41].

THEOREM 15. If R is a u-rίng containing only finitely many maximal
ideals and if each proper ideal of R is contained in a maximal ideal, then R
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contains,an identity.

PROOF. Since R is a u-rmg, a) R = R2 and b) maximal ideals are prime
[7 thm. 2]. The union of all maximal ideals of R is a proper subset of R.
Otherwise, R is contained in the finite union of prime ideals and hence is con-
tained in one of them [11; 215]. This, of course, violates the fact that a
maximal ideal is a proper ideal. By hypothesis, if x is not in any maximal
ideal of R, then R = (x). Therefore, R is a finitely generated idempotent
ideal, and by [4; 185] or [1; 86], R is generated by a single idempotent
element e. This element e is the identity of R.

The assumption that each proper ideal is contained in a maximal ideal is
a necessary one as is shown by example 4 of [4].

We prove the next theorem in its most general form also.

THEOREM 16. An AM-ring R containing only finitely many maximal
ideals is a principal ideal ring.

PROOF. If RφR\ then Λ = (r) where r a R\R2 and each ideal of R is a
power of R [17; thm. 10]. If R = R2, then R is a u-ring in which each proper
ideal is contained in a maximal ideal [7 45]. Hence by Theorem 16, R con-
tains an identity. Since a multiplication ring satisfies (**), R is a principal
ideal ring by Theorem 15.

We return now to our original convention of assuming that the ring R
contains an identity.

The following theorem is an immediate consequence of Corollary 8 and
Theorem 12.

THEOREM 17. A ring R containing only finitely many minimal prime
ideals is a finite direct sum of almost Dedekind domains if and only if RM is
a Dedekind domain for each maximal ideal M of R.

COROLLARY 18. A Noetherian ring R is a finite direct sum of Dedekind
domains if and only if RM is a Dedekind domain for each maximal ideal M of
R.

4. Related results

We consider in this section conditions other than those given in Corollary
18 in order that a ring R be a finite direct sum of Dedekind domains. Our
main result in this vein is the following theorem.

THEOREM 19. If R is a Noetherian ring and R is not a field, then the
following are equivalent:

a) R is a finite direct sum of proper Dedekind domains.
b) Every maximal ideal of R is invertible.
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c) There are no ideals between a maximal ideal M and its square, and M
properly contains a prime ideal P such that the only primary ideal for
Pis P itself.

d) R is integrally closed? and one of the following holds:
i) each maximal ideal M of R properly contains exactly one other

prime ideal P, and MP=P.
ii) each maximal ideal M of P properly contains exactly one other

prime ideal P, and P is contained in every primary ideal contained
in M.

Before proceeding with the proof of this theorem some definitions and
basic results will be required.

If A is an ideal of the ring R and F is the total quotient ring of R, let
A~ι = {% c F\ xAczR}. We say A is invertible if AA~ι = R. Equivalently A is
invertible if AC=(d) for some regular element da A and some ideal C of R.
An ideal A of R is a reqular ideal if A contains a regular element.

An integral domain D is said to be proper if D is not a field. This
terminology is convenient since some of the following theorems are false for
fields.

It is clear that if A is an ideal of R contained in the invertible ideal B,
then there is an ideal C such that A = BC. Other properties of invertible
ideals can be found in [11; 272]; of particular importance is the fact that an
invertible ideal has a finite basis. The following general fact will be useful.

LEMMA 20. If Q is a primary ideal for the prime ideal P and A is an
invertible ideal such that AφP, then A f]Q = AQ.

PROOF. Since A ΠQczA and A is invertible, there is an ideal C such that
AΠQ = AC. Furthermore, since AQaAnQ = AC, on multiplying by A'1, we
see that QaC.

On the other hand, ACaQ and AφP imply that C<zQ since Q is primary
for P. Hence C=Q and the lemma is proved.

The following is a list of generally known properties of invertible prime
ideals but the author is unaware of a reference in the literature.

LEMMA 21. Suppose P is a proper invertible prime ideal of R.
a) If P=AB where A and B are ideals of R, then either A = R or B = R.
b) // A is an invertible ideal of R properly containing P, then A = R.

c) // P' = f\Pn, then P' is a prime ideal, and if P' is a prime ideal pro-

perly contained in P, then P" c P. If P! has a finite basis and H is a
primary ideal contained in P, then P c H; in fact, P — HOT the radical
of H is P. In particular if P has a finite basis, then P is the only
prime ideal properly contained in P.

d) An ideal Q is P-primary if and only if Q is a power of P.
e) The only invertible ideals between P and Pn, where n is a positive in-



Multiplication Rings Containing Only Finitely Many Minimal Prime Ideals 81

• teger, are powers of P.
f) If P is a maximal ideal, the only ideals between P and Pn are powers

of P.

PROOF. The proofs of (a) and (b) are quite straightforward and so we
proceed to prove (c). The proof that P' is a prime ideal is identical with a
proof given by Nakano in Q10; thm. 4]. Furthermore, Lemma 20 implies
that Prf = PuP if Pu is a prime ideal properly contained in P. From this if
follows that P" = PPr/ = P2P"= , etc. so that P'aP.

Now suppose P' has a finite basis and H is a primary ideal contained in
P. Lemma 2 of \Λ1 215] implies there is an element z e P such that (l — z)Pf

= (0) since PP/ = P/. Therefore, (1 —*) is not contained in the radical of H
since (l — z)φP. Thus, PaHsince (1 — z)P'cH. In particular, the first part
of (c) implies that P' is the only prime ideal properly contained in P. Thus, if
H is a primary ideal properly containing P\ then the radical of H must be P.

To show (d) we first show that Pn is P-primary for each positive integer
n. Suppose A and B are ideals such that ABaPn and suppose further that
AφPn. To show that Pn is primary, it will be sufficient to show that BczP.
Since ABaPn and Pn is invertible, there is an ideal C such that AB = PnC.
Furthermore, since AφPn, there is a non-negative integer k<n such that
AaPk but AφPk+ι (here we mean that P° = R). Therefore, there is an ideal
C such that A = PkC where σφP(ii * = 0, then Pk = R and C = A). Con-
sequently, PnC=AB = PkC B and PnkC=BCaP since n-k>0. From this it
follows that 5 c P since C'φP.

Next suppose Q is P-primary. Since P is invertible, P has finite basis,
and therefore it is clear that Q contains a power of P. Consequently, there
is an integer n such that Q(zPn but QφPn+1. Then Q = PnQf where Q'φP.
But since Q is P-primary, P w c0. Hence Q = Pn.

We will prove (e) by induction on n. We first prove there is no invertible
ideals between P and P2. Suppose P2<AaP where A is an invertible ideal.
There is an ideal A such that A = PA and AφP. But then P=P1P2aP~1A
— A'. Since A is invertible, A is also, and according to (b), A — R or A = P.
However, AφP so that ^ ^ l ? and 4̂ = P.

Suppose for n > 2, there are no invertible ideals between P and Pn except
powers of P. Then if Pn+1<AaP and if J is invertible, we will show that A
is a power of P. Since AaP, there is an ideal A such that A = PA and AφPn.
Furthermore, there is an ideal B such that Pn+ι = AB. Therefore, Pn = AB so
that Pw c A. If ^ ' c P, then the inductive hypothesis implies that A[ is a power
of P and hence that A is also. Suppose AφP. Since Pw is P-primary* it fol-
lows that BaPn and hence that B = Pn. It follows that A = R and, as a result,
4̂ = P.

To show (f) it is sufficient to show there are no ideals between the maxi-
mal ideal P and its square \ΊL 83]^ If P2 c A c P, there is an ideal 4̂' such
that A = P ^ and P= P~2P2 aP1A = A. Therefore since P is a maximal ideal,
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Af = R,or A' = R. Hence A = P or A = P2.

LEMMA 22. A Noetherίal domain D is a Dedekind domain if and only if
every non-zero maximal ideal of D is invertible.

PROOF. This result is well-known, but the proof follows immediately
from part (iii) of Lemma 21.

The proof of the following lemma is straightforward and will be omitted.
See [11; 256] for the definition of integral closure.

LEMMA 23. If R = R1ΦR2® ®Rn, then R is integrally closed if and only
if each R{ is integrally closed.

We are now prepared to give the proof of Theorem 19.
Assume, first, that R is a finite direct sum of proper Dedekind domains,

i? = Λ1ΦΛ2Θ ΘΛ». If M is a maximal ideal of R, M is of the form.

where Mk is a maximal ideal of Rk. Since Rk is a proper Dedekind domain,
Mk is invertible. Therefore, there is an ideal Ck of Rk such that MkCk = (dk)
where dkφ0 in Rk. Hence, the ideal

is such that MC is a principal ideal generated by the regular element

V ek-ι+ dk + ek+ι • + en,

where e, is the identity element of i?, . It follows, then, that M is invertible.
If every maximal ideal of the Noetherian ring R is invertible and (0) =

Qι Π Q2 Π ΠQn is an irredundant representation of (0) by primary compo-
nents, where P, is the radical of Qi, then it is clear that no P, is a maximal
ideal since each P, consists entirely of zero-divisors [11; 214]. Therefore
each Pi is properly contained in a maximal ideal Miy and by Lemma 21, Pf is
the only prime properly contained in Λf, and Qi = Pi. Then (c) follows from
(b).

Assuming (c), Lemma 4 of [1 86] implies that in the Noetherian ring
R, if M is a maximal ideal properly containing a prime ideal P, then, since
there are no ideals between M and M2, P is the only prime ideal properly

00

contained in P and P=f\Mn. Furthermore, by hypothesis, the only ideal

primary for P is P itself. Thus, (0) can be represented as an irredundant
intersection of non-maximal prime ideals. These prime ideals are pairwise
comaximal since each maximal ideal properly contains only one prime ideal.
Consequently, R is a finite direct sum of proper Noetherian domains. Further
more, since there are no ideals between a maximal and its square, Theorem
8 of [3 33] implies that each summand is a Dedekind domain. Thus (a) fol-
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lows from (c).
If R is a finite direct sum of proper Dedekind domains, then Lemma 23

implies that R is integrally closed. Furthermore, it is clear that every maxi-
mal ideal improperly contains exactly one prime ideal P and P=MP.

From Lemma 2 of [11; 215] it follows that (di) implies (dii) in any
Noetherian ring.

Assume that R is integrally closed and (dii) is valid in R. We will show
that (a) follows. Let (0)=QiΓ\Q2 >Γ\Qn be an irredundant representation of
(0) by primary components. Since every maximal ideal properly contains
only one prime ideal it follows that each Qi c Mi where M, is a maximal ideal
and MiΦMj for iφj. Let P{ be the prime ideal properly contained in Mi.
Then since PiCiQi it follows that (0) = PiΠiV ^Pn- Refine this representa-
tion to an irredundant one, say (0) = PiiΊP2••• ftPk These prime ideals are
pairwise comaximal since each maximal ideal properly contains only one
prime ideal. Thus R is a direct sum of proper Noetherian integrally closed
domains in which proper prime ideals are maximal. Consequently, each sum-
mand is a Dedekind domain [11; thm. 13], and (a) follows. This completes
the proof of the theorem.

We also wish to remark that if R is a Noetherian ring in which every
maximal ideal is a regular ideal and any one of the conditions 1-8 of Theorem
5 of [ 1 ; 89] is valid in i?, then R is a finite direct sum of proper Dedekind
domains, and conversely.
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