J. Sci. Hiroshima Univ. Ser. A-I 33 (1969), 71–72

A Remark on the Homeomorphism Group of a Manifold

Yasuko Nomura (Received March 5, 1969)

Let *M* be a connected separable metric space each point of which has a neighborhood (open set in the metric topology on *M*) whose closure in *M* is homeomorphic to $C_n(0; 1) = \{x \in \mathbb{R}^n \mid d(x, 0) \leq 1\}$. Such a space *M* is simply called an *n*-manifold. Let G(M) denote the group of all homeomorphisms of an *n*-manifold *M*, and $G^0(M)$ the subgroup of G(M) generated by all *h* in G(M)such that, for some *internal* closed *n*-cell *F*, $h \mid M - F =$ identity. Let $G^I(M)$ denote the subgroup of G(M) generated by all *h* in G(M) such that, for some closed *n*-cell *F*, $h \mid F =$ identity. Let P(F) be the set of all *h* in G(M) such that, for some *f* in $G^0(M)$, $h \mid F = f \mid F$, and Q(F) the set of all *h* in G(M) such that, for some *f* in $G^0(M)$, h(F) = f(F) and $f^{-1}h \mid B$ is in $G^0(B)$, where *F* is an *internal* closed *n*-cell in *M* and B = Bndy *F*. Let T(F) be the set of all cells in *M* tame with respect to *F*.

It has been proved in [1] that, for an *n*-manifold $M(n \leq 3)$, there is an internal closed *n*-cell F_0 in *M* such that, for any *h* in G(M), there is an *f* in $G^0(M)$ such that $f(F_0) = h(F_0)$ (setwise), and then F_0 is called a *pivot* cell. In connection with such a pivot cell the following theorems have been obtained in [1].

THEOREM 11 (Fisher). Let M be a manifold, dim $M \leq 3$, and let F_0 be a pivot cell in M. For every F in $T(F_0)$, P(F) is a normal subgroup of G(M). For each F in $T(F_0)$, $P(F)=P(F_0)$.

THEOREM 12 (Fisher). Let M be a manifold, dim $M \leq 3$, and let F_0 be a pivot cell in M. For any F in $T(F_0)$, $P(F)=G^I(M)$. Hence an h in G(M) is in $G^I(M)$, so that $h=h_1\cdots h_k$, h_i the identity inside some closed n-cell F_i in M (n= dim M), if and only if for any n-cell F in M tame with respect to F_0 , there is a deformation f of M such that f(x)=h(x) for every x in F.

Although the existence of the pivot cell in M is unknown for dim $M \ge 4$, in this note we shall show that, for any internal closed *n*-cell F in an *n*-manifold $M(1 \le n \le \infty)$, the above theorems can be generalized as the following theorem and its corollary.

THEOREM. Let M be an n-manifold, and let F_0 and F be any internal closed n-cells in M. Then $P(F_0) = P(F)$ and P(F) is a normal subgroup of G(M).

PROOF. According to the theorem 1 in [1], there is an f in $G^0(M)$ such

that $f(F_0) \subset F$, so $P(F) \subset P(f(F_0))$. For h in $P(f(F_0))$, there is a g in $G^0(M)$ such that $h | f(F_0) = g | f(F_0)$, and then $hf | F_0 = gf | F_0$ and $gf \in G^0(M)$, so that $hf \in P(F_0)$. By the technique in the proof of the theorem 11 in [1], which can be followed in the case of an n-manifold, we can prove that $P(F_0)$ is a subgroup of G(M). Evidently f is an element of $P(F_0)$, so that h is an element of $P(F_0)$. This shows $P(f(F_0)) \subset P(F_0)$, and then $P(F) \subset P(F_0)$. It follows from the arbitrariness of F_0 and F that $P(F_0) \subset P(F)$, and thus $P(F_0) = P(F)$.

Since $P(F_0) = P(f(F_0))$ for f in G(M), for h in $P(F_0)$ there is a g in $G^0(M)$ such that $h|f(F_0) = g|f(F_0)$, and then $f^{-1}hf|F_0 = f^{-1}gf|F_0$. $G^0(M)$ is a normal subgroup of G(M) ([1], p. 198), so that $f^{-1}gf \in G^0(M)$. Therefore $f^{-1}hf \in P(F_0)$. q. e. d.

COROLLARY. Let M be an n-manifold, and let F be any internal closed ncell in M. Then $P(F)=G^{I}(M)$. And an h in G(M) is in $G^{I}(M)$ if and only if, for each internal closed n-cell F, there is an f in $G^{0}(M)$ such that h|F=f|F.

PROOF. By using the theorem, the method of proof of the theorem 12 in [1] may be followed for an *n*-manifold.

Using the method of the proof of the theorem 13 in [1], it holds that, for any internal closed *n*-cell F in an *n*-manifold M, P(F)=Q(F).

Reference

[1] G. M. Fisher, On the group of all homeomorphisms of a manifold, Trans. Amer. Math. Soc., 97 (1960), 193-212.

Department of Mathematics Faculty of Science Hiroshima University