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In our previous paper [4, p. 406] we have introduced the notion of a
canonical extension of a distribution in studying the distributional boundary
values of holomorphic functions. The notion will be treated in this paper with
considerable detail so as to be applied to the study of the fine Cauchy problem
for the system of linear partial differential equations. Let Ω be a non-empty
open subset CRn and T a positive number which may be +00. Let u be a
distribution on Ω x (0, T). We shall say that a distribution u on Ω x ( — 00, T)
is a canonical extension of u if w = limpC£)u, where ρ(t) is an arbitrary func-

sio

tion with certain properties (cf. Definition 1 below) and p(£)(t) = p(-^-\ If u

happens to have the boundary value lim u=a, then the identity:
tio

d , N du

will imply that

The fact will be used to bring the initial conditions into the differential system
as done in L. Schwartz [6, p. 133].

Section 1 is devoted to the discussions centering around the canonical
extension u. In Section 2 we consider the canonical extension in a narrow
sense and develop the same consideration as in Section 1. In Section 3 we
deal with the fine Cauchy problem for the system of linear partial differential
equations (cf. Q65 p. 133]). For instance, consider the Cauchy problem for the
system (we use the vector notation):

with the initial condition limu(x, t)=ae 2X(i2), where f is a given vector of
tio

distributions in Q)'(Ω x (0, Γ)). Suppose / has the canonical extension /.
We shall show in Theorem 1 below that to solve the Cauchy problem just
considered is to find a vector v of distributions which satisfies the system:
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dv
dt

• = P(χ, t,Dx)v+f+a(g)dt

and vanishes for ί < 0 . The same discussions are also made about the case
where u becomes a ζΰ'(Ω)-valued continuous function of t.

1. Canonical extensions

First we recall the notion of a canonical extension of a distribution which
was introduced in our previous paper [4, p. 410]. In what follows Ω denotes
a non-empty open subset of an ^-dimensional Euclidean space Rn with points
x = (xu ..., xn) and Γ a positive number which may be +oo. An open set Ωx
(0, T) will be a cylinder in Rn+1. 2)'(.0 x(0, T)) means the space of distribu-
tions on Ωx(0, T) with the usual topology of L. Schwartz. Let u e<2)'(J2x(0, T))
and let p(t) be any real-valued C°° function of the real variable t equal to 1

for t ;> 2 and 0 for t <L 1. We define ρ{£)(t) = p(—) for ε > 0. The multiplica-
ε

tive product p(£)u will be understood as a distribution extended over Ω x
( —°°, T) so as to vanish for ί<ε.

DEFINITION 1. A distribution Ίί e Q)f(Ωx(— oo} T)) will be called to be a
canonical extension of u over t = 0 if p(£)U converges to u in Q)f(Ω x(—oo, T))
for any p as ε j 0.

Observe that ρ(8) can be written in the form p ( £)= Y*x£, Y being the Hea-
viside function and % is a real-valued C°° function with support contained in

[1, 2] such that \%(ί)dί = l, where we put %ε(t)= %ί -^—). We have proved

the following [4, p. 409]

PROPOSITION 1. u e ζb'(Ω x (0, T)) has a canonical extension whenever
there exists the distributional boundary value lim u=aeζΰr(Ω\ i.e., lim< u,xε>t

tϊQ £10

=afor every % mentioned above.

However, the converse is not true in general. In connexion with the
canonical extension, we introduce

DEFINITION 2. w e Q)'{Ω x( — oo, T)) is called to be canonical whenever
w = \imp(6)wfor every p with the property mentioned before.

We note that u in Definition 1 is canonical because of the fact that u =
limp^)^ and u — u for ί > 0 . Clearly this is the case for a(χ> t)ύ, where a(x, t)

is an arbitrary C°° function on Ω x(— Tu T) with Γi>0.

LEMMA 1. Suppose v e ζb'(Ω x(— ©o, T)) vanishes for t<0. v is canoni-
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cal provided there exists the section v(x, 0)for t = 0.

PROOF. In what follows, AC CB will mean once for all that A is rela-
tively compact in B. In view of a theorem of S. Lojasiewicz [5, p. 21], given
any non-empty open subset GCCΩ and any ε0 with 0 < ε 0 < Γ, we can find a
non-negative integer k, a multi-index a=(ah . . , an) of non-negative integers
and a continuous function F(x, t) on Gx(— °o5 ε0) such that v = D"Dk

tF(x, t)
onGx(—ε 0 , ε0) and F=o(tk) uniformly on G as ί->0, where D^D^.D"71

with Dj= -=— and Dt = -^—. Now we can write
dxj at

ρ(£)v = D%p(

on G x ( — oo5 ε0). Dk

t(ρ(£)-F) tends to Ό\F in 2)'(G x ( — ε0, ε0)) as ε I 0, and since

\D{p{£)\ =θί-i

r\ D{p(£yF, 0<j<:k, tends therefore to 0 in 2y(Gx(-ε o , ε0)) as

ε I 0. Consequently lim p,6)v=D%D$F(x, t) = v in Q)f(Gx( — ε0, ε0)). We con-
610

elude therefore that v is canonical, as desired.

In our previous paper [2, p. 170] we have discussed the partial multiplica-
tion of distributions. Given heQ)f{Rt) and w e Q)f(Ω x ( - ° o 5 T7)), the mul-
tiplicative product hw is a distribution on Ω x (— oo5 T) defined as the distribu-
tional limit lim(h*ψ£)w, if it exists, for every choice of φ e Q)(Rt) such that

εlo
t\φ(t)dt = 1 and ψε(t) = — φ( ). When the limit lim(h * gk)w exists for every

choice of (^-sequence {gk} instead of {0£}, the limit will be referred to as the
multiplicative product in the strict sense and denoted by h w.

With the aid of Lemma 1 we shall show the following

PROPOSITION 2. Let v, w e Q)r(Ω x( — °o, T)) be such that v = 0 for ί < 0

and w = -^~. The following conditions are equivalent:

(a) w is canonical.
(b) v is canonical and has the boundary value lim v equal to 0.

110

(c) The section v(x, 0) exists.
(d) The partial multiplicative product w(χ, t)Y(t) exists.
(e) The partial multiplicative product v(x, t)dt exists.

PROOF. (a)=Φ(b). Let a be an arbitrary function in ®(( —oo5 Γ)) and %

an arbitrary function in 2)((0, oo)) such that \x(t)dt = l. Put p(€) = Y*χ€.

Since w is canonical, lim <p(€)W, a>t=<w, a>t. Observing now the relations
ε\o

, a>t=

= <x6, Ϋ*t(aw)>t
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= <x£, l*t(aw)>t—<χ€, Y*t(aw)>t

= <w, a>t—<x£, Y*t(aw)>t,

we find that lim <x£, Y*t(aw)>t = Q and therefore \im(Y*t(aw)) = 0. Choosing
£ l θ 10t 10

a to be equal to 1 in a neighbourhood of 0, we can conclude that lim v =
tio

\im(Y*tw)=0> which, when combined with the equation p(£)w= -~-(p(£)v)—x£v,
tio Ot

yields w= lim-^— (p(£)v) and therefore υ=Y*tw = limpet;.
£ l θ (7ί £10

(b)=Kc). Let G and ε0 be taken as in Lemma 1. Since limi; = 0, we can
tio

write v = D"Dk

tF(x, t) on Gx(0, ε0), where F is a continuous function on Gx
( — °°, So) vanishing for ί < 0 such that F=o(tk) uniformly on G as t1 0. Not-
ing that v is canonical and proceeding as in the proof of Lemma 1, we see
that v = limρ(£)v = limρ(£)D%Dk

tF= D%Dk

tF on G x ( - o o ? ε0). Hence we get
£ 1 0 £ 1 0

υ(x9 0)=0.
(c)ΦΦ(d)Φ»(e). Recalling the definition of the section of a distribution

for ί = 0 [5, p. 15], we see that the section υ(x9 0) exists if and only if the dis-
tribution <v, φ>x, φeζb(Ω\ has the value <v, φ>x(0) at ί = 0. Here we
have the relation <υ(x> 0), φ>x=<v, φ>x(0). Similar situations hold also
for the partial multiplication [2, p. 170]. The equivalence (c)o(e) follows
then from Lemma 4 in [_2, p. 166]. Similarly, since the multiplication is
normal in the sense of Q2, p. 153] it follows that (d) and (e) are equivalent.

(c)=^(a). v has the section for t = 0, hence owing to Lemma 1, υ is canoni-
cal. Since, further, v(x, 0) = 0, it follows that limp('£)ί; = 0. From the rela-

£ 1 0

tion p(6)W= -~-(P(β)v)+PU)V we see that \imp(€)w = -£- =w, which shows that
Ot £ I 0 Ot

w is canonical. This completes the proof.

PROPOSITION 3. Let u, v e Q)'(Ωx(0, T)) be such that u = ^-. The fol-

lowing conditions are equivalent:
(a) u has the canonical extension.
(b) The distributional boundary value lim v exists.

tio

PROOF. (a)=Kb). Let u be the canonical extension of u. We know that
u is canonical. Owing to the preceding proposition, it follows that Y*tu is

canonical and \im(Y*tΐί)=0. Since ——(Y^tu) = ϋ = u=-JL for z>0, we may
no ot ot

write v— Y*tu=a(x)<S)Y(t) for some a e ζb'(Ω\ which gives limi;—a.
t i o

(b)=Ka). As noted before, υ admits the canonical extension v. From

the relation p(€)u = -7— (p(€)v) — p{6)v we obtain tha t limp,£)u = -^-— a<g>δt with
Ot ε io Ot
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a— limfl, which implies (a).
tio

2. Canonical extensions in the strict sense

Let {gk} be an arbitrary 5-sequence with supp^C(0, ©o) and put pk =
Y*gk A distribution u e Q)\Ω χ(—oo3 T)) is called to be a canonical exten-
sion of u e Q)'(Ω x(Q, T)) over £ = 0 in the strict sense if ϊί = \im pku holds.

Also we shall say that w e Q)'(Ω x(— °o5 T)) is canonical in the strict sense if

we have w = lim pkw for every {pk}. Note that 1* ® sin — e S'(i2 x (0, T)) has

the canonical extension but in the strict sense it does not.
By a similar argument as in the proof of Lemma 3 in [7] we can easily

prove the following

LEMMA 2. Let u 6 Q)r(Ω x (0, Γ)). // lim u exists in the strict sense, i. e.5

i/l im<&, gk>t exists for every choice of a d-sequence of {gk} stated above,

then there exists for any given φ e Q)(Ω) an interval Q0? εo~] where <u, φ>x is
equivalent to a bounded function continuous at 05 and therefore u has the ca-
nonical extension in the strict sense.

On the basis of this lemma and Remark 1 in [7, p. 229]] we can show the
following two Propositions 4 and 5, which are analogues to Propositions 2 and
3 already proved in the preceding section. The proofs are omitted since the
reasoning is very similar to that in the corresponding proofs.

PROPOSITION 4. Let v, w e Q)'(Ω x(—oo? T)) be such that v = 0 for ί < 0 and

w= -£- e Q)f(Ω x (— oo5 T)). The following conditions are equivalent:

(a) w is canonical in the strict sense.
(b) v is canonical, and has the boundary value limi; = 0 in the strict sense.

110

(c) lim <v, gk>t exists for every δ-sequence {gk}.

(d) The partial multiplicative product w(x, ί> Y(t) exists.
(e) The partial multiplicative product v(x, t) δt exists.
(f) O , Φ>,Φ e ®(Ω\ is a bounded function in a neighbourhood of 0 con-

tinuous at 0.

PROPOSITION 5. Let u,υd Q)r(Ω x (0, T)) be such that u=~. The follow-
(j V

ing conditions are equivalent:
(a) u has the canonical extension in the strict sense.
(b) The distributional boundary value lim v in the strict sense exists.

no
Now, let £6(m,s)(Rn

+

+1) be the space of all distributions u e Q)\Rn

+

+1) such
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that there exists a distribution U e dt{m>s)(Rn+1) with U= u on Rn

+

+ι. The norm
of u is defined by | |α| | ( w, s )==inf| |ί/| | ( w > 5 ), the infimum being taken over all such
U. Here Rn

+

+1 denotes the half space {(x, t) e Rn+ι: x e Rn and t >0}, m a non-
negative integer and 5 a real number (cf. Chapter II of L. Hδrmander [1]).

u e 9ί{m>s) (Rl+1) has always the canonical extension u in the strict sense
because of the fact that

lim

where ϋn+i denotes the partial Fourier transform of £/(cf. [1, p. 24J). Note
that if u has an extension w in dCim>S){Rn+1) such that w = 0 for t<0, w must
be u. In fact, w— ύ e £C(0)S)(Rn+1) will vanish for tφO, which, together with
the definition of £H{0)S)(Rn+1), yields w=u.

From these considerations we can show the following

PROPOSITION 6. The following conditions are equivalent for uedt{niiS)(Rn

+

+ι)\

(a) There exists a distribution w e dt{m>s)(Rn+ι) with suppwCΪ?++1 such
that w = u on Rn

+

+1.

(b) δ ^ ( M | β ) ( ί « + 1 ) .

lim u = \im^- = • =lim a—-± = 0.
no no dt tϊodtm~ι

(d) lim u — lim -£- = ••-= lim Jf = 0 in the strict sense.
110 110 Ot t40 Ot

PROOF. We have only to show the implications (b)=Kd) and

(b)=^(d). We know that - ^ , / = 0 , ••, m — 1, has the trace for t = 0 (cf.

Theorem 2.5.6 in \Ύ]). Since dC{m>s){Rn+ι) possesses the approximation pro-

perty by reguralization, it follows from the corollary to Proposition 4 in \jf\

that the trace coincides with the section for t = 0. Noting that u = u for t >0,

we can confer that lim u = lim -^- = ••• = lim m™- = 0.
t ϊ 0 t i 0 (st t i 0 (st

We shall proceed by induction on 771. The case ττι = O is trivial.

Assuming then the implication holds with m replaced by m — 1 for ττι>0, and

taking into account the facts that u e ££{m-ι,s+i)(Rn

+

+1) and ^
0

we obtain from (c) that ί e ^ _ M + 1 ) ( F + 1 ) and (^-~λ e $t{m-i,s)(Rn+ι) hold.

Hence the proof will be complete if we can show the equality (—!L)=^ΪL,
\ at J at

However, this follows from the calculations:
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T ~ 9 du
£|0 ί/ί £|0 Ot

3. Fine Cauchy problem

Consider the Cauchy problem for a system of partial differential equations
in the unknown distributions uu u2, •••, use Q)'(Ω x(0, T)):

1 - i fc Ω

under the initial conditions

no
i = l, 2, ...,

(i)

(2)

where α j , / ^ ί, /),)= Σ </.«(*, 0^? and α|,y,« e C°°(i2 x ( - Γl5 Γ)).

Substituting ui>k= k_λ\ i = l, - . ,5, k = l, ..., Λ, , we obtain an equivalent

system of partial differential equations:

dt

(3)

l S nJ~1

fA = Σ Σ aUx, t, Dx)uj,k+1+fh
Ot y i k o

with the initial conditions

lim(uiu ..., Uitn) = (aitι9 ..., a,-,,, ), ί = l, 2, ...,
HO

(4)

which is a special case of the Cauchy problem for a system of partial differ-
ential equations:

du

ί 40

(5)

(6)

w h e r e w e u s e d t h e v e c t o r n o t a t i o n : u = ( α 1 , ••-, um),f=(f1, ••-,/«) a=(cti, ••-,
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am) with the obvious meanings and P(x, t, Dx) denotes an m x m matrix

\\Pij(χ, t, Dx)\\ such that

PiBj{x, ί, Dx) = Σaij^x, t)Da

x, ai)j>a(x, t) 6 C°°(J2 x ( - Th T)\
a

We shall write u e Q>'(Ω x (0, T)) if each component UJ belongs to
Q)'(Ω x (0, T)) and we shall say that u has the canonical extension if each
component UJ has the canonical extension. The term canonical will also be
used in a similar way.

Put Yi—'(-—γ^ tι+~ι, I being a non-negative integer, where we understand

Y0 = δt. Note that Yλ is the Heaviside function Y. Then we have

LEMMA 3. Let φ e C°°(Ω x(-Tu T)). Then, for any v e Q)f(Ω x (-oo ? T)\
we have

Yι*t(Φv)=Σ (ty-iy'rMiDiΦXYfrv)), (7)
j=o\J/

where the notation *t means the partial convolution with respect to the variable
t.

PROOF. We can write for w= Yt*tv

φD\w =
j

Then, observing that v = D\w, we obtain

Σ(:
j=Q\]

where we have used the equalities

w)=Yj*1ίDiφ-w)9 y = l, 2, ..., Z.

THEOREM 1. Suppose there exists a solution ueQ)'(Ωx(0, T)) of the
system (5) with the initial condition (6). Then f has the canonical extension
f. If we denote by v the restriction of the canonical extension of u to
Ω x (— TΊ, T7), then υ is a solution of the following system of partial differen-
tial equations:

^ = P(x, t, Dx)v + / + a (8) δt. (8)

Conversely, if υ c Q)'(Ω x(— TΊ, T)) is a solution of the system (8) and
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supp v C«β x CO? Ĥ> then the restriction u = v \ Ω x (0, T) is a solution of the
system (5) with the initial condition (6) and the canonical extension of u coin-
cides with v on Ω x(— Tu T).

PROOF. Let u e ζb'(Ω x (0, T)) be a solution of the Cauchy problem for
the system (5) with the initial condition (6). Then \\mp[ε)u=a(&δt and, owing

to Proposition 2, u has the canonical extension 2. Now from the equalities:

, Dx)u

-P(x, t, Dx)p(€)u, (9)

passing to the limit ε j 0, we see that / has the canonical extension / and that
the restriction v satisfies the system (8).

Conversely, let υ be a solution of (8) stated in the theorem. Now let w
be an extension of v to Ω x( — oo5 T) such that w = 0 for ί < 0 . Then, apply-
ing the equality (7) with I replaced by k + 1, we obtain the equality

Yk*tW= l f ( * y ^(-lyΎj+tf^jPix, ί, D

+ Yk+i*t?+a<g)Yk+i9 (10)

dj

where k is any non-negative integer and —P(x, ί, Dx) stands for the matrix

-Λ-jap,q,a(χ, t))D^\\. We know that / is canonical. It follows therefore

from Proposition 2 that Yk+i*t f, k^>0, is canonical and (
t i o

Evidently α(g)F^+i is canonical for &^>0 and lim(α(g) Yk+ι) = 0 for &>0 and
t i o

lim(α(g)F)=α. Let G be an arbitrary non-empty open subset such that
t i o

GCCΩ. We can find a non-negative integer k0 with the property that
I^o+Λw is canonical on G x (— oo? Γ). Using the equality (10) with k replaced
by λ0, we see that F ^ ^ ^ is also canonical on Gx(—oo? Γ). Repeating the
same argument and proceeding step by step, we can conclude, since G is
arbitrary, that w is canonical. Again using the equality (10) for k = 0:

w=P(x, t, Dx)(Y*tw)-(j^P(x, ί, Dx)yY*tw)+ Y*tf+a®Y, (11)

we have \\mu = \\mw=a, completing the proof.
tio tio

COROLLARY 1. Suppose there exists a solution (uu , us\ uι 6 Q)'(Ω x (0, T)\
of the Cauchy problem for the system (1) with the initial condition (2). Then
fi has the canonical extension // for each ί. If we denote by v{ the restriction
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of ui to Ωx(— Tu T\ then (υu , vs\ v{ e 2)'(fix(- Tu T)\ is a solution of
the following system of partial differential equations:

where

= Σ £oUx,t,D^+fi+Eh (12)

ί*<-"- Σ Σ < / * , t, Dx)

Conversely, suppose there exists a solution (vu ..., vs\ v{ € Q)f(Ω x (— Th T))
with s u p p l e Ω x CO, ^H, of the system (12). If we denote by Ui the restriction
of Vi to Ω x(0, T\ then (ui, ••, us) is a solution of the system (1) with the ini-
tial condition (2) and Ui coincides with v{ on Ω x (— Th T).

PROOF. Let (uh •••, us) be a solution of (1) with the initial condition (2).
To prove (12) we use the identities:

d'ui dι

 ί n , d1'1 ,. v d1-2 (. duΛ . dι-λ

Ui

ί = l, 2, ..-, s (13)

where φε = p{€). Since, owing to Proposition 2, u{ has the canonical extension

Ui, and since lim-^^' =a{ k+1 implies limφ£^r^ —a{ k+i<S)δt for k = Q, .... 7i,~l,

it follows from the identities (13) that ~ S ί = l, 2, ..., s, 1 = 0, ..., nh has the

canonical extension -^~ — Σ OL% »®§\l~v). This, together with (1), yields that
Ot υ = l

/,- has the canonical extension /,-. Multiplying both sides of (1) by p ( £ ) and
passing to the limit ε I 0, we can conclude that the restriction (vι, •-, vs) of
(uh ..., us) t o ί x ( - Tu T) satisfies (12).

Conversely, let v=(vh ••, vs) be a solution of (12) such that v vanishes
for t<0. Putting

(14)

we can write
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l £ = V + CC®δ (15)

dv s nJ~^
_ ^ ί = Σ Σ ai,j(x, t, Dx)vJMl+fi + ai>ni®du i = l, 2, ..., s.

\ Ot j = l k = 0

If we denote by uiyj the restriction of v{j to Ω x(0, Γ) for each ί, j , we see,
from the preceding theorem, that (uitl, ..., z^>.), i = l, •••, s, is a solution of (3)
with the initial condition (4). Since ui = uiιι, it follows that (uu ..., H S ) is a
solution of (1) with the initial condition (2). Owing to Theorem 1, the canoni-
cal extension of u{ coincides with v{ on Ω x ( — TΊ, T7), completing the proof.

From the discussions of Section 2 it is easily verified that the assertions
of Theorem 1 and Corollary 1 valid even when the terms, such as the canonical
extension, the canonical and the distributional limit, are taken in the strict
sense.

REMARK 1. Hi = 0, i = l, •••, 5, if and only if α ^ = 0, ΐ = l, •••, 5, jfc = l, ...,
rii. Indeed, if ai>k^0 for each i, k, then clearly Hi = 0. Conversely, let Hi = 0
for ί = l, , 5. Without loss of generality we may assume that nι^n2^ •••
J>rcs. First consider the case nι = n2 = ' = ns. δ,δ\ ••• are linearly independ-
ent. I t follows therefore from the equations Hi = 0 that aitι = 0 for ί — 1, ••,
5. Substituting these into the expression of Hi9 we can apply the same argu-
ment to obtain ai}2 = 0 for ΐ = l, ..., 5. Repeating this process, finally we shall
reach the conclusion. Let us turn to the general case. I t will be sufficient
to show that the case 711 = = ni > ni+ι Ξ> ;Ξ> rcs can be reduced to the case
7i 1 =... = 7&f+i>7&l + 2 ^ ϊ>rc s. To do so, we note that, by the same argument
as above, #/ = 0, Z = l, •••, i, imply aι}M = 0 for m = l, ••, nι — ni+1. For our pur-
pose it will then be sufficient to rewrite the equations Hk=0, k = l, •••, s by
replacing alιHι-Ht+1+v by βltV for 1 = 1, ..., ί, v = l, •••, n / + 1 .

PROPOSITION 7. Lei ^ e ©'(ώ x (0, T7)) 6e α solution of (5):

1/ / e Q)f(Ω x (0, Γ)) has the canonical extension /, then the following condi-
tions are equivalent:

(a) u can be extended over t — 0.
(b) The distributional boundary value lim u(x, t) exists.

tio

PROOF. Owing to Proposition 1, we have only to show the implication
(a)=Kb). Let w be an extension of u over t = 0. For any non-empty open
subset GCCΩ and a small εo>O, we can find a non-negative integer &, a multi-
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index a and a vector F=(FU • ••, Fm\ F{ e C(Gx{ — ε0, ε0)), such that w = D"Dk

tF
on Gx( —ε0, ε0). If we put v = D"Dk

tF, where F equals F for ί!>0 and 0 for

£<0, then the support of -^- — P(x, t, Dx)υ—f lies in the hypersurface t — 0

and therefore there exist a non-negative integer I and a vector α, e Q)'(G) such
that

-^- - P ( * , t, Z>> = Σ α,<g>0ί'>+/ (16)
Ot ι=o

on Gx(-ε 0, ε0). Here we may assume that 1 = 0. Indeed, if Z>0, then 'υ =
v + α ί0δ</" 1 ) is an extension of u such that rv — 0 for ί<0 and satisfies

Ot i=o

where the right side can be written in the form 2 b^δ^ +/, 6, 6 Q)'(G). Con-
ί =0

sequently we can apply Theorem 1. Thus (a) implies (b).

COROLLARY 2. .For α solution u e ζΰf(Ω x (0, T)) of a homogeneous system

--^- = P(x, t, Dx) u9 u can be extended over t — 0 if and only if the distributional

limit lim u exists.
tio

In what follows, if u e 2)'(i2 x (0, T)) belongs to ζb'(Ω)® C((0, T)\ u is
said to be continuous in t and identified in an obvious way with a Q)f(Ω)-valued
continuous function denoted by u(t\ 0<t<T. Similarly for distributions on
j2χ(-oo5 T).

PROPOSITION 8. Let u e ζb'(Ω x (0, T)) be a solution of (5):

±=P{x,t,Dx)

The following conditions are equivalent:
(a) u is continuous in ί, 0 < t < T.

(b) For any g such that f= -#-, g is continuous in t, 0 < ί < Γ.

PROOF. (a)=^(b). Owing to Proposition 5 in [7, p. 229], we have only
to show that g(x9 t) δ(t^ exists for every t\ 0<tr<T, where δ(t'} is the Dirac
measure concentrated at t'. u is continuous in t. This implies that u(x, t) δy')

exists. From Remark 1 in [7, p. 229] it follows that there exist -£- Y(t — tf)
ot

and u(x, t)*Y(t — tf). Since u satisfies (5), we see that f(x, t)-Y(t — tf) exists.
Using again Remark 1 just referred to, we can conclude that g(x, 0*<V) is
well defined.
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(b)=Φ(a). First we shall show that / has the canonical extension /V
in the strict sense over t — t\ 0<t'< T. Since g is continuous in £, it follows
by the same argument as above that f(χ, t) Y(t — t') is well defined, and a
fortiori / has the canonical extension ft' in the strict sense over t — t'. Apply-
ing Proposition 7, we see that the distributional boundary value lim u(x, t)=at'

tio

exists in the strict sense. If we denote by ut' the canonical extension of u
over t = t\ then Ut' satisfies

'- = P(x, t,

Consider the equality:

® Yk+1(t-t'\

where A; is a non-negative integer. Yk+i*tft' and at'(&Yk+ι(t — tr) are continu-
ous in ί, tf<t< T. Given any non-empty open subset GC C O, we can find a
non-negative integer k0 such that F^+ΛzV is continuous in ί, — cχD<ί<Γ.
Using the same consideration as in the proof of Theorem 1, we see that ut' is
continuous in ί, t'<t< T. Since G and tf are arbitrary, we can conclude that
u is continuous in ί, 0 < t < Γ, which completes the proof.

PROPOSITION 9. Let u e Q)'(Ωx(0, T)) be a solution of (5):

The following conditions are equivalent:
(a) u is continuous in t and u(t) is a ζΰ'(Ω)-valued continuously differenti-

able function of t, 0 < t < T.
(b) / is continuous in t, 0 < t < T.
Moreover, under any one of these equivalent conditions, u(t) satisfies the

equation:

(17)

PROOF. The implication (a)=>(b) is trivial.

(b)=Φ(a). Since / is written in the form / = -^-, where g is continuous

in t, it follows from Proposition 8 that the solution u is also continuous in ί,

0<£< Γ. If we put w— -^- and differentiate the both sides of (5) with res-

pect to ί, we obtain
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on Ω x (0, T). By Proposition 8, w is continuous in t, 0 < t < T. u and w
being continuous in t, it is easy to verify that u(t) has the continuous deri-
vative u(t) such that u(i) = w(x, t) (cf, [6, p. 57]), and satisfies the equation
(17).

Applying Theorem 1 and Proposition 8, we shall show

THEOREM 2. Let u e Q)f(Ω x (0, Γ)) be a solution of (5):

with the initial condition (6): \imu=a. The following conditions are equi-
t 10

valent:
(a) u is continuous in t,O<t<T, and limu=a in the strict sense.

tio

(b) u is continuous in t and \imu(e)=a.
(c) Y*tf is continuous in t, — oo < t < T.

PROOF. We have only to show the implications (a)=>(c) and (c)=^(b).
(a)=Kc). In virtue of Proposition 8, we see that Y*tf is continuous in

ί, 0 < t < T. Since / is canonical in the strict sense, Proposition 4 implies
that lim< Y*tf, gk>t = 0 tor every {gk} and therefore Γ*,/ is continuous in

k

(c)=»(b). Owing to Proposition 8, we know that u is continuous in t.
Making use of the equality (10) with w replaced by u and modifying the proof
of Proposition 8, we can conclude from the equality

ΐί =P(x, ί, DxχY*tϋ)-(-^-P(x, ί,

that limu(ε) exists and equals a.

COROLLARY 3. Let u 6 Q)\Ω x (0, Γ)) 6e a solution of (5):

du
dt = P(x, t,Dx)u+f.

Suppose f has the canonical extension f such that Y*tf is continuous in t,
— co < t < T. The following conditions are equivalent:

(a) lim u exists.
tio

(b) lim u exists in the strict sense.
tio

(c) u is continuous in t and lmm(ε) exists.
εio

(d) u can be extended over t = 0.
PROOF. By Theorem 2, (a), (b) and (c) are equivalent, and by Proposition

7, (a) and (d) are equivalent.



On the Fine Cauchy Problem for the System of Linear Partial Differential Equations 25

Applying Theorems 1, 2 and Proposition 9, we can show

COROLLARY 4. Let u e Q)\Ω x (0, T)) be a solution of (5):

du
dt = P(x, t,Dx)u+f

with the initial condition (6): \imu=a. If f is continuous in t and lim/(ε)
tϊO £ 4 0

exists, then u, -^- are continuous in t, u(t) is continuously differentiable in t,
ot

0 < £ < Γ, and limM(ε), limuXε) exist.
£ 1 0 6 10

PROOF. Evidently F*/ is continuous in ί, — oo < t < T. By Theorem 2,
u is continuous in t and limi*(ε)=α exists. Differentiating (5) with respect to

610

t we have

where g=(-^-P(x, t, Dx)ju+ -J- has the canonical extension equal to

Consequently

which is continuous in ί, — oo < t < T. Therefore, by Theorem 2, -£- is con-
ot

tinuous in t> hence u(t) is continuously diίferentiable and limu'Ce) exists.
So far, we have considered the distributions on i?x(0, T) and their

canonical extensions over ί = 0. It is clear that a similar argument can be
applied to the distributions on 42 x(— 7\, 0). A distribution u e Q)'(Ω x
(— 7\, 0)) is said to have a canonical extension w_ 6 Q)'(Ω x(— Tu oo)) over
ί = 0 if w_ = limp(£)w. For example, let u e Q)r(Ωx(— Tu 0)) be a solution of

£ 4 0

a differential system:

dt

with the initial condition

du =P(x9t9Dx)u+f

lim & = a,
ί ί O
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where/ is a distribution on Ω x (— Tu 0). Then /has the canonical extension
/_ and the restriction v of u- to Ω x( — 2\, T) will satisfy the equation:

P(* t D)v+fa®δ (18)

Conversely, any solution υ of (18) vanishing for t > 0 will be the restriction of
the canonical extension of a solution for the above Cauchy problem. All the
discussions given in Section 1 through Section 3 will remain true with neces-
sary modifications.

EXAMPLE. Let u be a harmonic function on Ω x (0, T). We note that
the following conditions are equivalent:

(a) The distributional boundary value Km u exists.
t 10

(b) The distributional boundary value lim-^- exists.
tio Ot

(c) u can be extended to a distribution over t = 0.

Suppose \imu and l im-^ exist: αi = limiί5 α2 = lim-^-. If either of <xx
ί 40 iϊO Ot tϊO tϊO Ot

and a2 equals 0 then u can be extended to a harmonic function on Ω x(— Γ,
Γ). This was noted in our previous paper [4, p. 413] without proof in the case

n>l. We shall here give the proof. Put uχ — u^ u2— -J£-. Then uu u2 have

the canonical extensions wi5 u2 and

dt

on i2 x( —oo3 T). If we put w(x, t) = u(x, —t) for ί<0, then w is harmonic on

Ω x(— Γ, 0) and WI=*M;, ^ 2 = - ^ have the canonical extensions wι = \\
Ot

oni?x(—Γ, 00). Let αi = 0. If we put vι = uχ — wu v2 — u2~w^ then vh v2

are harmonic on Ωx(-T, T) and ^±=v2, - ^ = - Σ ^ and therefore

- ^ = — Σ -τ^5 i β.. Δ^i = 0. Thus ui is continued to a harmonic function
dt2 i = dx2

vι. Similarly, in the case α2 = 0, if we put v3 = ϊίι + wu vA = ϊί2 + w2, then v3, v4
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are harmonic on Ωx{-T, T) and ^=vA, ^ = - Σ π and therefore

Δί;3 = 0. Thus MI is continued to a harmonic function v3.
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