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In our previous paper [4, p. 406 ] we have introduced the notion of a
canonical extension of a distribution in studying the distributional boundary
values of holomorphic functions. The notion will be treated in this paper with
considerable detail so as to be applied to the study of the fine Cauchy problem
for the system of linear partial differential equations. Let £ be a non-empty
open subset C R” and T a positive number which may be +oo. Let u be a
distribution on £ x (0, 7). We shall say that a distribution & on 2 x(—oo, T)
is a canonical extension of u if a=1£i}1()1 Oy, Where o(z) is an arbitrary func-

tion with certain properties (cf. Definition 1 below) and p(f,(t)=p<%>. Ifu

happens to have the boundary value lim u =c, then the identity:
tlo

0 0 /
i P = b+ Olow
will imply that

95 _(94) 1 agp,

The fact will be used to bring the initial conditions into the differential system
as done in L. Schwartz [6, p. 1337]. ,

Section 1 is devoted to the discussions centering around the canonical
extension #. In Section 2 we consider the canonical extension in a narrow
sense and develop the same consideration as in Section 1. In Section 3 we
deal with the fine Cauchy problem for the system of linear partial differential
equations (cf. [ 6, p. 1337]). For instance, consider the Cauchy problem for the
system (we use the vector notation):

ou

YT P(x, t, D)u+f

with the initial condition limu(x, t)=a € D'(2), where f is a given vector of
tio

distributions in @'(2 x(0, T)). Suppose f has the canonical extension f.
We shall show in Theorem 1 below that to solve the Cauchy problem just
considered is to find a vector v of distributions which satisfies the system:
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% = P(x, t, D)o+ f+a®0d,
and vanishes for :t<0. The same discussions are also made about the case

where u becomes a D'(2)-valued continuous function of s.

1. Canonical extensions

First we recall the notion of a canonical extension of a distribution which
was introduced in our previous paper [ 4, p. 4107]. In what follows £ denotes
a non-empty open subset of an n-dimensional Euclidean space R” with points
x=(x1, ---, x,) and T a positive number which may be +oo. An open set £ x
(0, T) will be a cylinder in R""!. D'(2 x(0, T)) means the space of distribu-
tions on £ x(0, T) with the usual topology of L. Schwartz. Let ueD'(2x(0, T))
and let o(¢) be any real-valued €~ function of the real variable ¢ equal to 1

for t>>2 and 0 for : <<1. We define p(g)(t)=p<—f:~> for ¢>0. The multiplica-

tive product p.,u will be understood as a distribution extended over 2 x
(—oo, T) so as to vanish for :<e.

Derinttion 1. A distribution @ € D'(2 x(—oo, T)) will be called to be a

canonical extension of u over t=0 if peyu converges to o 1n D(R x(—o0, T))
forany pasel 0.

Observe that o, can be written in the form o = Y*x., Y being the Hea-
viside function and x is a real-valued €~ function with support contained in

[1, 27] such that (x(t)dt=1, where we put x.(¢)= %x(%) We have proved
the following [4, p. 4097]

Prorosition 1. u € D(2 %(0, T)) has a canonical extension whenever
there exists the distributional boundary value 1i§n u=caeD(R),ie., li}n< U, Xe >y
ti0 &l 0

= for every x mentioned above.

However, the converse is not true in general. In connexion with the
canonical extension, we introduce

DEFINITION 2. w € D'(@ x(—o0, T)) is called to be canonical whenever
w=limpyw for every o with the property mentioned before.
€lo

We note that @ in Definition 1 is canonical because of the fact that &=
limoyu and &=u for :>0. Clearly this is the case for a(x, t)i, where a(x, t)
Elo

is an arbitrary €= function on 2 x(— Ty, T) with T,>0.

Lemma 1. Suppose v € D'(2 x(— oo, T)) vanishes for t<0. v is canoni-



On the Fine Cauchy Problem for the System of Linear Partial Differential Equations 13

cal provided there exists the section v(x, 0) for t=0.

Proor. In what follows, 4 C C B will mean once for all that 4 is rela-
tively compact in B. In view of a theorem of S. Lojasiewicz [5, p. 217, given
any non-empty open subset GC C £ and any ¢ with 0<e,< T, we can find a
non-negative integer %, a multi-index a=(ay, ---, a,) of non-negative integers
and a continuous function F(x, t) on G x(—oo, &) such that v=DID*F(«, t)
on G x(—e&, &) and F=o(¢*) uniformly on G as ¢t—0, where DI=D{...Di»

with D;= 0 and D; = 9 Now we can write

ax,- 0t

k . . .
b = D20 DF = D% 33 () (= 1y DDl ey F)
=
on Gx(—oo, &). Doy F) tends to D¥F in D'(G x (—&, &)) as ¢ | 0, and since
[ Djos| =0<%>, DjpyF, 0< j <k, tends therefore to 0 in D'(G x (—s, &)) as
¢} 0. Consequently limpv=DiD}F(x, t)=v in D(Gx(—s, &)). We con-
&lo
clude therefore that v is canonical, as desired.

In our previous paper [ 2, p. 170 ] we have discussed the partial multiplica-
tion of distributions. Given k€ D'(R;) and we D'(2 x(—oo, T)), the mul-
tiplicative product Aw is a distribution on 2 x(— oo, T) defined as the distribu-
tional limit lei?g(h* ¢ow, if it exists, for every choice of ¢ € D(R,) such that

Sgb(t)dt: 1and ¢:.(2)= % gb(%) When the limit lim (k% g,)w exists for every
p—oo

choice of 0-sequence {g;} instead of {¢.}, the limit will be referred to as the
multiplicative product in the strict sense and denoted by A-w.
With the aid of Lemma 1 we shall show the following

ProrosiTion 2. Let v, we D'(2 x(—oo, T)) be such that v=0 for <0

and w= g—: The following conditions are equivalent :

(a) w s canonical.

(b) v 1s canonical and has the boundary value limv equal to 0.
tl0

(e) The section v(x, 0) exists.
(d) The partial multiplicative product w(x, t)Y(t) exists.
() The partial multiplicative product v(x, t)0; exists.

Proor. (a)=(b). Let « be an arbitrary function in D((— oo, T)) and x
an arbitrary function in D((0, o)) such that gx(t)dtzl. Put oy = Ysx..

Since w is canonical, lim < psw, @>;= <w, a>,. Observing now the relations
elo

<0(6)w3 a>t = <(Y*X@)w, CZ>,«
= <X ?*t(afw)>t
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= <%, Ixlaw) > — <xey Y(aw)>,
= <w, a>t_ <x6, Y*t(aw)>t,
we find that li}n <%¢y Yilaw)>;=0 and therefore lim (Y*,(aw))=0. Choosing
elo tlo

a to be equal to 1 in a neighbourhood of 0, we can conclude that limv =
ti0

lim (Y*w)=(, which, when combined with the equation o w= %(p(g)v)—xev,
tlo0

yields w=1lim —a—(p(g)v) and therefore v = Yxw = lim p.yv.
eto Ot elo

(b)=(c). Let G and ¢, be taken as in Lemma 1. Since limv=0, we can
tl0

write v=DID*F(x, t) on G x(0, &), where F is a continuous function on G x
(— oo, &) vanishing for :<0 such that F=o(t*) uniformly on G as ¢ | 0. Not-
ing that v is canonical and proceeding as in the proof of Lemma 1, we see
that v= ll}? Oy = lilrgl 0y DiD¥F=D;D'F on Gx(—oo,¢). Hence we get

v(x, 0)=0.

(e)e(d)<(e). Recalling the definition of the section of a distribution
for t=0 [5, p. 15, we see that the section v(x, 0) exists if and only if the dis-
tribution <v, ¢>., ¢ € D(L), has the value <v, $>,(0) at t=0. Here we
have the relation <wv(x, 0), ¢>,=<wv, ¢>,(0). Similar situations hold also
for the partial multiplication [2, p. 170]. The equivalence (¢)<(e) follows
then from Lemma 4 in [2, p. 166]. Similarly, since the multiplication is
normal in the sense of [2, p. 1537 it follows that (d) and (e) are equivalent.

(¢)=>(a). v has the section for :=0, hence owing to Lemma 1, v is canoni-
cal. Since, further, v(x, 0)=0, it follows that ‘lsllrgl 0{v=0. From the rela-

tion o eyw= %(0(5)1))_1_ 0(sv We see that lifn Oeyw = g—: =w, which shows that
&lo

w is canonical. This completes the proof.

ProposiTioN 3. Let u, v e D'(2x(0, T)) be such that u=g—;). The fol-

lowing conditions are equivalent:

(a) u has the canonical extension.

(b) The distributional boundary value Itifrom exists.

Proor. (a)=(b). Let & be the canonical extension of z. We know that
i is canonical. Owing to the preceding proposition, it follows that Yx,% is
__0v
T
write v — Y8 =a(x)Q Y(¢) for some a € D'(2), which gives lirlrgvza.

4

canonical and lim(Y*,%)=0. Since %(Y*,ii)=ﬁ=u for : >0, we may
tlo
(b)=(a). As noted before, » admits the canonical extension 3. From

the relation peyu= %(p(e)v)—p{é)v we obtain that limp.yu= % —a®0; with
elo



On the Fine Cauchy Problem for the System of Linear Partial Differential Equations 15

a= lim», which implies (a).
ti0

2. Canonical extensions in the strict sense

Let {g:} be an arbitrary d-sequence with supp g, C(0, o) and put p,=
Yxg,. A distribution & € D(2 x(—oo, T))is called to be a canonical exten-
sion of u e D(2x(0, T)) over t=0 in the strict sense if #=Ilimp,u holds.

koo

Also we shall say that w e D'(2 x(—oo, T)) is canonical in the strict sense if
we have w=1im p,w for every {o;}. Note that 1,& sinit € D'(2 x(0, T)) has

koo
the canonical extension but in the strict sense it does not.
By a similar argument as in the proof of Lemma 8 in [7] we can easily
prove the following

Lemma 2. Let u e D'(2x(0, T)). If limu exists in the strict semse, i.e.,
ti0
if im<uw, gi>: exists for every choice of a 0-sequence of {g:} stated above,
oo

then there exists for any given ¢ € D(2) an interval [0, & | where <u, >, is
equivalent to a bounded function continuous at 0, and therefore u has the ca-
nonical extension in the strict semse.

On the basis of this lemma and Remark 1 in [7, p. 229 ] we can show the
following two Propositions 4 and 5, which are analogues to Propositions 2 and
3 already proved in the preceding section. The proofs are omitted since the
reasoning is very similar to that in the corresponding proofs.

ProrosiTioN 4. Let v, w € D'(2 x (— oo, T)) be such that v=0 for t<0 and
w: _al
0t
(@) w s canonical in the strict sense.

(b) v 1s canonical, and has the boundary value limv=0 in the strict sense.
tlo0

(¢) lim <w, gz>: exists for every 0-sequence {g}.

koo
(d) The partial multiplicative product w(x, t) Y(¢t) exists.
(e) The partial multiplicative product v(x, t)-0; exists.
) <v, 9>, ¢ € 2(82), is a bounded function in a neighbourhood of 0 con-
tinuous at 0.

€D (R x(—o0, T)). The following conditions are equivalent

ProposiTioN 5. Let u, ve€D'(2 x (0, T)) be such that u= 66_1; The follow-
ing conditions are equivalent
(a) u has the canonical extension in the strict sense.
(b) The distributional boundary value li{nv in the strict sense exists.
tio

Now, let X m (R2*1) be the space of all distributions u € D'(R%*!) such



16 Mitsuyuki ITANO

that there exists a distribution U € L (R"*") with U=u on R%*'. The norm
of u is defined by ||u||im,sy=1nf||Ul|(m, ), the infimum being taken over all such
U. Here R®*! denotes the half space {(x, ¢) € R"*': x € R” and ¢ >0}, m a non-
negative integer and s a real number (cf. Chapter II of L. Hérmander [17]).

u € Hm, sy (R%1) has always the canonical extension # in the strict sense
because of the fact that

Jim lowu— prullo, = cyms Him [ 160 =00 Tun |20+ |19 dgde=0,

where U,,; denotes the partial Fourier transform of U (cf.[1, p. 247]). Note
that if » has an extension w in &, (R"*") such that w=0 for <0, w must
be &i. Infact,w—& € Xy (R"*") will vanish for 0, which, together with
the definition of & ;,(R"*"), yields w=1.

From these considerations we can show the following

Prorosition 6. The following conditions are equivalent for ue€ , (R%1):
(a) There exists a distribution w € o (R™) with suppw C R% such
that w=u on R**L,

(b) & € Hpm,s(R*™).

L 0w 0" u
© limu=lmn 5 ==l =0
ou . 0"y
(d) limu=lim-—>-=--=lim—_— =0 in the strict sense.
1o 110 Ot 1100

Proor. We have only to show the implications (b)=>(d) and (¢)=>(b).
(b)=(d). We know that L j=0, ..., m—1, has the trace for =0 (cf.

Theorem 2.5.6 in [17]). Since %(m,s)(R””) possesses the approximation pro-
perty by reguralization, it follows from the corollary to Proposition 4 in [3]
that the trace coincides with the section for :=0. Noting that & =u for >0,

m— 1
we can confer that limu=lim 9% = .= lim?___ o =0,
110 tio Ot 1100t

(e)=(b). We shall proceed by induction on m. The case m=0 is trivial.
Assuming then the implication holds with m replaced by m—1 for m >0, and

taking into account the facts that u € &,_1 .1 (R%*) and %65’6(,,,_1,3)(1_{1“),

we obtain from (c) that & € Xu_1,5,1,(R*") and ( >e£€<m 1,5(R"*1) hold.
Hence the proof will be complete if we can show the equality <aal;> %
However, this follows from the calculations:
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~

()=t

. 0
4 —
= hm (p(f)u) £1lrf)1 Plou ="

8. Fine Cauchy problem

Consider the Cauchy problem for a system of partial differential equations
in the unknown distributions uy, us, ---, us € D(2 x (0, T)):

0”iut Zs: nz—zla’k J(x) t, -Dx)a Ui +f¢, Z=1, 2, sy S (1)

0" T A S,
under the initial conditions
im® % — e D), i=1,2, .. @)
£=0,1, ..., n;—1
where a} ;(x, t, D)= Z ab,;,a(x, t)DY and a} ; o« € C°( x(— Ty, T)).
Substituting u; ,= 0 uy i=1, ..., s, k=1, ..., n;, we obtain an equivalent

a k-1
system of partial differential equations:

Ou;,

L — gy
0t 7,2

?ui»"i;]' = u: (3)
0t b

ou: ) s nj—1 . .
= .Z:l kZO a;a-j(x: Z, Dx)uj,k+1+fi’ i=1,2, .., s

i=1k=

0t

with the initial conditions

Hm(”’i,l) Tty ui,ni):(ai,l’ Tty ai,m)» l:]-) 29 sy S (4)
tlo

which is a special case of the Cauchy problem for a system of partial differ-
ential equations:

%” P(, t, D)u+f (5)
limu=a, (6)

ti0

where we used the vector notation: u=(u,, ---, un), f=0f1, ---, fu) @=(ay, -,
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«,) with the obvious meanings and P(x, ¢, D,) denotes an m xm matrix
||P;i(x, ¢, D.)|| such that

Pi,j(x> t, Dx) = Zai,j,a(x) L‘)D:, ai,j,a(xa t) € Cm(g X<- Tla T))

We shall write ue D'(2x(0, T)) if each component u; belongs to
D(L x(0, T)) and we shall say that » has the canonical extension if each
component u; has the canonical extension. The term canonical will also be
used in a similar way.

Put v,= f(l—éﬁ t'71, | being a non-negative integer, where we understand

Y,=0;. Note that Y; is the Heaviside function Y. Then we have
Lemma 3. Let g€ C*(2 x(— Ty, T)). Then, for any v € D'(2 x(—o0, T)),
we have

V) = 5 (5) (=1 V@19 (T, ©

where the notation x, means the partial convolution with respect to the variable
t.

Proor. We can write for w=Yx,v

L/ . o
#Diw =3 (L)~ 1/ DI (Dig-w).
Then, observing that v=D!w, we obtain

Yor(po) = 35 (4 ) (= D/(VreDf/(Digu)

7=0
_ SN 1Ny .
= 5(5) VWi,
where we have used the equalities
Y%, Di-i(Dig-w) = Yyx (Digew),  j=1,2, ..., L

TueoreM 1. Suppose there exists a solution u e D'(2x(0, T)) of the
system (5) with the initial condition (6). Then f has the canonical extemsion
f. If we denote by v the restriction of the camowical extension of u to
2x(— 1Ty, T), then v is a solution of the following system of partial differen-
tial equations:

%1;— = P(x, t, Dy)v —I-f—l—CK@ 0. )

Conversely, 1f ve D (2 x(— Ty, T)) is a solution of the system (8) and
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suppv C2 x [0, T, then the restriction u=v|2x(0, T) is a solution of the
system (5) with the initial condition (6) and the canonical extension of u coin-
cides with v on 2 x(— T, T).

Proor. Let u € D'(2 x(0, T)) be a solution of the Cauchy problem for
the system (5) with the initial condition (6). Then lélln(r)l ol u=a®?d; and, owing

to Proposition 2, u has the canonical extension . Now from the equalities:

0
Oy f = 0(6)0—12 —0@yP(#, t, D)u

= i(p(é)u)_p(lé)u_P(xa t, D)oeu, 9)
ot

passing to the limit ¢ | 0, we see that f has the canonical extension f and that
the restriction » satisfies the system (8).

Conversely, let v be a solution of (8) stated in the theorem. Now let w
be an extension of v to 2 x(—oo, T) such that w=0 for :<0. Then, apply-
ing the equality (7) with [ replaced by k-1, we obtain the equality

Yk :kf@;?l)(—l)fy;*,((g_;P(x, ., Dx)><Yk+1*,w>>

j=0

+ Yok fHa® Vi, (10)

i
where & is any non-negative integer and %P(x, t, D,) stands for the matrix

HZ(%ap,q,a(x, t))Dij. We know that f is canonical. It follows therefore

from Proposition 2 that Y,..* f, k=0, is canonical and lim(Y,, % f)=0.
tlo
Evidently a®Y,.; is canonical for £>0 and lim(a® Y,,1)=0 for £>0 and
tl0
lifn(a®Y)=a. Let G be an arbitrary non-empty open subset such that
tio R

GC C&. We can find a non-negative integer k, with the property that
Yy, + 14w is canonical on G x(—oo, T). Using the equality (10) with % replaced
by ko, we see that Y, w is also canonical on Gx(—oo, T). Repeating the
same argument and proceeding step by step, we can conclude, since G is
arbitrary, that w is canonical. Again using the equality (10) for £=0:

w=P(x, t, D)(Vra0)— (-0 P(x, ¢, D) (Yea)+ Yo f+a®Y, (D)

we have lim z =limw=q, completing the proof.
110 110

CoroLLARY 1. Suppose there exists a solution (uy, ---, us), u; € D'(2 x (0, T)),
of the Cauchy problem for the system (1) with the initial condition (2). Then
fi has the canonical extension ﬂ- for each i. If we denote by v; the restriction
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of i; 60  x(— Ty, T), then (v, ---, v5), v; € D' (R x(—T1, T)), 13 a solution of
the following system of partial differential equations:

0" v; _ s nj—1 ; o v,z :
o™ —jgl kgo a‘k,j(x: L Dx)W +fz+H, (12)

where
ni s nji=l k
Hy= 3 a;, @07 = % X @i (%, 8, Dy) 2 %y @0
yv= .7= = yv=

Conversely, suppose there exists a solution (vy, .-, vs), v; € D'(@ x(— Ty, T))
with suppv; C 2 x[0, T, of the system (12). Lf we denote by u; the restriction
of v; to £ x(0, T), then (u1, ---, us) 18 @ solution of the system (1) with the ini-
tial condition (2) and @; coincides with v; on 2 x(— Ty, T).

Proor. Let (uy, ---, us) be a solution of (1) with the initial condition (2).
To prove (12) we use the identities:

0 6"1 7
Oe) atlf = at;(p(e)uz> at’ 1(¢8u1) 073’ 2<¢s >_“'_¢6WUT:
i=1,2 ... s (13)

where ¢.=0p/,. Since, owing to Proposition 2, u; has the canonical extension
k
ii;, and since hma— =a; ;1 implies 11m¢6 :ai,k+1®6, for £=0, ..., n;—1,

a k
it follows from the identities (13) that %u}, ,i=

I~ !
6 Z} a; Q0. This, together with (1), yields that

1,2 ...,s1=0,..,n has the

fi has the canonical extens1on f,. Multiplying both sides of (1) by o, and
passing to the limit ¢ | 0, we can conclude that the restriction (v, ..., vs) of
(w1, -y us) to 2 x(— Ty, T) satisfies (12).

Conversely, let v=(v1, --., vs) be a solution of (12) such that v vanishes
for :t<0. Putting

Vi1 = U;
Vi2 = 661};'1 —at,-,1®6,
(14
00, _
Vi ni vati ai,nr1®6b 1,:]_, 2, ceey S

we can write
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051;,1 =0;2+a;1 Q0

Winct _ o Lo, Q6 (15)
0t ¢ o

avi - s nj—1 ~ .
Ot; =j=1 kgoa;e:j(x: t, Dx)vf,k+1+fi+af»"i®6” 1:1’ 2’ ey S

If we denote by u;; the restriction of v; ; to 2 x(0, T) for each i, j, we see,
from the preceding theorem, that (u; 1, ---, uix), i=1, -, s, is a solution of (3)
with the initial condition (4). Since u;=u; 1, it follows that (u,, .., u;) is a
solution of (1) with the initial condition (2). Owing to Theorem 1, the canoni-
cal extension of u; coincides with v; on 2 x(— T, T), completing the proof.
From the discussions of Section 2 it is easily verified that the assertions
of Theorem 1 and Corollary 1 valid even when the terms, such as the canonical
extension, the canonical and the distributional limit, are taken in the strict

sense.

Remark 1. H;=0,i=1, ..., s, if and only if «;,=0, i=1, ..., s, k=1, ...,
n;. Indeed, if ; ,==0 for each i, %, then clearly H;=0. Conversely, let H;=0
for i=1, ..., s. Without loss of generality we may assume that n;> n,> ...
>n,. First consider the case ny=n,=---=n;. 0,0, ... are linearly independ-
ent. It follows therefore from the equations H;=0 that ;=0 for i=1, ...,
s. Substituting these into the expression of H;, we can apply the same argu-
ment to obtain «; ;=0 for i=1, ..., s. Repeating this process, finally we shall
reach the conclusion. Let us turn to the general case. It will be sufficient
to show that the case n;=--=n;>n;,1=... =n, can be reduced to the case
ni=---=Nj1>ni2= - =ns. To do so, we note that, by the same argument
as above, H;=0, I=1, ..., i, imply «; ,=0 for m=1, ..., n;—n;,;. For our pur-
pose it will then be sufficient to rewrite the equations H,=0, k=1, ..., s by
replacing a; »,—n,, .+, bY 81, for 1=1, ..., i, v=1, ..., ;1. :

ProposiTioN 7. Let u € D'(2 % (0, T)) be a solution of (5):

ou
W == P(x, t, D,,)u +f.
If fe D'(2x(0, T)) has the canonical extension f, then the following condi-
tions are equivalent :
(@) u can be extended over t=0.
(b) The distributional boundary value lilm u(x, t) exists.
tlo0

Proor. Owing to Proposition 1, we have only to show the implication
(a)=(b). Let w be an extension of u over t=0. For any non-empty open
subset GC C £ and a small ¢, >0, we can find a non-negative integer %, a multi-
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index ¢ and a vector F=(Fy, ..., F,,), F; € C(G x(—¢, &)), such that w=DZD*F
on G x(—e, &). If we put v=D2D*F, where F' equals F for :==0 and 0 for

t<0, then the support of % — P(x, t, D,)v—f lies in the hypersurface :=0

and therefore there exist a non-negative integer / and a vector a; € D'(G) such
that
! ~
OY PG, 1, Do = X as@04+F 16)
i=o
on Gx(—¢, g). Here we may assume that [=0. Indeed, if />0, then 'v=
v+a; @041 is an extension of u such that 'v=0 for <0 and satisfies

0 = . ~
00— P(x, t, D)v = Za; @05 —P(x, t, DIai®@3y "+,
i=0

where the right side can be written in the form Ii}lbi@)d;“ +£, b;€ D(G). Con-
‘ i=0
sequently we can apply Theorem 1. Thus (a) implies (b).

CoroLLARY 2. For a solution u € D'(2 x(0, T)) of a homogeneous system

Ou _ P(x, t, D,)u, u can be extended over t =0 tf and only +f the distributional

0t

limat lim u exists.
tio0

In what follows, if u e D'(2x(0, T)) belongs to D' ()R C(0, T)), u is
said to be continuous in ¢ and identified in an obvious way with a D'(2)-valued
continuous function denoted by u(z), 0<t< T. Similarly for distributions on
2x(—o0, T).

ProrosiTion 8. Let u € D'(2 x(0, T)) be a solution of (5):

ou
T P(x, t, D)u+f.
The following conditions are equivalent :

(a) u s continuous in t, 0<t < T.

(b) For any g such that f= %%, g s continuous in ¢, 0<t < T.

Proor. (a)=(b). Owing to Proposition 5 in [7, p. 2297, we have only
to show that g(x, ¢)- 0, exists for every ¢/, 0<¢ < T, where 0 is the Dirac
measure concentrated at /. u is continuousin ¢. This implies that u(x, ¢)-0¢"
exists. From Remark 1 in [7, p. 229 7] it follows that there exist %~Y(t—t’)
and u(x, ¢)-Y(¢—1¢’). Since u satisfies (5), we see that f(x, 1)-Y(t—1') exists.
Using again Remark 1 just referred to, we can conclude that g(x, ¢):0¢ is
well defined.
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(b)=(a). First we shall show that f has the canonical extension f,
in the strict sense over t=:¢/, 0<¢' < T. Since g is continuous in ¢, it follows
by the same argument as above that f{(x, ¢)-Y(¢t—¢') is well defined, and a
fortiori f has the canonical extension f, in the strict sense over t=¢'. Apply-
ing Proposition 7, we see that the distributional boundary value ltlll’f)l u(x, t)=ay

exists in the strict sense. If we denote by @, the canonical extension of u
over t=1¢', then 7, satisfies

6‘111:_
ot

Consider the equality:

P(x, t Dx)ut +ft +Of¢ ®5(;)

Y%y = kil (k_;—l)( 1)] Yﬁt((% P(x, ¢, Dx))(YkH*tﬁt’))

j=0
+ Yk+1*t]7‘t'+aft’® Yk+1(t—t/),

where & is a non-negative integer. Y, *,f and ar ®Y;.1(t—¢") are continu-
ous in ¢, t'<t< T. Given any non-empty open subset GC C £, we can find a
non-negative integer k, such that Y, .1*4, is continuous in ¢, —co<t<T.
Using the same consideration as in the proof of Theorem 1, we see that %, is
continuous in ¢, ¢’ <t< T. Since G and ¢’ are arbitrary, we can conclude that
u is continuous in ¢, 0<t< T, which completes the proof.

Prorosition 9. Let u € D'(2 x (0, T)) be a solution of (5):

%—” — P(x, t, D)u+f.
The following conditions are equivalent :

(a) u 1s continuous in t and u(t) is a D'(2)-valued continuously differenti-
able function of t, 0 <t < T.

(b) f is continuous in t, 0<t < T.

Moreover, under any one of these equivalent conditions, u(t) sat@sﬁes the

equation :
u'(t) = P(x, t, D )u(t)+f(2). an

Proor. The implication (a)= (b) is trivial.
(b)=>(a). Since f is written in the form f= %‘;‘:, where g is continuous

in ¢, it follows from Proposition 8 that the solution » is also continuous in ¢,

0<t<T. If we put w= %ﬂ and differentiate the both sides of (56) with res-

pect to ¢, we obtain

%E_P(x, t, Dw+ <<;P(x, :, Dx)>u+ of )
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on £x(0, T). By Proposition 8, w is continuous in ¢, 0<:<7T. u and w
being continuous in ¢, it is easy to verify that u(z) has the continuous deri-
vative u/(¢) such that u'(t)=w(#, ¢t) (cf, [ 6, p. 57]), and satisfies the equation
an.

Applying Theorem 1 and Proposition 8, we shall show

TuroreMm 2. Let u € D'(2 x(0, T)) be a solution of (5):

% = P(x, t, D)u+f

with the initial condition (6):limu=ca. The following conditions are equi-
ti0

valent :

(a) u ts continuous in t, 0<t < T, and lim u =« in the strict sense.
tlo

(b) u is continuous in t and limu(e)=c.
&l0

(€) Yx.f is continuous in t, —oo <t < T.

Proor. We have only to show the implications (a)=(c) and (¢)= (b).

(a)=(c). In virtue of Proposition 8, we see that Yx, f is continuous in
t,0<t<T. Since f is canonical in the strict sense, Proposition 4 implies
that }eim< Y*.f, ge>:=0 for every {g;} and therefore Yx f is continuous in

t, —co<t<T.

(¢)=(b). Owing to Proposition 8, we know that » is continuous in z.
Making use of the equality (10) with w replaced by # and modifying the proof
of Proposition 8, we can conclude from the equality

% = P(x, ¢, D) Vi) — <%P(x, :, Dx)>(Y*zﬂ)+ Y f+a®Y
that lilm u(e) exists and equals a.
&lo

CororrLary 3. Let u e D'(2 x(0, T)) be a solution of (5):

%—lé— = P(x, t, D)u-+f.
Suppose f has the canonical extension f such that Y« f is continuous in ¢,
—oo <t T. The following conditions are equivalent:

(a) ltlgl u exists.
(b) ltl?g u exists in the strict sense.

(€) u s continuous in t and 161}101 u(e) exists.
(d) u can be extended over t=0.

Proor. By Theorem 2, (a), (b) and (¢) are equivalent, and by Proposition
7, (a) and (d) are equivalent.
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Applying Theorems 1, 2 and Proposition 9, we can show

CoroLLARY 4. Let u € D'(2x(0, T)) be a solution of (5):

ou

Gy =Pl t, Dyutf

with the initial condition (6):limu=ca. If f is continuous in ¢ and limf(e)
tio &lo

exists, then u, %

0<e< T, and limu(e), limu'(e) exist.
elo &lo

are continuous in t, u(t) is continuously differentiable in ¢,

Proor. Evidently Yxf is continuous in 7, —co<t< T. By Theorem 2,
u is continuous in ¢ and limu(e)=« exists. Differentiating (5) with respect to
elo

t we have

*u

ou 0
W :P(x9 Z, Dx)vaT ( P(x’ 12 Dx)>u+ f

o’

where g= ( P(x, t, Dx)>u—l- or has the canonical extension equal to

< P(x, t, Dx)>u+ f —(11mf(e))®6,
Consequently
Yeg= Y5 P, t, D)+ —(limfle) ©,

which is continuous in z,—co<t< T. Therefore, by Theorem 2, % is con-

tinuous in ¢, hence u(t) is continuously differentiable and limu/(¢) exists.
&lo

So far, we have considered the distributions on 2 x(0, T) and their
canonical extensions over :=0. It is clear that a similar argument can be
applied to the distributions on £ x(— 73, 0). A distribution u e D'(2x
(— Ti, 0)) is said to have a canonical extension &i_ € D' (2 x(— T, o)) over
t=0 if ﬁ_=lei{1% 0yu. For example, let u € D'(2 x(— Ty, 0)) be a solution of

a differential system:

04 = P, 1, DIutf
with the initial condition

limu =,
10
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where f is a distribution on 2 x(— T1,0). Then fhas the canonical extension
f_ and the restriction v of #_ to £ x(— Ty, T) will satisfy the equation:

0v

v =P, t, Do+ f-—a®3.. (18)

Conversely, any solution » of (18) vanishing for >0 will be the restriction of
the canonical extension of a solution for the above Cauchy problem. All the
discussions given in Section 1 through Section 3 will remain true with neces-
sary modifications.

ExampLe. Let u be a harmonic function on 2 x(0, T). We note that
the following conditions are equivalent:
(a) The distributional boundary value lim z exists.
tlo

(b) The distributional boundary value li{n%l;— exists.
tio
(¢) u can be extended to a distribution over z=0.

Suppose hmu and hm@ exist: al—hm u, az—hm?—. If either of oy
tio Ot tio 0t
and «. equals 0 then u can be extended to a harmonic function on £ x(— T,

T). This was noted in our previous paper [ 4, p. 4137 without proof in the case

n>1. We shall here give the proof. Put u;=u, u,= % Then u;, u; have
the canonical extensions i, %, and

Oy _ =T+ a1 &0

0t

n 23
L R

on £ x(—oo, T). If we put w(x, t)=u(x, —¢) for <0, then w is harmonic on

2x(—1T,0)and w;=w, we= % have the canonical extensions ‘7’1:?}{} Oceywi,

Wo= lim 5(5)1»02 and
€lo

J6£1=w2_a1®5t
Oy _ & 0%
1 o igla ?+a2®6t

on .QX(— T, 00) Let a1=0. If we put 0121741—1,7)1, vzzaz—wZ, then V1, V3
0’02 _ L 02 V1
W o i=1 6x'f‘
_O;Tv; =— ',,1%2—::;, i. e, Av;=0. Thus u; is continued to a harmonic function
i= i
v1. Similarly, in the case a, =0, if we put vs=1u;+ 1, va=G2+W;, then v;, vy

are harmonic on 2x(— 17, T) and %:vz,



are harmonic on 2x(— 7, T) an
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~——-3 and therefore

Ovs _, vy _ 3 0%
450 = 5, =7 How?

Av3;=0. Thus u, is continued to a harmonic function vs.

1]
(2]
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