Comparison of the Classes of Wiener Functions

Fumi-Yuki Maeda
(Received September 20, 1969)

Introduction

For a harmonic space satisfying the axioms of M. Brelot [1], one can define the notion of Wiener functions as a generalization of that for a Riemann surface or a Green space (see [2]). The class of Wiener functions may be used to see global properties of the harmonic space; in particular, in order to show that a compactification of the base space be resolutive with respect to the Dirichlet problem, it is enough to verify that every continuous function on the compactification is a Wiener function (see Theorem 4.4 in [2]). Thus, given two harmonic structures \mathfrak{S}_{1} and \mathfrak{S}_{2} on the same base space Ω, it may be useful to know when the inclusion $\boldsymbol{B} \boldsymbol{W}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}^{(2)}$ holds, where $\boldsymbol{B} \boldsymbol{W}^{(i)}(i=1$, 2) is the class of bounded Wiener functions with respect to $\mathfrak{S}_{i}(i=1,2)$. In this paper, we shall give a sufficient condition for the above inclusion, which includes the conditions given in [4] and [5] for special cases.

1. Harmonic spaces and Wiener functions

In this paper, we assume that a harmonic space $(\Omega, \mathfrak{S})=\{\mathfrak{E}(G)\}_{G: o p e n}$, satisfies Axioms 1, 2 and 3 of M. Brelot [1] and that Ω is non-compact. For an open set G in Ω, the set of all superharmonic functions on G with respect to (Ω, \mathfrak{K}) is denoted by $\delta_{\mathfrak{5}}(G)$. The set of all potentials with respect to (Ω, \mathfrak{K}) is denoted by $\mathscr{D}_{\mathfrak{5}}$. In general, given a family \boldsymbol{A} of (extended) real-valued functions, we use the notation $\boldsymbol{A}^{+}=\{f \in \boldsymbol{A} ; f \geqq 0\}$ and $\boldsymbol{B} \boldsymbol{A}=\{f \in \boldsymbol{A} ; f$: bounded $\}$.

We furthermore assume that (Ω, \mathfrak{S}) satisfies

$$
\text { Axiom } 4 . \quad 1 \in \delta_{\mathfrak{5}}(\Omega) \text { and } \mathscr{D}_{\mathfrak{5}} \neq\{0\}
$$

Remark that under Axiom 4 the following minimum principle holds (see [1]):
If $v \in \delta_{\mathfrak{5}}(\Omega)$ and if for any $\varepsilon>0$ there exists a compact set K in Ω such that $v(x)>-\varepsilon$ on $\Omega-K$, then $v \geqq 0$.

Given an extended real-valued function f on Ω, we consider the classes

$$
{\overline{Q_{\mathfrak{V}}^{2}}}(f)=\left\{v \in \delta_{\mathfrak{N}}(\Omega) ; \text { there exists a compact set } K_{v} \text { in } \Omega\right\}
$$

and

$$
\underline{20}_{5}(f)=\left\{-v ; v \in \overline{X Q}_{5}(-f)\right\} \text {. }
$$

In case $\overline{\mathscr{Q}}_{50}(f)$ (resp. $\underline{Q 2}_{5}(f)$) is non-empty, we define

It is known (cf. [2]) that \bar{h}_{f}^{5} (resp. $\left.\underline{h}_{f}^{5}\right) \in \mathfrak{S}(\Omega)$ if it exists. Remark that if f is bounded, then both $\overline{\chi X}_{5}(f)$ and $\underline{2}_{5}(f)$ are non-empty and $\inf \Omega f \leqq h_{f}^{5} \leqq \bar{h}_{f}^{5} \leqq$ $\sup _{\Omega} f$ (by Axiom 4 and the minimum principle).

In case $\overline{\mathscr{Q}}_{\mathfrak{5}}(f)$ and $\underline{\mathscr{Q}}_{5}(f)$ are both non-empty and $\underline{h}_{f}^{5}=\bar{h}_{f}^{\mathfrak{F}}$, we say that f is \mathfrak{S}-harmonizable (cf. [2]) and denote $h_{f}^{\mathfrak{S}}=\bar{h}_{f}^{5}$ by h_{f}^{5}. Obviously, any function in $\delta_{\mathfrak{W}}^{\mathrm{J}}(\Omega)$ is \mathfrak{S}-harmonizable and if $p \in \mathscr{D}_{\mathfrak{5}}$, then $h_{p}^{\mathfrak{S}}=0$.

The set of all continuous \mathfrak{S}-harmonizable functions (called $\mathfrak{~}$-Wiener functions) will be denoted by $W^{\mathfrak{V}}$. We define (the class of \mathfrak{S}-Wiener potentials)

$$
\boldsymbol{W}_{0}^{\mathfrak{W}}=\left\{f \in \boldsymbol{W}^{5} ; h_{f}^{\mathfrak{5}}=0\right\} .
$$

It is known ([2]) that \boldsymbol{W}^{5} and \boldsymbol{W}_{0}^{5} are real linear spaces; if $f, g \epsilon \boldsymbol{W}^{5}$ and λ, μ are reals, then $h_{\lambda_{f+\mu}}^{\mathfrak{5}}=\lambda h_{f}^{\mathfrak{5}}+\mu h_{g}^{\mathfrak{F}}$. Also, constant functions belong to $W^{\text {6 }}$ and $0 \leqq h_{1}^{5} \leqq 1$.

We can easily prove the following lemma:
Lemma 1. If $f \in W^{\text {F }}$ and g is a bounded function on Ω, then

$$
\bar{h}_{f+g}^{\mathfrak{S}}=h_{f}^{\mathfrak{5}}+\bar{h}_{g}^{\mathfrak{S}} \quad \text { and } \quad h_{f+g}^{\mathfrak{G}}=h_{f}^{\mathfrak{5}}+h_{g}^{\mathfrak{5}} .
$$

2. Comparison of the classes of Wiener functions

Now we consider two harmonic structures \mathfrak{S}_{1} and \mathfrak{S}_{2} on the same space Ω (non-compact). We assume that both $\left(\Omega, \mathfrak{S}_{1}\right)$ and $\left(\Omega, \mathfrak{S}_{2}\right)$ satisfy Axioms $1 \sim 4$. For simplicity, we replace the index \mathfrak{E}_{i} by (i), e.g., we write $\delta_{(1)}(G)$ for $\delta_{\mathfrak{F}_{1}}(G), \overline{W Q}_{(2)}(f)$ for $\overline{\chi Q}_{\mathfrak{F}_{2}}(f), h_{f}^{(1)}$ for $h_{f}^{\mathfrak{F}_{1}}$, etc.

Lemma 2. Suppose $\boldsymbol{B} \boldsymbol{W}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}^{(2)}$. Then, $\boldsymbol{B} \boldsymbol{W}_{0}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}_{0}^{(2)}$ if and only if $h_{f}^{(2)}=h_{f_{1}}^{(2)}$ for any $f \in \boldsymbol{B} \boldsymbol{W}^{(1)}$, where $f_{1}=h_{f}^{(1)}$.

Proof. The "if" part is obvious. Suppose now that $\boldsymbol{B} W_{0}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}_{0}^{(2)}$ and let $f \in \boldsymbol{B} \boldsymbol{W}^{(1)}$. Then $f-f_{1} \in \boldsymbol{B} \boldsymbol{W}_{0}^{(1)}\left(\boldsymbol{B} \boldsymbol{W}_{0}^{(2)}\right.$. Hence $h_{f-f_{1}}^{(2)}=0$, so that $h_{f}^{(2)}=h_{f_{1}}^{(2)}$.

Theorem 1. Suppose the following condition (C) is satisfied:
(C) There exists $p \in \mathcal{D}_{(2)}$ such that for any $v \in \delta_{(1)}^{+}(\Omega)$ with $0 \leqq v \leqq 1$ there is $w \in \delta_{(2)}^{+}(\Omega)$ with the property that $|v-w| \leqq p$ on Ω.

Then $\boldsymbol{B} \boldsymbol{W}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}^{(2)}$ and $\boldsymbol{B} \boldsymbol{W}_{0}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}_{0}^{(2)}$.

Proof. By Lemma 2, it is enough to show that if $f \in \boldsymbol{W}^{(1)}$ and $0 \leqq f \leqq 1$, then $f \in \boldsymbol{W}^{(2)}$ and $h_{f}^{(2)}=h_{f_{1}(2)}$, where $f_{1}=h_{f}^{(1)}$. Given such an f, let $v \in \overline{X O}_{(1)}(f)$ and $0 \leqq v \leqq 1$. By condition (C), there exists $w \in \delta_{(2)}^{+}(\Omega)$ such that $|v-w| \leqq p$. Since $w \pm p \epsilon \delta_{(2)}(\Omega)$ and $w+p \geqq v \geqq f$ outside a compact set in Ω, we have $w+p \in \overline{X Q}_{(2)}(f)$. Hence $w+p \geqq \bar{h}_{f}^{(2)}$, and hence $v+2 p \geqq w+p \geqq \bar{h}_{f}^{(2)}$. Taking the infimum of $v \in \overline{\mathcal{O}}_{(1)}(f)$, we have

$$
\begin{equation*}
h_{f}^{(1)}+2 p \geqq \bar{h}_{f}^{(2)} . \tag{1}
\end{equation*}
$$

By applying the above result to the function $1-f$, we have $h_{1-f}^{(1)}+2 p \geqq$ $\bar{h}_{1-f}^{(2)}$. By virtue of Lemma 1, this inequality can be written as

$$
\begin{equation*}
h_{1}^{(1)}-h_{f}^{(1)}+2 p \geqq h_{1}^{(2)}-\underline{h}_{f}^{(2)} . \tag{2}
\end{equation*}
$$

(1) and (2) imply

$$
\bar{h}_{f}^{(2)}-2 p \leqq h_{f}^{(1)}=f_{1} \leqq h_{f}^{(2)}+h_{1}^{(1)}-h_{1}^{(2)}+2 p \leqq h_{f}^{(2)}+\left(1-h_{1}^{(2)}\right)+2 p
$$

Since $1-h_{1}^{(2)} \in \mathcal{D}_{(2)}$, it follows that f is \mathscr{S}_{2}-harmonizable and $h_{f}^{(2)}=h_{f_{1}}^{(2)}$. Hence we have the theorem.

The following theorem is an easy consequence of the above theorem:
Theorem 2. If there exists a compact set K (may be empty) such that $\boldsymbol{B} \delta_{(1)}^{+}(\Omega-K) \subset \boldsymbol{B} \delta_{(2)}^{+}(\Omega-K)$, then $\boldsymbol{B} \boldsymbol{W}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}^{(2)}$ and $\boldsymbol{B} \boldsymbol{W}_{0}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}_{0}^{(2)}$.

Proof. Since $\mathscr{P}_{(2)} \neq\{0\}$ by assumption, there exists $p \in \mathcal{P}_{(2)}$ such that p $\geqq 1$ on a neighborhood of K. Given $v \in \delta_{(1)}^{+}(\Omega)$ such that $0 \leqq v \leqq 1$, let $w=\inf$ $(1, v+p)$. Since $v \mid \Omega-K \epsilon B \delta_{(1)}^{+}(\Omega-K)\left(B \delta_{(2)}^{+}(\Omega-K), w \mid \Omega-K \epsilon \delta_{(2)}^{+}(\Omega-K)\right.$. Also, $w(x) \equiv 1$ on a neighborhood of K. Hence $w \in \delta_{(2)}^{+}(\Omega)$. On the other hand, we see $0 \leqq w-v=\inf (1-v, p) \leqq p$. Thus condition (C) of Theorem 1 is satisfied, and hence our conclusion holds.
P. A. Loeb [3] defined that $\mathfrak{S}_{1} \geqq \mathfrak{L}_{2}$ if there exists a compact set K in Ω such that $\mathscr{S}_{1}^{+}(G) \subset \delta_{(2)}^{+}(G)$ for any open set G contained in $\Omega-K$. In this case, we have $\delta_{(1)}^{+}(\Omega-K)\left(\delta_{(2)}^{+}(\Omega-K)\right.$ (cf. [3]). Hence we have

Corollary. If $\mathfrak{S}_{1} \geqq \mathfrak{S}_{2}$ in Loeb's sense, then $\boldsymbol{B} \boldsymbol{W}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}^{(2)}$ and $\boldsymbol{B} \boldsymbol{W}_{0}^{(1)} \subset$ $\boldsymbol{B} \boldsymbol{W}_{0}^{(2)}$.

3. Applications to the solutions of $\Delta u-q u=0$

Now let Ω be a locally Euclidean space having a Green function (or a hyperbolic Riemann surface) and consider the differential equation $\Delta u-q u=$ 0 on Ω, where q is a locally Hölder continuous non-negative function on Ω. Then the solutions of this equation form a harmonic space (Ω, \mathfrak{S}_{q}) satisfying

Axioms 1~4 (see [4]). We denote by $G^{q}(x, y)$ the Green function on Ω for this equation.

If q_{1} and q_{2} are two locally Hölder continuous non-negative functions on Ω, then we obtain the following result as a consequence of Theorem 1:

Proposition. If

$$
\int G^{q_{2}}(x, y) \max \left(q_{1}(y)-q_{2}(y), 0\right) d y<+\infty
$$

for some $x \in \Omega$, then $\boldsymbol{B} \boldsymbol{W}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}^{(2)}$ and $\boldsymbol{B} \boldsymbol{W}_{0}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}_{0}^{(2)}$, where we put $\mathfrak{F}_{1}=\mathfrak{F}_{q_{1}}$ and $\mathfrak{S}_{2}=\mathfrak{S}_{q_{2}}$.

Proof. Under the condition of the proposition,

$$
p(x)=\frac{1}{c_{d}} \int G^{q_{2}}(x, y) \max \left(q_{1}(y)-q_{2}(y), 0\right) d y
$$

(see [4] for the constant $\left.c_{d}\right)$ is an \mathfrak{S}_{2}-potential, i.e., $p \in \mathscr{D}_{(2)}$. Given $v \in \mathcal{C}_{(1)}^{+}(\Omega)$ such that $0 \leqq v \leqq 1$, let $w=v+p$. Then, in the distribution sense, we have (cf. [4]) $\Delta v-q_{1} v \leqq 0$ and $\Delta p-q_{2} p=-\max \left(q_{1}-q_{2}, 0\right)$. Hence

$$
\begin{aligned}
\Delta w-q_{2} w & =\Delta v-q_{2} v+\Delta p-q_{2} p \\
& \leqq\left(q_{1}-q_{2}\right) v-\max \left(q_{1}-q_{2}, 0\right) \leqq 0 .
\end{aligned}
$$

Thus $w \in \delta_{(2)}^{+}(\Omega)$ (see [4]) and $0 \leqq w-v=p$. Therefore condition (C) of Theorem 1 is satisfied and the proposition is proved.

Corollary 1. If there exists $\alpha>0$ such that $q_{1} \leqq \alpha q_{2}$ outside a compact set in Ω, then $\boldsymbol{B} \boldsymbol{W}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}^{(2)}$ and $\boldsymbol{B} \boldsymbol{W}_{0}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}_{0}^{(2)}$.

Proof. We may prove only the case $\alpha \geqq 1$. In this case $q_{1}-q_{2} \leqq$ $(\alpha-1) q_{2}$ outside a compact set. Since

$$
\int G^{q_{2}}(x, y) q_{2}(y) d y \leqq c_{d}
$$

for all $x \in \Omega$ (cf. [4]), the condition in the above proposition is easily verified.

Corollary 2. (a) For any $q(\geqq 0), \boldsymbol{B} \boldsymbol{W} \subset \boldsymbol{B} \boldsymbol{W}^{(q)}$ and $\boldsymbol{B} \boldsymbol{W}_{0} \subset \boldsymbol{B} \boldsymbol{W}_{0}^{(q)}$; (b) If $\int G(x, y) q(y) d y<+\infty$, then $\boldsymbol{B} \boldsymbol{W}^{(q)}=\boldsymbol{B} \boldsymbol{W}$ and $\boldsymbol{B} \boldsymbol{W}_{0}^{(q)}=\boldsymbol{B} \boldsymbol{W}_{0}$. Here, $\boldsymbol{W}^{(q)}$ (resp. $\boldsymbol{W}_{0}^{(q)}$) is the class of \mathfrak{S}_{q}-Wiener functions (resp. \mathfrak{K}_{q}-Wiener potentials) and \boldsymbol{W} (resp. \boldsymbol{W}_{0}) is the class of ordinary Wiener functions (resp. Wiener potentials).

Remark. The above proposition and Corollary 1 show that our results contain the results given by Hidematu Tanaka [5]. Also, Theorem 3. 1, (i)
and Corollary 2 to Theorem 3.2 in [4] are immediate consequences of the above corollaries.

Added in proof: We can improve Lemma 2 as follows: If $\boldsymbol{B} \boldsymbol{W}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}^{(2)}$, then $\boldsymbol{B} \boldsymbol{W}_{0}^{(1)} \subset \boldsymbol{B} \boldsymbol{W}_{0}^{(2)}$ and $h_{f}^{(2)}=h_{f_{1}}^{(2)}$ for any $f \in \boldsymbol{B} \boldsymbol{W}^{(1)}$, where $f_{1}=h_{f}^{(1)}$.

References

[1] M. Brelot, Lectures on potential theory, Part IV, Tata Inst. of F. R., Bombay, 1960.
[2] C. Constantinescu and A. Cornea, Compactifications of harmonic spaces, Nagoya Math. J., 25 (1965), 1-57.
[3] P. A. Loeb, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16/2 (1966), 167-208.
[4] F-Y. Maeda, Boundary value problems for the equation $\Delta u-q u=0$ with respect to an ideal boundary, J. Sci. Hiroshima Univ., Ser. A-I, 32 (1968), 85-146.
[5] Hidematu Tanaka, On Wiener compactification of a Riemann surface associated with the equation $\Delta u=$ pu, Proc. Japan Acad., 45 (1969), 675-679.

Department of Mathematics
 Faculty of Science
 Hiroshima University

