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Introduction

For a harmonic space satisfying the axioms of M. Brelot [ΊΓ|, one can de-
fine the notion of Wiener functions as a generalization of that for a Riemann
surface or a Green space (see [2]). The class of Wiener functions may be
used to see global properties of the harmonic space in particular, in order to
show that a compactification of the base space be resolutive with respect to
the Dirichlet problem, it is enough to verify that every continuous function
on the compactification is a Wiener function (see Theorem 4.4 in [2]). Thus,
given two harmonic structures ξ>i and ξ>2 on the same base space Ω, it may
be useful to know when the inclusion BW(1)CBW(2) holds, where BWU)(i = l,
2) is the class of bounded Wiener functions with respect to φ, (ϊ = l, 2). In
this paper, we shall give a sufficient condition for the above inclusion, which
includes the conditions given in [4] and [5] for special cases.

1. Harmonic spaces and Wiener functions

In this paper, we assume that a harmonic space (ώ, Φ) =
satisfies Axioms 1, 2 and 3 of M. Brelot [1] and that Ω is non-compact. For
an open set G in Ω, the set of all superharmonic functions on G with respect
to (ifi, φ) is denoted by d§(G). The set of all potentials with respect to (i2, φ)
is denoted by §>%. In general, given a family A of (extended) real-valued func-
tions, we use the notation A+ = {fe A; /;>0} and BA = {fe A f: bounded}.

We furthermore assume that (i2, ξ>) satisfies

Axiom A. l e d * C 0 ) and ^

Remark that under Axiom 4 the following minimum principle holds (see \ΎJ):

If v e cϋ%(Ω) and if for any ε>0 there exists a compact set K in Ω such
that v(x)>— ε on Ω—K, then v^>0.

Given an extended real-valued function / on Ω, we consider the classes

πό /M ί ^ o / n Λ there exists a compact set Kυ in Ω\
C»β(/) = [υ c ό^Ω) h t h t ^ f Ω K \

and
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In case Qft§(/) (resp. QS§(/)) is non-empty, we define

Φ (resp. hf =

It is known (cf. [2]) that hf (resp. hf) e §(#) if it exists. Remark that if / is
bounded, then both %>(/) and %>(/) are non-empty and inf Ωf^hf^hf^
sup^/ (by Axiom 4 and the minimum principle).

In case QS§(/) and Q#§(/) are both non-empty and hf = hf, we say that
/ is ξ>-harmonizable (cf. [2]) and denote hf — hf by hf. Obviously, any func-
tion in c$$(.S) is φ-harmonizable and if p e §>$, then hf = 0.

The set of all continuous §-harmonizable functions (called ξ>-Wiener
functions) will be denoted by JF§. We define (the class of §-Wiener poten-
tials)

It is known ([ZJ) that W^ and W$ are real linear spaces; if/, ge W^ and λ,
β are reals, then h$f+μg = λhf + μh®. Also, constant functions belong to

We can easily prove the following lemma:

LEMMA 1. If f € JF§ and g is a bounded function on Ω, then

and hf+g

2. Comparison of the classes of Wiener functions

Now we consider two harmonic structures φi and φ2 on the same space
Ω (non-compact). We assume that both (Ω, £>x) and (J2, φ2) satisfy Axioms
1--4. For simplicity, we replace the index ξ>, by (ί), e.g., we write
for d§1(G), Φ ( 2 ) (/) for Φ § 2 ( / ) , A}̂  for hf\ etc.

LEMMA 2. Suppose BW(1)CBW(2\ Then, BW{

0

1]CBW{

0

2) if and only if
hf = hfλ for any f e BW(1\ where fι = h{

f

ι).

PROOF. The "if" part is obvious. Suppose now that BW{

0

1] CBW{

0

2) and let
feBW(1\ Then f-fx e BW{

o

l) CBW{

0

2). Hence &}?!/, = 0, so that hf)=hf^.

THEOREM 1. Suppose the following condition (C) is satisfied:

(C) There exists p e φ(2) such that for any v e d(

t

1)(i2) with 0 <; v ̂  1 there
is w e d~[2)(Ω) with the property that \v—w\ <^p on Ω.

Then BW{l)CBW{2) and BW$] CBW{2\
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PROOF. By Lemma 2, it is enough to show that if f e W{1) and 0<^/<j:
then fa W{2) and h{

f

2)=h{

f

2

1\ where fι=h{

f

v. Given such an /, let v e Φ (

and 0<Ξi;<^l. By condition (C), there exists w e cϋΐ2)(Ω) such that \υ — w\
Since w+p e cϋ(2)(Ω) and w+p^>v^>f outside a compact set in Ω, we have
w+p e 0S(2)(/). Hence w-\-p^hf\ and hence v + 2p^w+p'^>hf). Taking the
infimum of υ e O9(i)(/), we have

(1)

By applying the above result to the function 1—/, we have
Λ^/β By virtue of Lemma 1, this inequality can be written as

(2)

(1) and (2) imply

Since 1 — h[2) e ^ ( 2 ) , it follows that / is φ2-harmonizable and A}2)=A}2

1

). Hence
we have the theorem.

The following theorem is an easy consequence of the above theorem:

THEOREM 2. // there exists a compact set K (may be empty) such that
>-K)CBβΐ2)(Ω-K), then BW{l)CBW{2) and BW{

0

ι)CBW{2).

PROOF. Since ^ ^ { O } by assumption, there exists p e ^>(2) such that p
ona neighborhood of K. Given v e dtv(Ω) such that 0<^<=l, let w = inί

(1, v+p). Since υ\Ω-KeBόtl){Ω-K)CBόt2){Ω-K),w\Ω-Keόt2){Ω-K).
Also, w(x) = l on a neighborhood of K. Hence w e d^2)(ώ). On the other hand,
we see 0<,w — ?; = inf (l — v9p)<Lp. Thus condition (C) of Theorem 1 is satis-
fied, and hence our conclusion holds.

P. A. Loeb [3] defined that § i ^ φ 2 if there exists a compact set K in Ω
such that Φί(G)Cd("2)(G) for any open set G contained in Ω—K. In this case,
we have d ^ ^ - ^ C d ^ ^ - I ) (cf. [3]). Hence we have

COROLLARY. // φ i ^ ξ ) 2 in LoeVs sense, then BW(1)CBW{2) and BW{

o

υ

3. Applications to the solutions of Ju — qu = 0

Now let Ω be a locally Euclidean space having a Green function (or a
hyperbolic Riemann surface) and consider the differential equation Ju — qu =
0 on i2, where q is a locally Holder continuous non-negative function on Ω.
Then the solutions of this equation form a harmonic space (i3, tQq) satisfying
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Axioms 1^-4 (see DQ). We denote by G9(x, y) the Green function on Ω for
this equation.

If qι and q2 are two locally Holder continuous non-negative functions on
J2, then we obtain the following result as a consequence of Theorem 1:

PROPOSITION. / /

(*, y) max (qι(y)-q2(y\ 0)

for some x e Ω, then BW{1)CBW{2) and BW{

Q

1] CBW{

0

2\ where we put φi =

and φ 2 = Φ ί 2.

PROOF. Under the condition of the proposition,

J ) max ^ o o
(see [4] for the constant cd) is an φ2-potential, i.e., p e fP(2). Given υ e cϋΐv(Ω)
such that Q<=v ^ 1 , let w = v-hp. Then, in the distribution sense, we have
(cf. [4])Δv — qiv<:0 and Δp — q2p= — max(^i~q 2, 0). Hence

Δw — q2w = Δv — q2v + Δp — q2p

q2)v—max(qι — q2, 0)<Ξ0.

Thus w e Sΐ2)(Ω) (see [4]) and 0^w-v=p. Therefore condition (C) of Theo-
rem 1 is satisfied and the proposition is proved.

COROLLARY 1. // there exists a>0 such that qι<,otq2 outside a compact
set in Ω, then BW{l)CBW{2) and BW{

0

1] CBW{

0

2).

PROOF. We may prove only the case <x7>l. In this case qι — q2<^
(a — l)q2 outside a compact set. Since

e, y)q2(y)dy<,cd

for all x e Ω (cf. [4]), the condition in the above proposition is easily veri-
fied.

COROLLARY 2. (a) For any ?(;><)), BWCBW^ and BWQCBW^ (b) //
iG(x, y)q(y)dy< + oo, then BW(q)=BWand BWtf]=BW0. Here, W(q) (resp.
W{

o

q)) is the class of ξ>5-Wiener functions (resp. ξvWiener potentials) and W
(resp. WQ) is the class of ordinary Wiener functions (resp. Wiener potentials).

REMARK. The above proposition and Corollary 1 show that our results
contain the results given by Hidematu Tanaka [ΊΓ]. Also, Theorem 3. 1, (i)
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and Corollary 2 to Theorem 3.2 in [4] are immediate consequences of the
above corollaries.

Added in proof: We can improve Lemma 2 as follows: If BW(1)CBW(2\
then BW{

0

1] CBW{

0

2) and hf=hf^ for any feBW(ι\ where fi = hf\
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