
J . Sci. HIROSHIMA UNIV. SER. A-I
34-(1970), 59-68

On KD-null Sets in N-dimensional Euclidean Space

Hiromichi YAMAMOTO

(Received February 24, 1970)

Introduction

Ahlfors and Beurling [1] introduced the notion of a null set of class ND

in the complex plane: A compact set E is a null set of class ND if and only
if every analytic function in D(Ω~E) can be extended to a function in D(Ω)
for a domain Ω containing E, where D(Ω) is the class of single-valued analytic
functions in Ω with finite Dίrichlet integrals. They characterized a null set
of class ND by means of the span, the extremal length and the others. On
the other hand, the class KD, which consists of all harmonic functions u
with finite Dirichlet integrals such that *du is semiexact, was considered on
Riemann surfaces and various characterizations of the class OKΏ were given
by many authors see, for example, Rodin [ΊΓ], Royden [7], Sario [βΓ\. We
can consider the class KD also on an iV-dimensional euclidean space RN (N^>
3) and define KD-null sets as a compact set E such that any function in
KD(Ω — E) can be extended to a function in KD{Ω) for a bounded domain Ω
containing E.

In the present paper, we shall prove some theorems on KD-null sets
analogous to those on null sets of class ND. In §3, we observe some relations
between KD-nxύl set and the span, which was introduced by Rodin and Sario
Π6D in Riemannian manifolds. Moreover we show that the JV-dimensional
Lebesgue measure of a iCD-null set is equal to zero. In §4, we shall give a
necessary condition for a set to be KD-nxxll in terms of the extremal length.

The author is indebted to Professor M. Ohtsuka for his advice and en-
couragement.

§ 1. Preliminaries

W e s h a l l d e n o t e b y # = ( # i , X2, ,XN) & p o i n t i n R N , a n d s e t \χ\ =
\ \-χ2

N- By an unbounded domain in RN we shall mean a domain
which is equal to the complement of a compact set. A harmonic function u
defined in an unbounded domain is called regular at infinity if lim u(x) = 0.

|Z|-»oo

Consider a C^-surface r which divides RN into a bounded domain and an un-

bounded domain. When we consider the normal derivative -̂ — at a point of

r, the normal is drawn in the direction of the unbounded domain.
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Let G be an open set. Denote by {r} G be the class of surfaces r in G
each of which is a compact C^-surface and divides RN into a bounded domain
and an unbounded domain. Let KD(G) be the class of harmonic functions u
defined in G satisfying the following conditions:

(1) the Dirichlet integral DG(u) = \ |grad u\2dV is finite, where dV is
J G

the volume element,

(2) \ ~^dS=0 for all r in {r}G, where dS is the surface element on r,

(3) in the case that G contains an unbounded domain, u is regular at
infinity.

Let E be a compact set in RN and Ω be a bounded domain which contains
E. If every harmonic function u in KD(Ω-E) is continued to a harmonic
function belonging to KD(Ω), then E is called a KD-null set with respect to
Ω. The class of KD-nn\l sets with respect to Ω is denoted by NχD.

§2. Properties of KD-nvdl sets

Let Ω be a bounded domain which contains a compact set E. Generally
RN—E( = EC) is an open set which consists of an unbounded domain and a
bounded open set. First we shall show

THEOREM 1. If Ec contains a bounded component, then E does not belong
toNΩ

KD.

PROOF. Suppose Ec contains a bounded component D. Take two mutu-
ally disjoint closed balls e0, eλ in D with the same radius. Since the New-
tonian capacity of e{ (ί = 0, 1) is positive, there exists an equilibrium mass-
distribution of unit mass on each of e0 and eγ. Let β be the measure which
consists of the equilibrium mass-distributions on e0 and βi, and set

U»(χ) = \ dM(γ) - f dβ(γ)

Then Uμ(x) is a harmonic function with finite Dirichlet integral in Ω —
Using Green's formula, we have

^ d S = 0 for all r in {r}Λ_s.
o

Therefore Uμ belongs to KD(Ω-D). Let Uμ equal Uμ in Ω~D and 0 in D.
Obviously ϋμ belongs to KD(Ω-E) but cannot be continued to a function in
KD(Ω). Accordingly we conclude E ί N%Ό.

By virtue of Theorem 1 we shall be concerned with the compact set E
such that Ec is an unbounded domain throughout the rest of this paper.
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THEOREM 2. A compact set E is a KD-null set with respect to Ω if and
only if KD(EC) contains only the constant function 0.

PROOF. First we assume Ee NΩ

KD and let u be a harmonic function in
KD(EC). Let h be the restriction oΐ u to Ω-E. Obviously he KD(Ω~E).
By assumption there exists a harmonic function h in KD(Ω) such that h = h
in Ω — E. Hence u is continued to a harmonic function in RN which is regu-
lar at infinity. Therefore u is equal to the constant 0.

Conversely assume that KD(EC) = {0}. Now we take three domains Ωo,
Ω* and Ωx such that EC ^o C ̂ o C £* C £ * C Ωi C Si C Ω hold and each of dΩ0,
dΩ* and dΩλ consists of one compact (^-surface. For any u in KD(Ω — E),
we set

Z . / Λ 1 { f 1 du 9

where r denotes the distance from a point Λ; to the variable on dΩ{ and GN is
the surface area of the unit sphere in RN. Then hQ(x) is harmonic in RN—
Ωo and regular at infinity and hι(x) is harmonic in Ωx. When % lies in the
domain Ωι — Ω0, the equality

holds. Let h equal Ao(#) in RN—ΩQ and hx{x) — u(χ) in Ωo — E. It is easy to
see that Λ is harmonic in RN — E and regular at infinity. In Ω* — E both Λi
and u have finite Dirichlet integrals so that h = hι — u has finite Dirichlet
integral there. On the other hand, Green's formula gives

dh0

dn
dS<

It follows that

Take any r in {r}#c such that the interior of r contains non-empty compact
subset of E. Since r is homologous in Ec to some r* consisting of a finite
number of elements in {V}ΩQ-E, we have

rdπ, )τ*dn

In view of Green's formula and the fact u e KD(Ω-E), we have

dh * o f dhi JO Γ δ>w j o AΓ dh JO ( dhi JC Γ
\ -T̂ — dS=\ - dS—\

dn
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From these facts we conclude Ke KD(EC). Therefore we have S = 0 by as-
sumption. It follows that hλ = u in Ωo — E. On account of harmonicity of hi
in Ωτ, u can be continued to a harmonic function in Ω. Since u is arbitrary,
we have E e NΩ

KD.

Theorem 2 implies the following corollary.

COROLLARY 1. The property E e N%D does not depend on the choice of Ω.
We shall omit the suffix Ω in the notation N%D throughout the rest of

this paper.

§3. Principal functions

Let E be a compact set such that Ec is a domain. Let {Ωn}n=ι be an ex-
haustion of Ec with the following properties:

(1) Ωn is a bounded subdomain of E%
(2) dΩn consists of a finite number of C^-surfaces, denoted by dΩ{, j —

(3) ^ C £ * + i ( r c = l, 2,...
n = ι

Take any distinct two points α, b in Ec and the balls Ua, Ub centered at α, b
with disjoint closures in Ec. We may assume that Ωn contains Ua\jUb for
all n. For a function g and a set U, we denote by g\u the restriction of g
to t/. There exist the principal functions Pin (ί = 0, 1) with respect to Ωn

with the following properties ([6]):
(1) Pin is harmonic in Ωn — ({a}

where At )W and / ί)W are harmonic in Ua and C/b respectively and yi)W(6) = 0,

(3) - ^ - = 0 o n ^ ί ,

Pi,«la< = α (constant) and ί dξ±>LdS=0, for y = l,...,y(n).

On letting w->oo, we can see that the following limits exist:

P, =lim P ( > ) A, = lim Λ(>, /, = l im/ ( > (ί = 0, 1).
n->°o n-^oo n-Λoo

Here the convergence is uniform on every compact subset of Ec and these
limit functions do not depend on the choice of exhaustion; see [IT).
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Let {Ωn}n=ι be an approximation of Ec towards E such that
(1) Ωn is an unbounded subdomain of E\
(2) dΩn consists of a finite number of compact C^-surfaces such that

the interior of each surface of dΩn contains at least one point of E,

(3) finCΩn+ι(n = l,2,...)and\JΩn = Ec.

Let g and u be harmonic functions which are defined in UE — E and have
finite Dirichlet integrals on UE — E, where UE is an open neighborhood of E.
We may assume that UE contains dΩn for all n. Then the limit of

g^r-dS exists and does not depend on the choice of an approximation
n On

{Ωn}. Therefore we use the symbolic expression

Oil i r» T f Oil
-^-dS =hm\ _ g^-
0n n-+°° JdΩn on

For the purpose of observing a relation between KD-null sets and the prin-
cipal functions we shall give the following lemma and introduce the notion
of span.

LEMMA 1. The following properties hold regarding gand Pi(ί = Q, 1):

(2) if \ ^.~~dS=0 is satisfied for every component dΩj

n of any dΩn,
J dΩn 071

then
J dE an

For the proof, see [β~]. From this lemma we can derive

Let u be a harmonic function defined in Ec such that

(1) W « ) < e o , (2) u(δ) = 0,

(3) there exists a constant Cu such that u + Cu is regular at infinity,

(4) [ ^
)τ on

=0 for all r in
on

Using Green's formula and Lemma 1, we have the equality

(3.1) DEc(u - Po + Pi) = DEc(u) -2u(a) + A0(α) - Ai(α).
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We set S(a, b)=ho(a) — hι(ά) and call it the span of Ec with respect to (α, b)
(cf. [6]). If we set u = 0 in (3.1), then we obtain S(a,b) = DEc(P0-P1).
From this we have 0<;S(α, b)<°°. Accordingly the property S(a, ό) = 0
means that P0 — Pι is a constant.

THEOREM 3. A compact set E belongs to the class NKD if and only if the
span S(a, b) of Ec is equal to zero for all couples (α, b) of different points in
Ec.

PROOF. Assume that there exist two different points α, b such that S(α,
b)ΦO. Then Po — Pi is a non-constant harmonic function in Ec with finite
Dirichlet integral. By using the properties of Po, Pi and the maximum
principle, we can conclude that P0 — Pι is a bounded harmonic function out-
side a sufficently large sphere. Since any bounded harmonic function de-
fined outside a compact set is expressed as the sum of a constant and a
harmonic function which is regular at infinity, there exists a constant C
such that P0 — Pι — C is regular at infinity.

Using Green's formula and the boundary properties of P, (ΐ = 0, 1), we
have that for all r in {r} E^

dSo.
an

Accordingly P0 — Pι belongs to the class KD(EC). This shows that E f NKD-

Conversely assume that 5(α, ό) = 0 for all points α, b in Ec. Let u be a
harmonic function in KD(EC). By making use of Green's formula and Lem-
ma 1, we have

dE UTϊ

Since S(a, δ) = 0 implies Po — Px = const., it follows that u(ά) = u(b). Letting
a vary in Ec—{b}, we have u = const, in Ec. Since u is regular at infinity,
we have ^ = 0. By Theorem 2 we conclude that Ee NKD.

REMARK. From the latter half of the above proof we can derive E e NKD

under the condition that 5(α, b) = 0 for any point a in an open set G in Ec

and some b in Ec.

Let us observe a relation between V(E), the iV-dimensional Lebesgue
measure of E, and E e iV^ .̂

LEMMA 2. // 5(α, b) = 0 for two distinct points a, b, then V(E) — 0.
PROOF. Set

σN\\x-a\N-2 \x-b\N~2
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Using Lemma 1 we have

Since P is harmonic on E, from the definition of Dirichlet integral that DE(P)
= inf DG(P), where G runs over all open sets containing E, it follows that

G

dP
P-~—dS=DE(P). By the assumption that S(α, ό) = 0 we have that

so that DE(P) = Q. On the other hand, since the iV-dimensional Lebesgue

measure of the set <x y — = 0, ΐ = l,.. ,JVJ equals zero, we conclude

By Lemma 2 and Theorem 3, we have the following corollary.

COROLLARY 2. If Ee NKD, then V(E) = 0.

The converse of Corollary 2 is not always true. In fact, let E be a com-
pact part of a hyperplane and Ω be a bounded domain containing E. We set

where e0 and ex are disjoint compact (iV— l)-dimensional balls with the same
radius on E and β is the measure which consists of the equilibrium mass-
distributions on eι (ί = 0, 1). In the same way as the proof of Theorem 1, we
see that Uμ belongs to KD(Ω-E) but does not belong to KD(Ω). Therefore
E ί NKD In this example F(E) = 0.

Now we shall consider another class of harmonic functions and compare
this class with the

Let HD(Ω) be the class of harmonic functions defined in a bounded do-
main Ω with finite Dirichlet integral. The expression E 6 NHD is defined in
the sajne way as NKD> It is well known that EeNHD if and only if the
Newtonian capacity C(E) of E is equal to zero see [2J. We have obviously
the inclusion HD(Ω-E)^KD(Ω-E), which implies NHDCNKD.

We take a compact set E in Ω such that V(E) = 0 and C(E)>0. Let u
be the equilibrium mass-distribution of unit mass on E and consider the
potential

N-2

E\χ-y\
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It is easy to show that this function belongs to HD(Ω-E) but does not be-
long to KD(Ω - E). Accordingly the inclusion HD(Ω - £) D KD(Ω -E) is pro-
per. Sario [9] showed a relation between NHD and the span for the identity
partition of E. Thus our Theorem 3 gives a result corresponding to Sario's.

§4. Extremal length

Let γ denote a locally rectifiable curve in RN and Γ be a family of such
curves. A non-negative Borel measurable function p is called admissible in

association with Γ if \ pds^>l for each γ e Γ. The module M(Γ) is defined

by inf \p2dV, where p is admissible in association with Γ, and the extremal
p J

length λ(Γ) is defined by nj/p\ The following properties are known:

(4.1) if Γ C Γ, then M(Γ) ^ M(Γ\

(4.2) if Γ = Γ1\jΓ2 and Λf(Γ2) = 0, then

A property will be said to hold almost everywhere ( = a.e.) on Γ if the ex-
tremal length of the subfamily of exceptional curves is infinite.

Let Ω be a bounded domain in R^ which contains a compact set E and Γ
be the family of locally rectifiable curves γ in Ω each of which starts from a
point χΎ of Ω and tends to dΩ. We shall denote by BLD(Ω) the class of
Borel measurable functions / defined in Ω which are absolutely continuous
along a. e. γ e Γ and which have finite Dirichlet integrals. We shall write
f(γ) for the limit, in case it exists, as the variable starts from %Ί and pro-
ceeds towards dΩ along γ. We know that for fe BLD(Ω), f(γ) exists and is
finite for a.e. γ e f; see

Let α0, αi be non-empty compact subsets of dΩ such that aoΓ\aι — 0 and
fi be the subfamily of f such that each curve of /\ tends to α, (Ϊ = 0, 1).
We shall denote by Q)(Ω) the class of functions belonging to BLD(Ω) such that
/(r) = 0 for a.e. γ e f0 and /(r) = l for a.e. γefx. Let Γ(resp. Γ) be the
family of locally rectifiable curves in Ω (resp. Ω — E) connecting a0 and ad.

The following lemma is important.

LEMMA 3. (Ohtsuka) Set

where f runs over all elements of 2) (Ω — E). Then there exists a unique har-
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monic function f0 e Q) (Ω — E) such that C(a0, aι) = DΩ_E(fo)- Moreover we
have the equality C(a0, aι) = M(Γr).

PROOF. The proof of the first half is the same as that in [4Γ] when we
replace a Riemann surface by Ω — E. Regarding the latter half, we sketch
the proof given by Ohtsuka in his lectures: Extremal length in 3-space.
First, note that

<fo:>|\ dfo\=l fora.e. γeΓ.

Accordingly we have M(ΓQ<;C(αo, ax) by property (4.2). On the other

hand, for any ε, 0<ε<-<^, we can take a C°°-ίunction β(x) in Ω — E such that

0</?(*)<dist (#, d(Ω-E)) and | grad β\<e hold. We denote by U(x, r) the
closed ball with center x and radius r. Take any p admissible in association
with Γ. Let

in Ω — E and extend it by 0 on the rest of RN. This function is continuous
in Ω — E. We can see that (1 + ε)/ is admissible in association with Γ' and
obtain the inequality

/ ( )\ Q2dV.
2-EJ JΩ-E

For this reason we may restrict admissible p to be continuous in Ω — E in
defining M(Γf). Suppose M{Γf)<oo. For a continuous function p admissible
in association with Γ\ we set

g(x)=inf \ pds in Ω — E,
Ύ J7

where γ is a curve in Ω — E starting from x e Ω — E and terminating at a
point of a0. Then we can see that g(γ) = 0 for a.e. γ c f0 and g(r)^X for
a.e. γ e fx. If the segment ~χ~x' is included in Ω — E, then

\g(x)-g(x')\<\_pds.
J xxf

From this inequality we infer that g is absolutely continuous along every
curve in Ω — E. Moreover, by Rademacher-Stepanov's theorem we see that
grad g exists a.e. in Ω — E, and that |grad g\<^p a.e. in Ω — E. Accordingly
min (g , 1) e Q)(Ω — E), and hence

Ω-E
min (g, l)\2dV<,[ p2dV.

JΩ-E
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This implies that C(α0, ccι)<LM(Γ).

Next, we shall show a necessary condition for E c NKD-

THEOREM 4. If Ez NKD, then M(Γ) = M(Γr) for every Ω, <x0 and <x\.

PROOF. In view of M(Γf)<,M(Γ), we may assume M(Γr)<°o. Let fQ

be the extremal function in Lemma 3 such that DΩ_E(f0) = M(Γ/). Take an
open set G such that ECGQGCΩ and dG consists of a finite number of com-
pact C^-surfaces. Since f0 is the harmonic function with the smallest Diri-
chlet integral in the class of harmonic functions defined in G — E and having

C df
boundary values f0 on dG, we have \ -~-^-dS=0 for all r in {T}G-E; cf. [βj,

J τ (jTh

Satz 15.1. Since any r in {r}Ω-E is homologous to a finite number of sur-

faces of {r}G-£, we have \ -^°-dS=0 for any r in {τ}Ω-E. Therefore f0 e
J τ (jTi

KD(Ω-E). Hence there exists a harmonic function f0 belonging to KD(Ω)
such that /o=/o holds in Ω — E. It follows that

Igrad fo\ds^ dfo for a.e. γ e Γ.

By property (4.2) this shows that M(Γ)<LDΩ(fo). Accordingly we have

By Corollary 2 the equality DΩ(f0) = DΩ_E(f0) is true.
These imply M(Γ) = M(Γ).

It is open whether the converse of Theorem 4 is true or not.
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