On KD-null Sets in N-dimensional Euclidean Space

Hiromichi YAMAMOTO (Received February 24, 1970)

Introduction

Ahlfors and Beurling [1] introduced the notion of a null set of class N_D in the complex plane: A compact set E is a null set of class N_D if and only if every analytic function in $D(\mathcal{Q}-E)$ can be extended to a function in $D(\mathcal{Q})$ for a domain \mathcal{Q} containing E, where $D(\mathcal{Q})$ is the class of single-valued analytic functions in \mathcal{Q} with finite Dirichlet integrals. They characterized a null set of class N_D by means of the span, the extremal length and the others. On the other hand, the class KD, which consists of all harmonic functions uwith finite Dirichlet integrals such that *du is semiexact, was considered on Riemann surfaces and various characterizations of the class O_{KD} were given by many authors; see, for example, Rodin [5], Royden [7], Sario [8]. We can consider the class KD also on an N-dimensional euclidean space \mathbb{R}^N ($N \geq$ 3) and define KD-null sets as a compact set E such that any function in $KD(\mathcal{Q}-E)$ can be extended to a function in $KD(\mathcal{Q})$ for a bounded domain \mathcal{Q} containing E.

In the present paper, we shall prove some theorems on KD-null sets analogous to those on null sets of class N_D . In §3, we observe some relations between KD-null set and the span, which was introduced by Rodin and Sario [6] in Riemannian manifolds. Moreover we show that the N-dimensional Lebesgue measure of a KD-null set is equal to zero. In §4, we shall give a necessary condition for a set to be KD-null in terms of the extremal length.

The author is indebted to Professor M. Ohtsuka for his advice and encouragement.

§1. Preliminaries

We shall denote by $x = (x_1, x_2, ..., x_N)$ a point in \mathbb{R}^N , and set $|x| = \sqrt{x_1^2 + x_2^2 + \cdots + x_N^2}$. By an unbounded domain in \mathbb{R}^N we shall mean a domain which is equal to the complement of a compact set. A harmonic function u defined in an unbounded domain is called regular at infinity if $\lim_{|x|\to\infty} u(x) = 0$. Consider a C^1 -surface τ which divides \mathbb{R}^N into a bounded domain and an unbounded domain. When we consider the normal derivative $\frac{\partial}{\partial n}$ at a point of τ , the normal is drawn in the direction of the unbounded domain.

Let G be an open set. Denote by $\{\tau\}_G$ be the class of surfaces τ in G each of which is a compact C^1 -surface and divides \mathbb{R}^N into a bounded domain and an unbounded domain. Let KD(G) be the class of harmonic functions u defined in G satisfying the following conditions:

(1) the Dirichlet integral $D_G(u) = \int_G |\operatorname{grad} u|^2 dV$ is finite, where dV is the volume element,

(2) $\int_{\tau} \frac{\partial u}{\partial n} dS = 0$ for all τ in $\{\tau\}_{G}$, where dS is the surface element on τ ,

(3) in the case that G contains an unbounded domain, u is regular at infinity.

Let *E* be a compact set in \mathbb{R}^N and \mathcal{Q} be a bounded domain which contains *E*. If every harmonic function *u* in $KD(\mathcal{Q}-E)$ is continued to a harmonic function belonging to $KD(\mathcal{Q})$, then *E* is called a *KD*-null set with respect to \mathcal{Q} . The class of *KD*-null sets with respect to \mathcal{Q} is denoted by $N_{KD}^{\mathcal{Q}}$.

§2. Properties of KD-null sets

Let Ω be a bounded domain which contains a compact set *E*. Generally $R^N - E(=E^c)$ is an open set which consists of an unbounded domain and a bounded open set. First we shall show

THEOREM 1. If E^c contains a bounded component, then E does not belong to N_{KD}^{g} .

PROOF. Suppose E^c contains a bounded component D. Take two mutually disjoint closed balls e_0 , e_1 in D with the same radius. Since the Newtonian capacity of e_i (i=0, 1) is positive, there exists an equilibrium mass-distribution of unit mass on each of e_0 and e_1 . Let μ be the measure which consists of the equilibrium mass-distributions on e_0 and e_1 , and set

$$U^{\mu}(x) = \int_{e_0} \frac{d\mu(y)}{|x-y|^{N-2}} - \int_{e_1} \frac{d\mu(y)}{|x-y|^{N-2}}$$

Then $U^{\mu}(x)$ is a harmonic function with finite Dirichlet integral in $\mathcal{Q} - e_0 \cup e_1$. Using Green's formula, we have

$$\int_{\tau} \frac{\partial U^{\mu}}{\partial n} dS = 0 \qquad \qquad \text{for all } \tau \text{ in } \{\tau\}_{\mathcal{Q}=\overline{D}}.$$

Therefore U^{μ} belongs to $KD(\mathcal{Q}-\overline{D})$. Let \tilde{U}^{μ} equal U^{μ} in $\mathcal{Q}-\overline{D}$ and 0 in D. Obviously \tilde{U}^{μ} belongs to $KD(\mathcal{Q}-E)$ but cannot be continued to a function in $KD(\mathcal{Q})$. Accordingly we conclude $E \in N_{KD}^{\mathcal{Q}}$.

By virtue of Theorem 1 we shall be concerned with the compact set E such that E^c is an unbounded domain throughout the rest of this paper.

THEOREM 2. A compact set E is a KD-null set with respect to Ω if and only if $KD(E^c)$ contains only the constant function 0.

PROOF. First we assume $E \in N_{KD}^{\varrho}$ and let u be a harmonic function in $KD(E^c)$. Let h be the restriction of u to $\mathcal{Q}-E$. Obviously $h \in KD(\mathcal{Q}-E)$. By assumption there exists a harmonic function \hat{h} in $KD(\mathcal{Q})$ such that $h = \hat{h}$ in $\mathcal{Q}-E$. Hence u is continued to a harmonic function in \mathbb{R}^N which is regular at infinity. Therefore u is equal to the constant 0.

Conversely assume that $KD(E^c) = \{0\}$. Now we take three domains \mathcal{Q}_0 , \mathcal{Q}^* and \mathcal{Q}_1 such that $E \subset \mathcal{Q}_0 \subset \overline{\mathcal{Q}}_0 \subset \mathcal{Q}^* \subset \overline{\mathcal{Q}}^* \subset \mathcal{Q}_1 \subset \overline{\mathcal{Q}}_1 \subset \mathcal{Q}$ hold and each of $\partial \mathcal{Q}_0$, $\partial \mathcal{Q}^*$ and $\partial \mathcal{Q}_1$ consists of one compact C^1 -surface. For any u in $KD(\mathcal{Q}-E)$, we set

$$h_i(x) = \frac{1}{\sigma_N} \int_{\partial \mathcal{B}_i} \left(\frac{1}{r^{N-2}} \frac{\partial u}{\partial n} - u \frac{\partial}{\partial n} \left(\frac{1}{r^{N-2}} \right) \right) dS, \qquad (i=0,\,1),$$

where r denotes the distance from a point x to the variable on $\partial \mathcal{Q}_i$ and σ_N is the surface area of the unit sphere in \mathbb{R}^N . Then $h_0(x)$ is harmonic in $\mathbb{R}^N - \overline{\mathcal{Q}}_0$ and regular at infinity and $h_1(x)$ is harmonic in \mathcal{Q}_1 . When x lies in the domain $\mathcal{Q}_1 - \overline{\mathcal{Q}}_0$, the equality

$$u(x) = h_1(x) - h_0(x)$$

holds. Let \tilde{h} equal $h_0(x)$ in $\mathbb{R}^N - \overline{\mathcal{Q}}_0$ and $h_1(x) - u(x)$ in $\overline{\mathcal{Q}}_0 - E$. It is easy to see that \tilde{h} is harmonic in $\mathbb{R}^N - E$ and regular at infinity. In $\mathcal{Q}^* - E$ both h_1 and u have finite Dirichlet integrals so that $\tilde{h} = h_1 - u$ has finite Dirichlet integral there. On the other hand, Green's formula gives

$$D_{\mathbb{R}^N-\overline{g}^*}(h_0) \leq \int_{\partial \overline{g}^*} |h_0| \left| \frac{\partial h_0}{\partial n} \right| dS < \infty.$$

It follows that

$$D_{R^{N}-E}(\tilde{h}) = D_{\mathcal{Q}^{*}-E}(h_{1}-u) + D_{R^{N}-\overline{\mathcal{Q}}^{*}}(h_{0}) < \infty$$

Take any τ in $\{\tau\}_{E^c}$ such that the interior of τ contains non-empty compact subset of *E*. Since τ is homologous in E^c to some τ^* consisting of a finite number of elements in $\{\tau\}_{\mathcal{Q}_n-E}$, we have

$$\int_{\tau}^{t} \frac{\partial \tilde{h}}{\partial n} dS = \int_{\tau} \frac{\partial \tilde{h}}{\partial n} dS$$

In view of Green's formula and the fact $u \in KD(\mathcal{Q} - E)$, we have

$$\int_{\tau^*} \frac{\partial \tilde{h}}{\partial n} dS = \int_{\tau^*} \frac{\partial h_1}{\partial n} dS - \int_{\tau^*} \frac{\partial u}{\partial n} dS = 0.$$

From these facts we conclude $\tilde{h} \in KD(E^c)$. Therefore we have $\tilde{h}=0$ by assumption. It follows that $h_1=u$ in \mathcal{Q}_0-E . On account of harmonicity of h_1 in \mathcal{Q}_1 , u can be continued to a harmonic function in \mathcal{Q} . Since u is arbitrary, we have $E \in N_{KD}^g$.

Theorem 2 implies the following corollary.

COROLLARY 1. The property $E \in N_{KD}^{\varrho}$ does not depend on the choice of Ω .

We shall omit the suffix Ω in the notation N_{KD}^{g} throughout the rest of this paper.

§3. Principal functions

Let *E* be a compact set such that E^c is a domain. Let $\{Q_n\}_{n=1}^{\infty}$ be an exhaustion of E^c with the following properties:

(1) Ω_n is a bounded subdomain of E^c ,

(2) $\partial \mathcal{Q}_n$ consists of a finite number of C^1 -surfaces, denoted by $\partial \mathcal{Q}_n^j$, $j = 1, \dots, j(n)$,

(3)
$$\bar{\mathcal{Q}}_n \subset \mathcal{Q}_{n+1}(n=1, 2, \cdots) \text{ and } \bigcup_{n=1}^{\infty} \mathcal{Q}_n = E^c.$$

Take any distinct two points a, b in E^c and the balls U_a , U_b centered at a, b with disjoint closures in E^c . We may assume that \mathcal{Q}_n contains $\overline{U_a \cup U_b}$ for all n. For a function g and a set U, we denote by $g|_U$ the restriction of g to U. There exist the principal functions $P_{i,n}$ (i=0, 1) with respect to \mathcal{Q}_n with the following properties ([6]):

(1) $P_{i,n}$ is harmonic in $\Omega_n - (\{a\} \cup \{b\}),$

(2)
$$P_{i,n}|_{U_a} = \frac{1}{\sigma_N |x-a|^{N-2}} + h_{i,n},$$

 $P_{i,n}|_{U_b} = \frac{-1}{\sigma_N |x-b|^{N-2}} + f_{i,n},$

where $h_{i,n}$ and $f_{i,n}$ are harmonic in U_a and U_b respectively and $f_{i,n}(b)=0$,

(3)
$$\frac{\partial P_{0,n}}{\partial n} = 0$$
 on $\partial \mathcal{Q}_n^j$

$$P_{1,n}|_{\partial \mathcal{L}_n^j} = C_n^j \text{ (constant) and } \int_{\partial \mathcal{L}_n^j} \frac{\partial P_{1,n}}{\partial n} dS = 0, \quad \text{for } j = 1, \cdots, j(n).$$

On letting $n \rightarrow \infty$, we can see that the following limits exist:

$$P_i = \lim_{n \to \infty} P_{i,n}, \qquad h_i = \lim_{n \to \infty} h_{i,n}, \qquad f_i = \lim_{n \to \infty} f_{i,n} \quad (i = 0, 1).$$

Here the convergence is uniform on every compact subset of E^c and these limit functions do not depend on the choice of exhaustion; see [6].

Let $\{\tilde{\mathcal{Q}}_n\}_{n=1}^{\infty}$ be an approximation of E^c towards E such that

(1) $\tilde{\mathcal{Q}}_n$ is an unbounded subdomain of E^c ,

(2) $\partial \tilde{\mathcal{Q}}_n$ consists of a finite number of compact C^1 -surfaces such that the interior of each surface of $\partial \tilde{\mathcal{Q}}_n$ contains at least one point of E,

(3)
$$\tilde{\mathcal{Q}}_n \subset \tilde{\mathcal{Q}}_{n+1} (n=1, 2, \cdots) \text{ and } \bigcup_{n=1}^{\infty} \tilde{\mathcal{Q}}_n = E^c.$$

Let g and u be harmonic functions which are defined in $U_E - E$ and have finite Dirichlet integrals on $U_E - E$, where U_E is an open neighborhood of E. We may assume that U_E contains $\partial \tilde{\mathcal{Q}}_n$ for all n. Then the limit of $\int_{\partial \tilde{\mathcal{Q}}_n} g \frac{\partial u}{\partial n} dS$ exists and does not depend on the choice of an approximation $\{\tilde{\mathcal{Q}}_n\}$. Therefore we use the symbolic expression

$$\int_{\partial E} g \frac{\partial u}{\partial n} dS = \lim_{n \to \infty} \int_{\partial \tilde{g}_n} g \frac{\partial u}{\partial n} dS.$$

For the purpose of observing a relation between KD-null sets and the principal functions we shall give the following lemma and introduce the notion of span.

LEMMA 1. The following properties hold regarding g and $P_i(i=0, 1)$:

(1) $\int_{\partial E} g \frac{\partial P_0}{\partial n} dS = 0,$ (2) if $\int_{\partial \tilde{g}_n^j} \frac{\partial g}{\partial n} dS = 0$ is satisfied for every component $\partial \tilde{\mathcal{Q}}_n^j$ of any $\partial \tilde{\mathcal{Q}}_n$,

then $\int_{\partial E} P_1 \frac{\partial g}{\partial n} dS = 0.$

For the proof, see [6]. From this lemma we can derive

$$\int_{\partial E} P_0 \frac{\partial P_0}{\partial n} dS = \int_{\partial E} P_1 \frac{\partial P_1}{\partial n} dS = 0.$$

Let u be a harmonic function defined in E^c such that

- (1) $D_{E^c}(u) < \infty$, (2) u(b) = 0,
- (3) there exists a constant C_u such that $u + C_u$ is regular at infinity,

(4)
$$\int_{\tau} \frac{\partial u}{\partial n} dS = 0$$
 for all τ in $\{\tau\}_{E^c}$.

Using Green's formula and Lemma 1, we have the equality

$$(3.1) D_{E^c}(u-P_0+P_1)=D_{E^c}(u)-2u(a)+h_0(a)-h_1(a).$$

We set $S(a, b) = h_0(a) - h_1(a)$ and call it the span of E^c with respect to (a, b)(cf. [6]). If we set u=0 in (3.1), then we obtain $S(a, b) = D_{E^c}(P_0 - P_1)$. From this we have $0 \leq S(a, b) < \infty$. Accordingly the property S(a, b) = 0means that $P_0 - P_1$ is a constant.

THEOREM 3. A compact set E belongs to the class N_{KD} if and only if the span S(a, b) of E^c is equal to zero for all couples (a, b) of different points in E^c .

PROOF. Assume that there exist two different points a, b such that $S(a, b) \neq 0$. Then $P_0 - P_1$ is a non-constant harmonic function in E^c with finite Dirichlet integral. By using the properties of P_0 , P_1 and the maximum principle, we can conclude that $P_0 - P_1$ is a bounded harmonic function outside a sufficiently large sphere. Since any bounded harmonic function defined outside a compact set is expressed as the sum of a constant and a harmonic function which is regular at infinity, there exists a constant C such that $P_0 - P_1 - C$ is regular at infinity.

Using Green's formula and the boundary properties of $P_i(i=0, 1)$, we have that for all τ in $\{\tau\}_{E^c}$

$$\int_{\tau} \frac{\partial (P_0 - P_1)}{\partial n} dS = 0.$$

Accordingly $P_0 - P_1$ belongs to the class $KD(E^c)$. This shows that $E \in N_{KD}$.

Conversely assume that S(a, b)=0 for all points a, b in E^c . Let u be a harmonic function in $KD(E^c)$. By making use of Green's formula and Lemma 1, we have

$$D_{E^c}(u, P_0-P_1) = -\int_{\partial E} u \frac{\partial (P_0-P_1)}{\partial n} dS = u(a) - u(b).$$

Since S(a, b)=0 implies $P_0-P_1=$ const., it follows that u(a)=u(b). Letting a vary in $E^c - \{b\}$, we have u =const. in E^c . Since u is regular at infinity, we have u=0. By Theorem 2 we conclude that $E \in N_{KD}$.

REMARK. From the latter half of the above proof we can derive $E \in N_{KD}$ under the condition that S(a, b)=0 for any point a in an open set G in E^c and some b in E^c .

Let us observe a relation between V(E), the N-dimensional Lebesgue measure of E, and $E \in N_{KD}$.

LEMMA 2. If S(a, b) = 0 for two distinct points a, b, then V(E) = 0. PROOF. Set

$$P(x) = \frac{1}{\sigma_N} \left(\frac{1}{|x-a|^{N-2}} - \frac{1}{|x-b|^{N-2}} \right)$$

Using Lemma 1 we have

$$D_{E^c}\left(P-\frac{P_0+P_1}{2}\right) = -\int_{\partial E} P\frac{\partial P}{\partial n} dS + \frac{1}{4}S(a, b).$$

Since P is harmonic on E, from the definition of Dirichlet integral that $D_E(P) = \inf_G D_G(P)$, where G runs over all open sets containing E, it follows that $\int_{\partial E} P \frac{\partial P}{\partial n} dS = D_E(P)$. By the assumption that S(a, b) = 0 we have that

$$0 \leq D_{E^c} \left(P - \frac{P_0 + P_1}{2} \right) = -D_E(P) \leq 0,$$

so that $D_E(P)=0$. On the other hand, since the N-dimensional Lebesgue measure of the set $\left\{ x \mid \frac{\partial P}{\partial x_i} = 0, i = 1, ..., N \right\}$ equals zero, we conclude V(E) = 0.

By Lemma 2 and Theorem 3, we have the following corollary.

COROLLARY 2. If $E \in N_{KD}$, then V(E) = 0.

The converse of Corollary 2 is not always true. In fact, let E be a compact part of a hyperplane and Ω be a bounded domain containing E. We set

$$U^{\mu}(x) = \int_{e_0} \frac{d\mu(y)}{|x-y|^{N-2}} - \int_{e_1} \frac{d\mu(y)}{|x-y|^{N-2}} ,$$

where e_0 and e_1 are disjoint compact (N-1)-dimensional balls with the same radius on E and μ is the measure which consists of the equilibrium massdistributions on e_i (i=0, 1). In the same way as the proof of Theorem 1, we see that U^{μ} belongs to $KD(\mathcal{Q}-E)$ but does not belong to $KD(\mathcal{Q})$. Therefore $E \in N_{KD}$. In this example V(E)=0.

Now we shall consider another class of harmonic functions and compare this class with the KD-class.

Let $HD(\mathcal{Q})$ be the class of harmonic functions defined in a bounded domain \mathcal{Q} with finite Dirichlet integral. The expression $E \in N_{HD}$ is defined in the same way as N_{KD} . It is well known that $E \in N_{HD}$ if and only if the Newtonian capacity C(E) of E is equal to zero; see [2]. We have obviously the inclusion $HD(\mathcal{Q}-E) \supset KD(\mathcal{Q}-E)$, which implies $N_{HD} \subset N_{KD}$.

We take a compact set E in Ω such that V(E)=0 and C(E)>0. Let μ be the equilibrium mass-distribution of unit mass on E and consider the potential

$$\int_E \frac{d\mu(y)}{|x-y|^{N-2}}$$

It is easy to show that this function belongs to $HD(\mathcal{Q}-E)$ but does not belong to $KD(\mathcal{Q}-E)$. Accordingly the inclusion $HD(\mathcal{Q}-E) \supset KD(\mathcal{Q}-E)$ is proper. Sario [9] showed a relation between N_{HD} and the span for the identity partition of *E*. Thus our Theorem 3 gives a result corresponding to Sario's.

§4. Extremal length

Let γ denote a locally rectifiable curve in \mathbb{R}^N and Γ be a family of such curves. A non-negative Borel measurable function ρ is called admissible in association with Γ if $\int_{\gamma} \rho ds \geq 1$ for each $\gamma \in \Gamma$. The module $M(\Gamma)$ is defined by $\inf_{\rho} \int \rho^2 dV$, where ρ is admissible in association with Γ , and the extremal length $\lambda(\Gamma)$ is defined by $\frac{1}{M(\Gamma)}$. The following properties are known:

(4.1) if $\Gamma' \subset \Gamma$, then $M(\Gamma') \leq M(\Gamma)$,

(4.2) if $\Gamma = \Gamma_1 \cup \Gamma_2$ and $M(\Gamma_2) = 0$, then $M(\Gamma) = M(\Gamma_1)$.

A property will be said to hold almost everywhere (=a.e.) on Γ if the extremal length of the subfamily of exceptional curves is infinite.

Let \mathcal{Q} be a bounded domain in \mathbb{R}^N which contains a compact set E and $\tilde{\Gamma}$ be the family of locally rectifiable curves γ in \mathcal{Q} each of which starts from a point x_{γ} of \mathcal{Q} and tends to $\partial \mathcal{Q}$. We shall denote by $BLD(\mathcal{Q})$ the class of Borel measurable functions f defined in \mathcal{Q} which are absolutely continuous along a.e. $\gamma \in \tilde{\Gamma}$ and which have finite Dirichlet integrals. We shall write $f(\gamma)$ for the limit, in case it exists, as the variable starts from x_{γ} and proceeds towards $\partial \mathcal{Q}$ along γ . We know that for $f \in BLD(\mathcal{Q}), f(\gamma)$ exists and is finite for a.e. $\gamma \in \tilde{\Gamma}$; see [4].

Let α_0, α_1 be non-empty compact subsets of $\partial \Omega$ such that $\alpha_0 \cap \alpha_1 = \emptyset$ and $\tilde{\Gamma}_i$ be the subfamily of $\tilde{\Gamma}$ such that each curve of $\tilde{\Gamma}_i$ tends to α_i (i=0, 1). We shall denote by $\mathcal{D}(\Omega)$ the class of functions belonging to $BLD(\Omega)$ such that $f(\gamma)=0$ for a.e. $\gamma \in \tilde{\Gamma}_0$ and $f(\gamma)=1$ for a.e. $\gamma \in \tilde{\Gamma}_1$. Let $\Gamma(\text{resp. }\Gamma')$ be the family of locally rectifiable curves in Ω (resp. $\Omega - E$) connecting α_0 and α_1 .

The following lemma is important.

LEMMA 3. (Ohtsuka) Set

$$C(\alpha_0, \alpha_1) = \inf_{\mathcal{L}} D_{\mathcal{Q}-E}(f),$$

where f runs over all elements of $\mathcal{D}(\mathcal{Q}-E)$. Then there exists a unique har-

monic function $f_0 \in \mathcal{D}$ $(\mathcal{Q} - E)$ such that $C(\alpha_0, \alpha_1) = D_{\mathcal{Q} - E}(f_0)$. Moreover we have the equality $C(\alpha_0, \alpha_1) = M(\Gamma')$.

PROOF. The proof of the first half is the same as that in [4] when we replace a Riemann surface by $\Omega - E$. Regarding the latter half, we sketch the proof given by Ohtsuka in his lectures: Extremal length in 3-space. First, note that

$$\int_{\gamma} |\operatorname{grad} f_0| \, ds \geq |\int_{\gamma} df_0| = 1 \qquad \text{for a.e. } \gamma \in \Gamma'.$$

Accordingly we have $M(\Gamma') \leq C(\alpha_0, \alpha_1)$ by property (4.2). On the other hand, for any ε , $0 < \varepsilon < \frac{1}{2}$, we can take a C^{∞} -function $\beta(x)$ in $\mathcal{Q} - E$ such that $0 < \beta(x) < \text{dist} (x, \partial(\mathcal{Q} - E))$ and $| \text{grad } \beta | < \varepsilon$ hold. We denote by U(x, r) the closed ball with center x and radius r. Take any ρ admissible in association with Γ' . Let

$$f(x) = \frac{1}{\sigma_N \beta(x)^N} \int_{U(x, \beta(x))} \rho dV$$

in $\mathcal{Q}-E$ and extend it by 0 on the rest of \mathbb{R}^N . This function is continuous in $\mathcal{Q}-E$. We can see that $(1+\varepsilon)f$ is admissible in association with Γ' and obtain the inequality

$$\int_{\mathcal{Q}-E} f^2 dV \leq (1+\varepsilon) \int_{\mathcal{Q}-E} \rho^2 dV.$$

For this reason we may restrict admissible ρ to be continuous in $\Omega - E$ in defining $M(\Gamma')$. Suppose $M(\Gamma') < \infty$. For a continuous function ρ admissible in association with Γ' , we set

$$g(x) = \inf_{\gamma} \int_{\gamma} \rho \, ds$$
 in $\mathcal{Q} - E$,

where γ is a curve in $\Omega - E$ starting from $x \in \Omega - E$ and terminating at a point of α_0 . Then we can see that $g(\gamma) = 0$ for a.e. $\gamma \in \tilde{\Gamma}_0$ and $g(\gamma) \ge 1$ for a.e. $\gamma \in \tilde{\Gamma}_1$. If the segment $\overline{xx'}$ is included in $\Omega - E$, then

$$|g(x)-g(x')| \leq \int_{\overline{xx'}} \rho \ ds.$$

From this inequality we infer that g is absolutely continuous along every curve in $\Omega - E$. Moreover, by Rademacher-Stepanov's theorem we see that grad g exists a.e. in $\Omega - E$, and that $|\text{grad } g| \leq \rho$ a.e. in $\Omega - E$. Accordingly min $(g, 1) \in \mathcal{O}(\Omega - E)$, and hence

$$C(\alpha_0, \alpha_1) \leq \int_{\mathcal{Q}-E} |\operatorname{grad} \min (g, 1)|^2 dV \leq \int_{\mathcal{Q}-E} \rho^2 dV.$$

This implies that $C(\alpha_0, \alpha_1) \leq M(\Gamma')$.

Next, we shall show a necessary condition for $E \in N_{KD}$.

THEOREM 4. If $E \in N_{KD}$, then $M(\Gamma) = M(\Gamma')$ for every Ω , α_0 and α_1 .

PROOF. In view of $M(\Gamma') \leq M(\Gamma)$, we may assume $M(\Gamma') < \infty$. Let f_0 be the extremal function in Lemma 3 such that $D_{\mathcal{Q}-E}(f_0) = M(\Gamma')$. Take an open set G such that $E \subset G \subset \overline{G} \subset \mathcal{Q}$ and ∂G consists of a finite number of compact C^1 -surfaces. Since f_0 is the harmonic function with the smallest Dirichlet integral in the class of harmonic functions defined in G-E and having boundary values f_0 on ∂G , we have $\int_{\tau} \frac{\partial f_0}{\partial n} dS = 0$ for all τ in $\{\tau\}_{G-E}$; cf. [3], Satz 15.1. Since any τ in $\{\tau\}_{\mathcal{Q}-E}$ is homologous to a finite number of surfaces of $\{\tau\}_{G-E}$, we have $\int_{\tau} \frac{\partial f_0}{\partial n} dS = 0$ for any τ in $\{\tau\}_{\mathcal{Q}-E}$. Therefore $f_0 \in KD(\mathcal{Q}-E)$. Hence there exists a harmonic function \hat{f}_0 belonging to $KD(\mathcal{Q})$ such that $f_0 = \hat{f}_0$ holds in $\mathcal{Q} - E$. It follows that

$$\int_{\gamma} |\operatorname{grad} \hat{f}_0| ds \ge \left| \int_{\gamma} d\hat{f}_0 \right| \ge 1$$
 for a.e. $\gamma \in \Gamma$.

By property (4.2) this shows that $M(\Gamma) \leq D_{\mathcal{G}}(\hat{f}_0)$. Accordingly we have

$$D_{\mathcal{Q}-E}(f_0) = M(\Gamma') \leq M(\Gamma) \leq D_{\mathcal{Q}}(\hat{f}_0).$$

By Corollary 2 the equality $D_{\mathcal{Q}}(\hat{f}_0) = D_{\mathcal{Q}-E}(f_0)$ is true. These imply $M(\Gamma) = M(\Gamma')$.

It is open whether the converse of Theorem 4 is true or not.

References

- [1] L. Ahlfors and A. Beurling, Conformal invariants and function-theoretic null-sets, Acta Math., 83 (1950), 101-129.
- [2] L. Carleson, Selected problems on exceptional sets, D. Van Nostrand, Princeton, 1967.
- [3] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer Verlag, Berlin-Göttingen-Heidelberg, 1963.
- [4] M. Ohtsuka, Dirichlet principle on Riemann surfaces, J. Analyse Math., 19 (1967), 295-311.
- [5] B. Rodin, Extremal length and removable boundaries of Riemann surfaces, Bull. Amer. Math. Soc., 72 (1966), 274–276.
- [6] B. Rodin and L. Sario, Principal functions, D. Van Nostrand, Princeton, 1968.
- [7] H.L. Royden, On a class of null-bounded Riemann surfaces, Comment. Math. Helv., 34 (1960), 52-66.
- [8] L. Sario, An extremal method on arbitrary Riemann surfaces, Trans. Amer. Math. Soc., 73 (1952), 459–470.
- [9] L. Sario, Classification of locally Euclidean spaces, Nagoya Math. J., 25 (1965), 87-111.

Department of Mathematics, Faculty of Science, Hiroshima University

68