Functional Calculus in Locally Convex Algebras

Constantin Apostol
(Received October 17, 1969)

Introduction

L. Waelbroeck [16] and G.R. Allan [1] have shown that the contour integral technique is available in the case of locally convex algebras. Successively C.R. Ionescu-Tulcea [9] and F-Y. Maeda [11] considered operators in locally convex spaces which possess a functional calculus with functions in certain algebras containing analytic functions.

In the present paper we study the properties of elements in a locally convex algebra having a functional calculus with either analytic or \mathscr{C}^{∞}-functions.

In $\S 2$ we give a perturbation formula generalizing a result contained in [3] (see also [4], II, Th. 1.5). In $\S 3$ we study the properties of elements which have a functional calculus by means of spectral distributions ([7]). We show that the regularity problem raised in [6], VI, 5 (d) has a negative answer in the locally convex case (§4).

§ 1. Notations and preliminaries

Throughout, all linear structures are over the complex field $\Lambda ; \Lambda_{\infty}$ is the one-point compactification of Λ by $\infty ; R$ is the real field and N is the set of all natural numbers.

For any $\sigma \subset \Lambda, \sigma \neq \emptyset, 0 \leqq r<\infty$ we put

$$
C(\sigma, r)=\{\lambda \in \Lambda ; \operatorname{dist}(\lambda, \sigma) \leqq r\} .
$$

If $\sigma=\emptyset$ then we put by definition $C(\emptyset, r)=\emptyset, 0 \leqq r<\infty$.
The closure in Λ (resp. Λ_{∞}) of a set σ is denoted by cl σ (resp. $\mathrm{cl}_{\alpha} \sigma$). If we put

$$
D=\frac{1}{2}\left(\frac{\partial}{\partial \operatorname{Re} \lambda}+i \frac{\partial}{\partial \operatorname{Im} \lambda}\right), \quad \bar{D}=\frac{1}{2}\left(\frac{\partial}{\partial \operatorname{Re} \lambda}-i \frac{\partial}{\partial \operatorname{Im} \lambda}\right)
$$

then \bigotimes^{∞} denotes the algebra of all infinitely differentiable complex functions on Λ, endowed with the topology determined by the pseudonorms

$$
\varphi \rightarrow|\varphi|_{n, K}=2^{n} \max _{j+k \leq n} \sup _{\lambda \in K}\left|D^{j} \bar{D}^{k} \varphi(\lambda)\right|
$$

for K compact and $n \in N$.

The letter " A " will denote a sequentially complete locally convex algebra with a unit " e " whose topology is determined by the directed family of pseudonorms, $\left\{|\cdot|_{\alpha}\right\}_{\alpha \in A}$.

Let $x \in A$. If there is $\lambda \in \Lambda, \lambda \neq 0$ such that $\left\{(\lambda x)^{n}\right\}_{n \in N}$ is a bounded set in A then we say that x is a bounded element. The set of all bounded elements in A is denoted by A_{0} ([1], Def. 2.1).

The spectrum of $x, \sigma(x)$ is the subset in Λ_{∞} defined as follows (see [1], Def. 3.1):
a) $\lambda \in \sigma(x)-\{\infty\} \rightleftarrows \lambda-x$ has no inverse belonging to A_{0}.
b) $\infty \in \sigma(x) \rightleftarrows x \notin A_{0}$.

By [1], Prop. 2.6 and Th. 3.6, $\sigma(x)$ is the same as defined by L. Waelbroeck ([16], II, Def. 1.1).

The resolvent set of $x, \rho(x)$ is the complement of $\sigma(x)$ in Λ_{α}.
We put also $(\lambda-x)^{-1}=R(\lambda ; x), \lambda \in \rho(x) ;|x|_{s p}=\sup _{\alpha \in A} \lim _{n \rightarrow \infty}\left|x^{n}\right|_{\alpha}^{\frac{1}{n}}$.
Let now y be another element in A. If L_{x} (resp. R_{x}) denotes the left (resp. right) multiplication operator by x in A then we put $[x, y]=L_{x}-R_{y}$. Explicitely, this means $[x, y] z=x z-z y, z \in A .[x, y]$ is a linear operator acting in A. We have:

$$
[x, y]^{n} z=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} x^{n-k} z y^{k} .
$$

If $z=e$ we put

$$
(x \backslash y)^{(n)}=[x, y]^{n} e=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} x^{n-k} y^{k} .
$$

The perturbation radius of x and $y, p(x, y)$ is defined by the equation (see also [3])

$$
p(x, y)=\sup _{\alpha \in \mathcal{A}} \max \left(\varlimsup_{n \rightarrow \infty}\left|(x \backslash y)^{(n)}\right|_{\alpha}^{\frac{1}{n}}, \varlimsup_{n \rightarrow \infty}\left|(y \backslash x)^{(n)}\right|_{\alpha}^{\frac{1}{n}}\right)
$$

Since $(x \backslash y)^{(n)}=(-1)^{n}(y \backslash x)^{(n)}=(x-y)^{n}$ if x commutes with y, we have in this case $p(x, y)=|x-y|_{s p}$.

Without any assumption on commutativity we have

$$
p(x, y)=p(y, x), p(x, 0)=|x|_{s p}, p(\lambda x, \lambda y)=|\lambda| p(x, y) .
$$

§ 2. Perturbation

In this section we suppose A has continuous product, i.e. for any $\alpha \in A$
there are $\beta_{\alpha} \in A, M_{\alpha}>0$ such that

$$
|x y|_{\alpha} \leqq M_{\alpha}|x|_{\beta_{\alpha}}|y|_{\beta_{\alpha}}, \quad x, y \in A
$$

Lemma 2.1. For any $x, y, z \in A$ we have

$$
p(x, y) \leqq p(x, z)+p(z, y) .
$$

Proof. Using the equality $(x \backslash y)^{(n)}=\sum_{k=0}^{n}\binom{n}{k}(x \backslash z)^{(n-k)}(z \backslash y)^{(k)}$ (see [6], p. 11) we obtain

$$
\left|(x \backslash y)^{(n)}\right|_{\alpha} \leqq M_{\alpha} \sum_{k=0}^{n}\binom{n}{k}\left|(x \backslash z)^{(n-k)}\right|_{\beta_{\alpha}}\left|(z \backslash y)^{(k)}\right|_{\beta_{\alpha}} .
$$

Take $\varepsilon>0$. By the definition of p we can find $a_{\alpha}>0$ such that $\mid(x \backslash z)$ $\left.{ }^{(n-k)}\right|_{\alpha} \leqq a_{\alpha}(p(x, z)+\varepsilon)^{n-k},\left|(z \backslash y)^{(k)}\right|_{\alpha} \leqq a_{\alpha}(p(z, y)+\varepsilon)^{k}$. It follows

$$
\left|(x \backslash y)^{(n)}\right|_{\alpha} \leqq M_{\alpha} a_{\alpha}^{2}(p(x, z)+p(z, y)+2 \varepsilon)^{n}
$$

and analogously

$$
\left|(y \backslash x)^{(n)}\right|_{\alpha} \leqq M_{\alpha} a_{\alpha}^{2}(p(x, z)+p(z, y)+2 \varepsilon)^{n} .
$$

Hence we infer $p(x, y) \leqq p(x, z)+p(z, y)+2 \varepsilon$, for any $\varepsilon>0$, which finishes the proof.

Corollary 2.2. Let $x \in A_{0}, y \in A$. We have $y \in A_{0}$ if and only if $p(x$, $y)<\infty$.

Proof. It is easy to see that the relation $y \epsilon A_{0}$ is equivalent to $|y|_{s p}$ $<\infty$. Thus if $|y|_{s p}<\infty$ we have $p(x, y) \leqq p(x, 0)+p(0, y)=|x|_{s p}+|y|_{s p}<\infty$. Conversely, if $p(x, y)<\infty$ then $|y|_{s p}=p(0, y) \leqq p(0, x)+p(x, y)=|x|_{s p}+p(x$, $y)<\infty$.

Lemma 2.3. Let $x, y \in A$ and $p(x, y)<\infty$. Then we have

$$
\sigma(y)-\{\infty\} \subset C(\sigma(x)-\{\infty\}, p(x, y)) .
$$

Proof. If $\sigma(x)-\{\infty\}=\Lambda$ then our inclusion becomes trivial. Let us suppose $\sigma(x)-\{\infty\} \neq \Lambda$ and take $\lambda_{0} \in \Lambda-C(\sigma(x)-\{\infty\}, p(x, y))$. We can find $r_{2}>r_{1}>0$ such that $r_{2}-r_{1}>p(x, y), C\left(\lambda_{0}, r_{2}\right) \cap \sigma(x)=\emptyset$.

Using the equality

$$
R^{n+1}(\lambda ; x)=\frac{1}{2 \pi i} \int_{\left|\zeta-\lambda_{0}\right|=r_{2}} \frac{R(\zeta ; x)}{(\lambda-\zeta)^{n+1}} d \zeta, \lambda \in C\left(\lambda_{0}, r_{1}\right)
$$

we get

$$
\left|(y \backslash x)^{(n)} R^{n+1}(\lambda ; x)\right|_{\alpha} \leqq M_{\alpha}^{\prime} \frac{\left|(y \backslash x)^{(n)}\right|_{\beta_{\alpha}}}{\left(r_{2}-r_{1}\right)^{n+1}},
$$

$$
\left|R^{n+1}(\lambda ; x)(x \backslash y)^{(n)}\right|_{\alpha} \leqq M_{\alpha}^{\prime} \frac{\left|(x \backslash y)^{(n)}\right|_{\beta_{\alpha}}}{\left(r_{2}-r_{1}\right)^{n+1}},
$$

where M_{α}^{\prime} is some positive constant. It follows that the series $\sum_{n=0}^{\infty}(y \backslash x)^{(n)}$ $R^{n+1}(\lambda ; x), \sum_{n=0}^{\infty}(-1)^{n} R^{n+1}(\lambda ; x)(x \backslash y)^{(n)}$ are uniformly convergent in $C\left(\lambda_{0}, r_{1}\right)$. By the calculus of [6], I, Th. 2.2 we infer that our series have the same sum $F(\lambda)$ and $F(\lambda)(\lambda-y)=(\lambda-y) F(\lambda)=e$. Hence we get $\lambda_{0} \in \rho(y)$ and the desired inclusion results.

Corollary 2.4. Let $x, y \in A$ and $p(x, y)<\infty$. Then we have
(i) $\sigma(y)=\{\infty\}$ if and only if $\sigma(x)=\{\infty\}$.
(ii) ∞ is an isolated point of $\sigma(y)$ if and only if ∞ is an isolated point of $\sigma(x)$.
(iii) $\quad p(x, y)=0$ implies $\sigma(y)=\sigma(x)$.

Proof. (i) If $\sigma(x)=\{\infty\}$ then $\sigma(y)-\{\infty\} \subset \emptyset$, thus $\sigma(y)=\{\infty\}$. Analogously $\sigma(y)=\{\infty\} \Rightarrow \sigma(x)=\{\infty\}$.
(ii) Suppose ∞ is an isolated point of $\sigma(x)$. Then $\sigma(x)-\{\infty\}$ and $C(\sigma(x)$ $-\{\infty\}, p(x, y))$ are compact sets in Λ. The inclusion $\sigma(y)-\{\infty\} \subset C(\sigma(x)-$ $\{\infty\}, p(x, y))$ shows that also $\sigma(y)-\{\infty\}$ is a compact subset of Λ. By Cor. 2.2 we have $y \notin A_{0}$. Thus $\infty \in \sigma(y)$ and ∞ is isolated in $\sigma(y)$. Similarly one obtains the converse implication.
(iii) If $p(x, y)=0$ then using the equality $C(\sigma(x)-\{\infty\}, 0)=\sigma(x)-\{\infty\}$ we get $\sigma(y)-\{\infty\} \subset \sigma(x)-\{\infty\}$ and by symmetry $\sigma(x)-\{\infty\} \subset \sigma(y)-\{\infty\}$. Using also Cor. 2.2 we get $\sigma(y)=\sigma(x)$.

Theorem 2.5. Let $x, y \in A_{0}$. Then for any analytic complex function f defined in a neighbourhood of $C(\sigma(x), p(x, y))$ we have

$$
f(y)=\sum_{n=0}^{\infty} \frac{(y \backslash x)^{(n)}}{n!} f^{(n)}(x)=\sum_{n=0}^{\infty}(-1)^{n} f^{(n)}(x) \frac{(x \backslash y)^{(n)}}{n!}
$$

Proof. Note that we have $\sigma(y) \subset C(\sigma(x), p(x, y))$ (see Cor. 2.2, Lemma 2.3). Thus we may define $f(y)$. An examination of the proof of Lemma 2.3 shows that we have, for $\lambda \in C(\sigma(x), p(x, y))$

$$
R(\lambda ; y)=\sum_{n=0}^{\infty}(y \backslash x)^{(n)} R^{n+1}(\lambda ; x)=\sum_{n=0}^{\infty}(-1)^{n} R^{n+1}(\lambda ; x)(x \backslash y)^{(n)},
$$

the series being uniformly convergent in each compact set.
Multiplying the above equalities by $\frac{1}{2 \pi i} f(\lambda)$ and integrating term by term on a suitable contour Γ surrounding the compact set $C(\sigma(x), p(x, y))$ we obtain

$$
\begin{aligned}
f(y) & =\sum_{n=0}^{\infty}(y \backslash x)^{(n)} \frac{1}{2 \pi i} \int_{\Gamma} f(\lambda) R^{n+1}(\lambda ; x) d \lambda \\
& =\sum_{n=0}^{\infty}(-1)^{n}\left\{\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda) R^{n+1}(\lambda ; x) d \lambda\right\}(x \backslash y)^{(n)} .
\end{aligned}
$$

To finish the proof we have to use the equality

$$
\frac{1}{2 \pi i} \int_{\Gamma} f(\lambda) R^{n+1}(\lambda ; x) d \lambda=\frac{1}{n!} f^{(n)}(x) .
$$

§ 3. Spectral distributions and generalized scalar elements

In the sequel we suppose that A has separately continuous product. We put $p_{n}(\lambda)=\lambda^{n}, n \in N \cup\{0\}$.

Definition 3.1. A spectral distribution is a multiplicative vector distribution

$$
u: \mathbb{C}^{\infty} \rightarrow A
$$

such that $u\left(p_{0}\right)=e$.
Definition 3.2. The element $x \in A$ is a generalized scalar one if there is a spectral distribution u such that $u\left(p_{1}\right)=x$.

The case of generalized scalar operators in Banach spaces ([7]) shows that to an x it is possible to correspond more than one distributions. Since x can be identified with L_{x}, if we have $x \in A_{0}$ then using [11], Prop. 1.3 we infer that any spectral distribution of x gives an extension to \bullet^{∞} of the functional calculus with analytic functions defined in a neighbourhood of $\sigma(x)$.

Theorem 3.3. Let u, v be two spectral distributions and let $z \in A$ satisfy $\left[u\left(p_{1}\right), v\left(p_{1}\right)\right] z=0$. Then given a vector distribution w, valued in A, there is $a \operatorname{map} \alpha \rightarrow n_{\alpha}(: A \rightarrow N \cup\{0\})$ such that

$$
\left|w(\varphi)\left(\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{n_{\alpha}+k} z\right)\right|_{\alpha}=\left|\left(\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{n_{\alpha}+k} z\right) w(\varphi)\right|_{\alpha}=0
$$

for any $k \in N, \varphi \in \bigotimes^{\infty}$.
Proof. The maps

$$
\begin{aligned}
& F:\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \rightarrow w\left(\varphi_{1}\right) u\left(\varphi_{2}\right) z v\left(\varphi_{3}\right) \\
& G:\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \rightarrow u\left(\varphi_{1}\right) z v\left(\varphi_{2}\right) w\left(\varphi_{3}\right)
\end{aligned}
$$

defined in $0^{\infty} \times \bigotimes^{\infty} \times \bigotimes^{\infty}$ are separately linear and continuous and since \bigotimes^{∞} is an F-space they are continuous.

Let $\varphi \in @^{\infty}$. The functions defined by the equations

$$
f_{\varphi}(\zeta)=F\left(\varphi, e^{\zeta \bar{p}_{1}}, e^{-\zeta \bar{p}_{1}}\right), g_{\varphi}(\zeta)=G\left(e^{\zeta \bar{p}_{1}}, e^{-\zeta \bar{p}_{1}}, \varphi\right), \zeta \in \Lambda
$$

are holomorphic. Using the equality $\left[u\left(p_{1}\right), v\left(p_{1}\right)\right] z=0$ one obtains

$$
f_{\varphi}(\zeta)=F\left(\varphi, e^{-\bar{\zeta} p_{1}+\zeta \bar{p}_{1}}, e^{-\zeta \bar{p}_{1}+\bar{\zeta} p_{1}}\right), g_{\varphi}(\zeta)=G\left(e^{-\bar{\zeta} p_{1}+\zeta \bar{p}_{1}}, e^{-\zeta \bar{p}_{1}+\bar{\zeta} p_{1}}, \varphi\right),
$$

which, together with the continuity of F and G, implies

$$
\left|f_{\varphi}(\zeta)\right|_{\alpha} \leqq M_{\alpha}|\varphi|_{m_{\alpha}, K_{\alpha}}\left(1+|\zeta|^{2 m_{\alpha}}\right),\left|g_{\varphi}(\zeta)\right|_{\alpha} \leqq M_{\alpha}|\varphi|_{m_{\alpha}, K_{\alpha}}\left(1+|\zeta|^{2 m_{\alpha}}\right)
$$

where $M_{\alpha}, m_{\alpha}, K_{\alpha}$ are suitably chosen.
It results (by Liouville's theorem) that f_{φ} and g_{φ} are polynomyals of degree at most $2 m_{\alpha}$ in the topology of the pseudonorm $|\cdot|_{\alpha}$. To finish the proof we have to use the equalities

$$
\begin{aligned}
f_{\varphi}^{(n)}(0) & =W(\varphi)\left(\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{n} z\right), \\
g_{\varphi}^{(n)}(0) & =\left(\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{n} z\right) W(\varphi), n \in N \cup\{0\},
\end{aligned}
$$

which can be obtained by induction on n.
Corollary 3.4. Let $x(\in A)$ be a generalized scalar element with the spectral distributions u, v (i.e. $\left.x=u\left(p_{1}\right)=v\left(p_{1}\right)\right)$. Then there is a map $\alpha \rightarrow n_{\alpha}(: A$ $\rightarrow N \cup\{0\}$) such that for any $\varphi \in \bigotimes^{\infty}$ we have

$$
\left|v(\varphi)\left(u\left(\bar{p}_{1}\right) \backslash v\left(\bar{p}_{1}\right)\right)^{\left(n_{\alpha}+k\right)}\right|_{\alpha}=\left|\left(u\left(\bar{p}_{1}\right) \backslash v\left(\bar{p}_{1}\right)\right)^{\left(n_{\alpha}+k\right)} v(\varphi)\right|_{\alpha}=0 .
$$

Proof. Since we have $\left[u\left(p_{1}\right), v\left(p_{1}\right)\right] e=0$, we can apply Th. 3.3 with $z=e, w=v$.

Theorem 3.5. Let u, v be two spactral distributions and let $z \in A$ satisfy $\left[u\left(p_{1}\right), v\left(p_{1}\right)\right] z=0$. Then for any $\varphi \in \bigodot^{\infty}$ we have

$$
\begin{aligned}
{[u(\varphi), v(\varphi)] z } & =\sum_{k=1}^{\infty} \frac{\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{k} z}{k!} v\left(D^{k} \varphi\right) \\
& =\sum_{k=1}^{\infty}(-1)^{k+1} u\left(D^{k} \varphi\right) \frac{\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{k} z}{k!}
\end{aligned}
$$

the series being finite sums depending only on α in the topology of each pseudonorm $|\cdot|_{\alpha}$.

Proof. We have $L_{u\left(\bar{p}_{1}\right)}=\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]+R_{v\left(\bar{p}_{1}\right)}$. Thus for any $n \in N$ one obtains $L_{u\left(\bar{p}_{1}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} R_{v\left(D^{k} \bar{p}_{n}\right)}\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{k}$. (We have used the properties
of the functional calculus with analytic polynomials in the argument $\bar{\lambda}$). Using this equality and our hypothesis, an easy calculus gives us

$$
L_{u(q)} z=\sum_{k=0}^{\infty} \frac{\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)^{k}\right] z}{k!} v\left(D^{k} q\right)
$$

for any polynomial q. Since polynomials are dense in ϱ^{∞}, using Th. 3.3 we extend the above equality to \mathbb{Q}^{∞}, the series being a finite sum depending only on α in the topology of the pseudonorm $|\cdot|_{\alpha}$. Thus we have

$$
[u(\varphi), v(\varphi)] z=L_{u(\varphi)} z-R_{v(\varphi)} z=\sum_{k=1}^{\infty} \frac{\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{k} z}{k!} v\left(D^{k} \varphi\right) .
$$

The second equality is obtained analogously starting with the relation $R_{v\left(\bar{p}_{1}\right)}=L_{u\left(\bar{p}_{1}\right)}-\left[u\left(\bar{p}_{1}\right),-v\left(\bar{p}_{1}\right)\right]$.

Corollary 3.6. Let u, v be two spectral distributions and let $z \in A$ satisfy $\left[u\left(p_{1}\right), v\left(p_{1}\right)\right] z=0$. Then there is a map $\alpha \rightarrow n_{\alpha}(: A \rightarrow N \cup\{0\})$ such that for any system $\left\{\varphi_{j}\right\}_{1}^{n_{\alpha}+k}, k \in N$ we have

$$
\left|\left(\prod_{j=1}^{n_{\alpha}+k}\left[u\left(\varphi_{1}\right), v\left(\varphi_{1}\right)\right]\right) z\right|_{\alpha}=0 .
$$

Proof. Let n_{α} be given by Th. 3.3 with $w=v$. By Th. 3.5 we have

$$
\begin{aligned}
& \left(\prod_{j=1}^{n \alpha}\left[k\left(\varphi_{j}\right), v\left(\varphi_{j}\right)\right]\right) z \\
& =\sum_{m_{1}=1}^{\infty} \cdots \sum_{m_{n_{\alpha}+k}=1}^{\infty} \frac{\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{m_{1}+\cdots+m_{n_{\alpha}+k}}}{m_{1}!\cdots m_{n_{\alpha}+k}!} v\left(D^{m_{1}} \varphi_{1} \ldots D^{m_{n_{\alpha}+k}} \varphi_{n_{\alpha}+k}\right) .
\end{aligned}
$$

Since each term in the right hand is 0 in the topology of $|\cdot|_{\alpha}$ the proof is finished.

Corollary 3.7. Let $x(\epsilon A)$ be a generalized scalar element with the spectral distributions u, v. Then for any $\varphi \in @^{\infty}$ we have $p(u(\varphi), v(\varphi))=0$ (see the definition of p in $\S 1$).

Proof. It results by Cor. 3.6.
Corollary 3.8. Let $x(\in A)$ be a generalized scalar element with the spectral distributions u, v. Then for any $\varphi \in \bigotimes^{\infty}$ we have

$$
\begin{aligned}
u(\varphi) & =\sum_{k=0}^{\infty} \frac{\left(u\left(\bar{p}_{1}\right) \backslash v\left(\bar{p}_{1}\right)\right)^{(k)}}{k!} v\left(D^{k} \varphi\right) \\
& =\sum_{k=0}^{\infty}(-1)^{k} v\left(D^{k} \varphi\right) \frac{\left(v\left(\bar{p}_{1}\right) \backslash u\left(\bar{p}_{1}\right)\right)^{(k)}}{k!}
\end{aligned}
$$

the series being finite sums depending only on α in the topology of each pseudonorm $|\cdot|_{\alpha}$.

Proof. Our corollary results by Th. 3.5. Indeed we have $u\left(p_{1}\right)=v\left(p_{1}\right)$; thus $\left[u\left(p_{1}\right), v\left(p_{1}\right)\right] e=\left[v\left(p_{1}\right), u\left(p_{1}\right)\right] e=0$. Consequently

$$
\begin{aligned}
& {[u(\varphi), v(\varphi)] e=\sum_{k=1}^{\infty} \frac{\left[u\left(\bar{p}_{1}\right), v\left(\bar{p}_{1}\right)\right]^{k} e}{k!} v\left(D^{k} \varphi\right),} \\
& {[v(\varphi), u(\varphi)] e=\sum_{k=1}^{\infty}(-1)^{k+1} v\left(D^{k} \varphi\right) \frac{\left[v\left(\bar{p}_{1}\right), u\left(\bar{p}_{1}\right)\right]^{k} e}{k!} .}
\end{aligned}
$$

Now we have to use the definition of $\left(x_{1} \backslash x_{2}\right)^{(k)}, x_{1}, x_{2} \in A$.
Theorem 3.9. Let u be a spectral distribution. Then for any $\varphi \in @^{\infty}$ we have
(i) $u(\varphi)$ is a generalized scalar element with the spectral distribution $\psi \rightarrow u$ ($\psi \circ \varphi$).
(ii) $\sigma(u(\varphi))=\operatorname{cl}_{\infty} \varphi(\operatorname{supp} u)$.

Proof. (i) It is evident. (ii) Suppose $\sigma(u(\varphi)) \not \subset \operatorname{cl}_{\alpha} \varphi$ (supp u). In this case we have $\operatorname{cl}_{\infty} \varphi(\operatorname{supp} u) \neq \Lambda_{\infty}$ and the function $\zeta \rightarrow \varphi_{\zeta}$ defined by the equation $\varphi_{\zeta}(\lambda)=(\zeta-\varphi(\lambda))^{-1}$ is holomorphic in $\Lambda-\operatorname{cl}_{\alpha} \varphi(\operatorname{supp} u)$ if $\lambda \epsilon \operatorname{supp} u$. Using the equalities $u\left(\varphi_{\zeta}\right)(\zeta-u(\varphi))=(\zeta-u(\varphi)) u\left(\varphi_{\zeta}\right)=u\left(p_{0}\right)=e$, we obtain $\Lambda_{\infty}-\operatorname{cl}_{\infty} \varphi(\operatorname{supp} u) \subset \rho(u(\varphi))$ which is preposterous. Now if $\sigma(u(\varphi)) \neq \operatorname{cl}_{\infty} \varphi$ (supp u) we can find $\varphi_{0}\left(\epsilon \mathbb{O}^{\infty}\right)$ such that φ_{0} has compact support, $\varphi\left(\operatorname{supp} \varphi_{0}\right)$ $\cap \sigma(u(\varphi))=\emptyset, u\left(\varphi_{0}\right) \neq 0$. Take $\psi\left(\epsilon \bigotimes^{\infty}\right)$ with compact support such that $\psi(\lambda)=1$ in a neighbourhood of supp $\varphi_{0}, \varphi(\operatorname{supp} \psi) \cap \sigma(u(\varphi))=\emptyset$ and put for $\zeta \notin \varphi(\operatorname{supp} \psi)$

$$
\psi_{\zeta}(\lambda)= \begin{cases}\psi(\lambda)(\zeta-\varphi(\lambda))^{-1}, & \lambda \epsilon \operatorname{supp} \psi \\ 0, & \lambda \notin \operatorname{supp} \psi\end{cases}
$$

Using the identity $(\zeta-\varphi) \psi_{\zeta} \varphi_{0}=\varphi_{0}$ we may define the function $f: \Lambda \rightarrow A$ by the equation

$$
f(\zeta)= \begin{cases}R(\zeta ; u(\varphi)) u\left(\varphi_{0}\right), & \zeta \notin \sigma(u(\varphi)) \\ u\left(\psi_{\zeta}\right) u\left(\varphi_{0}\right), & \zeta \notin \varphi(\operatorname{supp} u)\end{cases}
$$

Since f is holomorphic and $\lim _{\zeta \rightarrow \infty} f(\zeta)=\lim _{\zeta \rightarrow \infty} u\left(\psi_{\zeta}\right) u\left(\varphi_{0}\right)=0$, we have $f=0$, which is impossible because $u\left(\varphi_{0}\right) \neq 0$. Thus $\sigma(u(\varphi))=\operatorname{cl}_{\infty} \varphi(\operatorname{supp} u)$.

Corollary 3.10. Let u be a spectral distribution and put $v_{\varphi}(\psi)=u(\psi \circ \varphi)$. Then v_{φ} is a spectral distribution such that $\operatorname{supp} v_{\varphi}=\operatorname{cl} \varphi(\operatorname{supp} u)$.

Proof. By Th. 3.9 we have $\operatorname{cl}_{\alpha} \varphi(\operatorname{supp} u)=\sigma(u(\varphi))=\sigma\left(v_{\varphi}\left(p_{1}\right)\right)=\operatorname{cl}_{\infty}$ supp $v_{\varphi} . \quad$ Since $\operatorname{supp} v_{\varphi}=\left(\mathrm{cl}_{\infty} \operatorname{supp} v_{\varphi}\right)-\{\infty\}$ and $\mathrm{cl} \varphi(\operatorname{supp} u)=\left(\mathrm{cl}_{\propto} \varphi(\operatorname{supp} u)\right)-$ $\{\infty\}$, the corollary results.

Let us denote by $\mathbb{C}^{\infty}\left(\Lambda^{2}\right)$ the algebra of all infinitely differentiable complex functions defined in $\Lambda^{2}\left(=\Lambda \times \Lambda=R^{4}\right)$ endowed with the topology of the uniform convergence of all derivatives on compact sets.

Lemma 3.11. Let u, v be two commuting spectral distributions. Then there is a unique vector distribution

$$
w: \bigotimes^{\infty}\left(\Lambda^{2}\right) \rightarrow A
$$

such that $w(\varphi \otimes \psi)=u(\varphi) v(\psi), \varphi, \psi \in \bigotimes^{\infty}$. The vector distribution w is multiplicative and $w\left(p_{0} \otimes p_{0}\right)=e$.

Proof. The map $(\varphi, \psi) \rightarrow u(\varphi) v(\psi)$ is separately continuous; therefore it is continuous. If we put $w_{0}\left(\sum\left(\varphi_{j} \otimes \psi_{j}\right)=\sum u\left(\varphi_{j}\right) v\left(\psi_{j}\right)\right.$ the map $w_{0}: \bullet^{\infty} \otimes \mathbb{Q}^{\infty}$ $\rightarrow A$ is continuous if we endow $\bigotimes^{\infty} \otimes \bigotimes^{\infty}$ with the projective topology. Since we have $\mathbb{C}^{\infty} \widehat{\otimes}^{\infty} \bigotimes^{\infty}=\bigotimes^{\infty} \bar{\otimes} \bigotimes^{\infty}=\bigotimes^{\infty}\left(\Lambda^{2}\right)$ (see [8], II §2, No. 3, Th. 10 and [15], Prop. 28) we can extend w_{0} by continuity to a vector distribution w defined in $\bigotimes^{\infty}\left(\Lambda^{2}\right)$.

The uniqueness of w results by the condition $w(\varphi \otimes \psi)=w_{0}(\varphi \otimes \psi)=u(\varphi)$ $w(\psi)$. Trivially w_{0} is multiplicative; therefore w is so and $w\left(p_{0} \otimes p_{0}\right)=w_{0}\left(p_{0}\right.$ $\left.\otimes p_{0}\right)=u\left(p_{0}\right) v\left(p_{0}\right)=e$.

Notation. Let u, v be two commuting spectral distributions. We shall put

$$
\begin{array}{ll}
(u \stackrel{s}{+v})(\varphi)=w\left(\varphi o\left(p_{1} \otimes p_{0}+p_{0} \otimes p_{1}\right)\right), &
\end{array} \varphi_{\mathbb{Q}^{\infty}}^{(u \stackrel{s}{\times} v)(\varphi)=w\left(\varphi 0\left(p_{1} \otimes p_{1}\right)\right),} \begin{aligned}
\mathbb{C}^{\infty}
\end{aligned}
$$

where w is defined in Lemma 3.11.
If $\mu(\epsilon \Lambda)$ is a given number then we denote by δ_{μ} the spectral distribution defined by the equation $\delta_{\mu}(\varphi)=\varphi(\mu) e$ (δ_{μ} is Dirac's distribution).

Lemma 3.12. Let u, v be two commuting spectral distributions. Then $u \dot{+}$ $v, u \stackrel{s}{\times} v$ are spectral distributions such that $(u \stackrel{s}{+} v)\left(p_{1}\right)=u\left(p_{1}\right)+v\left(p_{1}\right),(u \stackrel{s}{+} v)$ $\left(\bar{p}_{1}\right)=u\left(\bar{p}_{1}\right)+v\left(\bar{p}_{1}\right),(u \stackrel{s}{\times} v)\left(p_{1}\right)=u\left(p_{1}\right) v\left(p_{1}\right),(u \stackrel{s}{\times} v)\left(\bar{p}_{1}\right)=u\left(\bar{p}_{1}\right) v\left(\bar{p}_{1}\right)$.

Notation. Let u be a spectral distribution. We shall put $(\operatorname{Re} u)(\varphi)=u$ $\left(\varphi \circ \operatorname{Re} p_{1}\right),(\operatorname{Im} u)(\varphi)=u\left(\varphi \circ \operatorname{Im} p_{1}\right)$. If $0 \notin \operatorname{supp} u$ then $|u|(\varphi)=u\left(\varphi \circ \psi_{1}\right)$,
$u_{0}(\varphi)=u\left(\varphi \circ \psi_{2}\right)$ where $\psi_{1}=\left|p_{1}\right|, \psi_{2}=\frac{p_{1}}{\left|p_{1}\right|}$ in a neighbourhood of supp u.
Evidently all the above maps are spectral distributions commuting each other.

Theorem 3.13. Let u be a spectral distribution. Then we have $u=\operatorname{Re}$ $u \stackrel{s}{+} \delta_{i} \stackrel{s}{\times} \operatorname{Im} u$. If $0 \notin \operatorname{supp} u$ then the equality $u=u_{0} \stackrel{s}{\times}|u|$ also holds.

Proof. By Lemma 3.12 we have $\left(\operatorname{Re} u \stackrel{s}{+} \delta_{i} \times \stackrel{s}{\times} \operatorname{Im} u\right)\left(p_{1}\right)=u\left(p_{1}\right)$ and (Re $\left.u \stackrel{s}{+} \delta_{i} \stackrel{s}{\times} \operatorname{Im} u\right)\left(\bar{p}_{1}\right)=u\left(\bar{p}_{1}\right)$ which suffice for the first equality. The second one results analogously.

Corollary 3.14. Let $x(\in A)$ be a generalized scalar element. Then there are two commuting scalar elements y, z such that $\sigma(y), \sigma(z) \subset R \cup\{\infty\}, x=$ $y+i z$. If $0 \notin \sigma(x)$ then y, z can be chosen in such a way that $\sigma(y) \subset\{\lambda \in \Lambda ;|\lambda|$ $=1\}, \sigma(z) \subset\{t \in R ; t \geqq 0\} \cup\{\infty\}, x=y z$.

Proof. We have to apply Th. 3.13 and Th. 3.9.

§4. The problem of regularity of spectral distributions

Definition 4.1. The spectral distribution u is called regular if it is valued in the bicommutant (i.e. the commutant of the commutant) of $u\left(p_{1}\right)$

Definition 4.2. The generalized scalar element $x(\epsilon A)$ is called a regular one if it possesses a regular spectral distribution.

In [6], VI, $5(\mathrm{~d})$ the following problem is raised: let T be a generalized scalar operator in a Banach space; is it a regular one? Concerning this problem we shall exhibit an example of generalized scalar operator in a locally convex space which is not regular (Th. 4.4). A sufficient condition for regularity is given:

Theorem 4.3. Let $x(\epsilon A)$ be a generalized scalar element such that $\sigma(x)$ $-\{\infty\} \subset R$. Then x is regular.

Proof. Let u be a spectral distribution of x and put $y=i u\left(\operatorname{Im} p_{1}\right)$. Since u is continuous and supp $u \subset R$ (Cor. 3.10), we obtain easily that there is a $\operatorname{map} \alpha \rightarrow n_{\alpha}(: A \rightarrow N \cup\{0\})$ such that

$$
\left|y^{n_{\alpha}+k} u(\varphi)\right|_{\alpha}=\left|u\left(\operatorname{Im} p_{1}\right)^{n_{\alpha}+k} \varphi\right|_{\alpha}=0, k \in N, \varphi \in \bigotimes^{\infty} .
$$

It follows that the series $v(f)=\sum_{m=0}^{\infty} \frac{y^{m}}{m!} u\left(f^{(m)} \circ \operatorname{Re} p_{1}\right), f \in \mathbb{C}^{\infty}(R)$ is a finite sum in the topology of each pseudonorm $|\cdot|_{\alpha}$.

If f is a polynomial we have $v(f)=f(x)$; thus v is valued in the bicommutant of x. The map v is a multiplicative distribution defined in $\mathscr{C}^{\circ}(R)$. For any $\varphi \in @^{\circ}$ we consider the function $\tilde{\varphi} \in \mathbb{Q}^{\infty}(R)$ defined by the equation $\tilde{\varphi}(t)=\varphi(t)$. If $w(\varphi)=v(\tilde{\varphi}), \varphi \in \mathbb{Q}^{\infty}$, then w is a regular spectral distribution of x.

Theorem 4.4. Let A be the algebra of all continuous linear operators defined in \mathcal{O}^{∞}, endowed with the topology of uniform convergence on bounded sets. The operator $T \in A$ defined by the equation $T \psi=p_{1} \psi$ is a non-regular generalized scalar operator.

Proof. The map u defined by the equation $u(\varphi) \psi=\varphi \psi$ is a spectral distribution such that $u\left(p_{1}\right)=T$. Thus T is a generalized scalar operator. Since we have $D T=T D, D u\left(\bar{p}_{1}\right)=u\left(\bar{p}_{1}\right) D+e, u$ results to be non-regular.

If x possesses a regular spectral distribution v then putting $h=v\left(\bar{p}_{1}\right) p_{0}$ we obtain $v\left(\bar{p}_{1}\right) \psi=v\left(\bar{p}_{1}\right) u(\psi) p_{0}=u(\psi) h=h \psi, \psi \in \bigotimes^{\infty}$.

Given n, K, ψ we can find m (see Cor. 3.4) such that $\left|\left(u\left(\bar{p}_{1}\right)-v\left(\bar{p}_{1}\right)\right)^{m} \psi\right|_{n, k}$ $=\left|\left(\bar{p}_{1}-h\right)^{m} \psi\right|_{n, k}=0$, which implies $\bar{p}_{1}=h$. It follows that $u=v$, which is impossible because v is regular, and the proof is finished.

References

[1] G. R. Allan, A spectral theory for locally convex algebras, Proc. London Math. Soc., 15 (1965), 399-421.
[2] C. Apostol, Teorie spectrală şi calcul funcţional, Stud, Cerc. Mat., 20 (1968), 635-668.
[3] C. Apostol, Remarks on the perturbation and a topology for operators, J. Functional Analysis, 2 (1968), 395-408.
[4] C. Apostol, Spectral decompositions and functional calculus, Rev. Roumaine Math. Pures Appl., 14. (1968), 1481-1528.
[5] I Colojoară, Elemente de teorie spectrală. Ed. Academiei, Bucureşti, 1968.
[6] I. Colojoară and C. Foiaş, Theory of generalized spectral operators, Gordon and Breach Science Publ., New York, 1968.
[7] C. Foiaş, Une application des distributions à la theorie spectrale, Bull. Sci. Math., 84 (1960), 147-158.
[8] A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, Mem. Amer. Math. Soc., 16 (1955).
[9] C.T. Ionescu Tulcea, Spectral operators on locally convex spaces, Bull. Amer. Math. Soc., 67 (1961), 125-128.
[10] F-Y. Maeda, A characterisation of spectral operators on locally convex spaces, Math. Ann., 143 (1961), 59-74.
[11] F-Y. Maeda, Generalized spectral operators on locally convex spaces, Pacific J. Math., 13 (1963), 177192.
[12] F-Y. Maeda, Functions of generalized scalar operators, J. Sci. Hiroshima Univ. Ser. A-I Math., 26 (1962), 71-76.
[13] G. Marinescu, Espaces vectoriels pseudo-topologiques et théorie des distributions, Berlin, 1963.
[14] J.T. Schwartz, Two perturbation formulae, Comm. Pure Appl. Math., 5 (1955), 371-376.
[15] L. Schwartz, Théorie des distributions à valeurs vectorielles I, Ann. Inst. Fourier (Grenoble), 7 (1957), 1-147.
[16] L. Waelbroeck, Le calcul symbolique dans les algèbres commutatives, J. Math. Pures Appl., 33 (1954), 147-186.
[17] L. Waelbroeck, Etude spectrale des algèbres complètes, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in $\mathbf{8}^{0}, \mathbf{3 1}$ (1960).
[18] L. Waelbroeck, Theorie des algèbres de Banach et des algebres localement convexes, Montréal, Les Presses de l'Université de Montréal, 1965.

Institut de Mathématique
Académie de la République
Socialiste de Roumanie

