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Introduction

L. Waelbroeck [16] and G.R. Allan [1] have shown that the contour
integral technique is available in the case of locally convex algebras. Succes-
sively C.R. Ionescu-Tulcea [9] and F-Y. Maeda [11] considered operators
in locally convex spaces which possess a functional calculus with functions in
certain algebras containing analytic functions.

In the present paper we study the properties of elements in a locally con-
vex algebra having a functional calculus with either analytic or ^"-functions.

In §2 we give a perturbation formula generalizing a result contained in
[3] (see also [4], II, Th. 1.5). In §3 we study the properties of elements
which have a functional calculus by means of spectral distributions ([7]).
We show that the regularity problem raised in [6], VI, 5 (d) has a negative
answer in the locally convex case (§4).

§ 1. Notations and preliminaries

Throughout, all linear structures are over the complex field A Λ^ is the
one-point compactification of A by oo R is the real field and N is the set of
all natural numbers.

For any σCΛ, σφ0, 0<> < oo we put

, r)={λeA; dist (λ, σ)<>}.

If σ = 0 then we put by definition C(0, r) = 0, 0<> < oo.

The closure in A (resp. A^) of a set β is denoted by cl 6 (resp.
If we put

d i d

dlmλ)9 2 KdReλ

then &°° denotes the algebra of all infinitely differentiable complex functions
on A, endowed with the topology determined by the pseudonorms

<p-+\φ\nκ = 2H max sup | DjDkφ(λ) \

for K compact and n e TV.
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The letter "A" will denote a sequentially complete locally convex algebra
with a unit "e" whose topology is determined by the directed family of pseu-
d o n o r m s , {\-\a}a^.

Let x a A. If there is λ a A, λφO such that {{λx)n}n^N is a bounded set
in A then we say that x is a bounded element. The set of all bounded ele-
ments in A is denoted by Ao ([1], Def. 2.1).

The spectrum of x, G(X) is the subset in Λ^ defined as follows (see [1Γ\,
Def. 3.1):

a) λ e σ(x)— {oo} ^±λ — x has no inverse belonging to Ao.
b) oo e σ(x)τ^χ ί Ao.

By [1], Prop. 2.6 and Th. 3.6, σ(x) is the same as defined by L. Wael-
broeck ([16], II, Def. 1.1).

The resolvent set of x9 p(χ) is the complement of σ(x) in Λ*.

We put also (λ — x)~ι == R (λ x), λ e p (x) | x \ sP = sup lim | *w |».

Let now j be another element in A. If Lx (resp. i?*) denotes the left
(resp. right) multiplication operator by x in A then we put [_x, y] = Lx — Ry.
Explicitely, this means [>, y]z = xz — z j , z e A. [_x, y] is a linear operator
acting in A. We have:

If z = e we put

The perturbation radius of x and j , JO(Λ;, J ) is defined by the equation (see
also [3])

P(x, j ) = sup max (ϊίm| (x\y)w\« Ήm\ (j\^yB>|«).

Since (χ\y)(n) = ( — 1)W(J\Λ;) ( W ) = (x — y)n if Λ; commutes with j , we have
in this case/?(Λ;, y) = | A; — y\sP.

Without any assumption on commutativity we have

p(x, y) =p(y, x),p(x, 0) = \x\sp, p(λx, λγ) = \λ \p(χ, y).

% 2. Perturbation

In this section we suppose A has continuous product, i.e. for any a € j4
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there are βa e rf, Ma > 0 such that

\%y\a^Ma\χ\βa\y\βaτ χ9 ye A,

LEMMA 2.1. For any x, y, z e A we have

p(x> y)<^p(x, z)+p(z, y).

PROOF. Using the equality (x\y)(n) = Σ (n

k)(χ\z)(n-k)(z\yyk) (see [6], p.
k = 0

11) we obtain

I (χ\y)(n) \a<Ma±(Ό\ (χ\zT~k) I βa I (Λy)(A) I ^

Take ε > 0. By the definition of p we can find aa > 0 such that | (χ\z)
z) + e)n-\ \(z\yYk)\a^aa(p(z, y) + ε)k. It follows

)(n)\a^Maal(P(x, z)+p(z9

and analogously

\(y\x)(n)\a<Maal(p(x, z)+p(z9

Hence we infer p(χ, y)^p(χ, z)+p(z, j) + 2ε, for any ε> 0, which fini-
shes the proof.

COROLLARY 2.2. Let x c Ao, yc A. We have yeAoif and only if p(x,
y)<oo.

P R O O F . I t i s e a s y t o s e e t h a t t h e r e l a t i o n ye A o i s e q u i v a l e n t t o | y \ s p

< oo. T h u s if I y\ sp < oo w e h a v e p(x, y)<,p(x, 0) +/?(0, y) = \ x \sp + | y\ sP< ° ° .
Conversely, if p(x, y)<oothen \y\sP=p(0, y)<^p(Q, χ)+p(x, y) = \χ\sp+p(χ,

LEMMA 2.3. Let x, ye A andp(x, y) < oo. Then we have

-{oo}yp(χ9 y)).

PROOF. If σ(x)—{oo}=Λ then our inclusion becomes trivial. Let us
suppose σ(x)—{°°} φΛ and take λQ e Λ — C(σ(x)—{oo}ip(Xi y)). We can find
r 2>ri > 0 such that r2~r1 >p(x, y\ C(λ0, r2) ΓΛσ(x) =-0.

Using the equality

• 5 Λ V If •>

we get

\(γ\x)(n)\
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oo

where M'a is some positive constant. It follows that the series Σ (y\xYn)

« = 0

Rn+1(λ; x\ Σ(-l)nRn+1(λ; x)(x\y)(n) are uniformly convergent in C(λ0, rj.
n = o

By the calculus of [6], I, Th. 2.2 we infer that our series have the same sum

F(λ) and F(λ)(λ-y) = (λ-y)F(λ) = e. Hence we get λ0 e p(y) and the desir-

ed inclusion results.

COROLLARY 2.4. Lei x, y€ A andp(x, y) < oo. Then we have

(i) σ(j) = {oo} if and only if σ(x) = {oo}.

(ii) oo is an isolated point of (T(y) if and only if oo is an isolated point

ofσ(x).
(iii) p(x, y) = 0 implies σ(y) = σ(x).

PROOF, (i) If σ(x) = {oo} then σ(γ) — {oo} ^ 0 , thus σ( j) = {oo}. Analo-

gously (7(γ) = {OO}=»(Γ(Λ;) = {oo}.

(ii) Suppose oo is an isolated point of <r(x). Then σ(x) — {oo} and C(β(x)

— {°°}>p(χ> y)) are compact sets in Λ. The inclusion (T(j) — {oo} ζ; C(σ(Λ;) —

{CXD}? p(^? y)) shows that also tτ( j) — {°°} is a compact subset of A. By Cor.

2.2 we have y$ Ao. Thus oo e σ(y) and oo is isolated in <τ(y). Similarly one

obtains the converse implication.

(iii) If p(x, γ) = 0 then using the equality C(σ(x) —{<*>}, 0) = σ(x) — {oo}

we get (j(y) —{oo} Q(j(χ) — {oo} and by symmetry σ(x) — {oo} C<τ(y) — {oo}.

Using also Cor. 2.2 we get σ(y) =σ(x).

THEOREM 2.5. Lei Λ;, j e Λo. Then for any analytic complex function f

defined in a neighbourhood of C(σ(x), p(x, y)) we have

^fK)Σ()ΎK)4
71 ! w = o 71 !

PROOF. Note that we have σ(y)CC(σ(x), p(χ, y)) (see Cor. 2.2, Lemma

2.3). Thus we may define f(y). An examination of the proof of Lemma 2.3

shows that we have, for λ e C(σ(x), p(x, y))

the series being uniformly convergent in each compact set.

Multiplying the above equalities by -^—r/U) and integrating term by

term on a suitable contour Γ surrounding the compact set C(σ(χ), p(x, y))

we obtain
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/(?) = £ (yW'-oM f{λ)R"+\λ; x)dλ
n = 0 Δ7LI JΓ

To finish the proof we have to use the equality

§ 3. Spectral distributions and generalized scalar elements

In the sequel we suppose that A has separately continuous product. We
U) = Γ, neN\J{0}.

Definition 3.1. A spectral distribution is a multiplicative vector distri-
bution

u:©°°~>A

such that u (p0) = e.

Definition 3.2. The element x a A is a generalized scalar one if there is
a spectral distribution u such that u(pι) = x.

The case of generalized scalar operators in Banach spaces ([7]) shows
that to an x it is possible to correspond more than one distributions. Since
x can be identified with Lx, if we have x e AQ then using [11], Prop. 1.3 we
infer that any spectral distribution of x gives an extension to &°° of the func-
tional calculus with analytic functions defined in a neighbourhood of σ(χ).

THEOREM 3.3. Let u, v be two spectral distributions and let z e A satisfy
[_u (pi), v (/>i)] z = 0. Then given a vector distribution w, valued in A, there is
a map a->na (: ]4-+Nvj{0}) such that

for any k e iV, φ e &°°.

PROOF. The maps

F: (φu φ2, φs)^w(φι) u(φ2)zv(φ3)

G: (φu φ2, φz)-+u(φι

defined in 6°° x &°° x &°° are separately linear and continuous and since ©°° is
an F-space they are continuous.
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Let φ 6 ©°°. The functions defined by the equations

fφ(ζ) = F(φ9 e*>\ β-^'O, gφ(ζ) = G(e'\ e~*\ φ\ ζ e A

are holomorphic. Using the equality \jι(pι), v(pι)Jz = 0 one obtains

which, together with the continuity of F and G, implies

where Ma9 ma,Ka are suitably chosen.
It results (by Liouville's theorem) that fφ and gφ are polynomyals of

degree at most 2ma in the topology of the pseudonorm | | a. To finish the
proof we have to use the equalities

= (l>(/>i), vipOJz) W(φ\ n € iVW {0},

which can be obtained by induction on n.

COROLLARY 3.4. Let x(e A) be a generalized scalar element with the spec-
tral distributions u, v (i.e. x = u(pι) = v(pi)). Then there is a map a^na(: f$
->N\J {0}) such that for any φ e &°° we have

I υ(φ) (u (pi) \v(pι)) {n«+k) \a= \(u (pi) \υ(pi)) (n"+k) υ(φ) | α = 0.

PROOF. Since we have [_u(pι)9 v(pi)~]-e = 0, we can apply Th. 3.3 with
z = e, w = v.

THEOREM 3.5. Let u, v be two spactral distributions and let z e A satisfy
[_u(pι), v(pι)~]z = 0. Then for any φ e &°° we have

— υ(Dkφ)
k\

k=i

the series being finite sums depending only on a in the topology of each pseudo-
norm I I α.

PROOF. We have Lu{-pύ = [_u(pi), v(Pι)~]-\-Rv(-Pl)> Thus for any n e N one

obtains Lu{pl)= Σ -rγRv{D*pn)Lu(pi)., v(ρθy. (We have used the properties
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of the functional calculus with analytic polynomials in the argument λ).
Using this equality and our hypothesis, an easy calculus gives us

for any polynomial q. Since polynomials are dense in β°°, using Th. 3.3 we
extend the above equality to β~, the series being a finite sum depending only
on a in the topology of the pseudonorm | | a. Thus we have

The second equality is obtained analogously starting with the relation
RHpύ^= Lu{-Pl) — [_u(pι\ ~v(pι)~].

COROLLARY 3.6. Let u, v be two spectral distributions and let z e A satisfy
[_u(pi), υ(pi)2z = 0 Then there is a map a-+na(: j4->N\j{0}) such that for
any system {<Pj}Ίa+k, k e N we have

y=i J a

PROOF. Let na be given by Th. 3.3 with w = v. By Th. 3.5 we have

/na+k

( Π Lu{ψj),

= Σ - Σ L u { p i ) ί

m

υ \ p ° j n - = - * ( i > " V i - / > " " . • ' * . . + . ) .

Since each term in the right hand is 0 in the topology of | | a the proof is
finished.

COROLLARY 3.7. Let x(e A) be a generalized scalar element with the spec-
tral distributions u, v. Then for any φ e &°° we have p(u(φ), υ(φ)) = 0 (see the
definition of p in §1).

PROOF. It results by Cor. 3.6.

COROLLARY 3.8. Let x( 6 A) be a generalized scalar element with the spec-
tral distributions u, v. Then for any φ e &" we have
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the series being finite sums depending only on a in the topology of each pseudo-
norm I I a.

PROOF. Our corollary results by Th. 3.5. Indeed we have u(pι) = v(pι);
thus Zu(pd, v(pι)Je = Eu(/?i), u(pι)~]e = 0. Consequently

Now we have to use the definition of (xι\x2)
(k\ χi, χz 6 A.

THEOREM 3.9. Let u be a spectral distribution. Then for any φ e &°° we
have

(i) u(φ) is a generalized scalar element with the spectral distribution ψ->u
(ψoφ).

(ii) σ(u(φ)) = clooψ (supp ύ).

PROOF, (i) It is evident, (ii) Suppose σ(u(φ)) <t cL^? (supp u). In this
case we have cL#> (supp u^φA^ and the function ζ^κpζ defined by the equa-
tion <Pζ(λ) = (ζ — φ{λ))~ι is holomorphic in A — cL^(supp u) if λ e supp u.
Using the equalities u(φζ)(ζ — u(φ)) = (ζ — u(φ))u(φζ) = u(p0) = e, we obtain
Λ^ — cL^(supp u) C p(u(φ)) which is preposterous. Now if σ(u(φ))Φclooφ
(supp u) we can find φ0 ( e &°°) such that φ0 has compact support, ^(supp φ0)
Γ\G(u(φ)) = 0, ^(^0)7^0. Take ψ(e©°°) with compact support such that
ψ(λ) = 1 in a neighbourhood of supp φ0, φ (supp φ) Γ\σ(u(<p)) = 0 and put for
C ί ^(supp 0)

, λ e supp 0

[0, Λ

Using the identity (ζ — φ)φζφ0 — φ0 we may define the function f: A-+A
by the equation

(R(ζ;u(φ))u(φ0X ζ

o
ζ

Since / is holomorphic and lim f(ζ) = lim u(ψζ) u(φ0) = 0, we have / = 0,
f-»oβ f-»oo

which is impossible because ^(^0)7^0. Thus ΰ(u(φ)) = cL^ (supp M).

COROLLARY 3.10. Lei u be a spectral distribution and put vφ(ψ) = u(ψoφ).
Then vφ is a spectral distribution such that supp vψ — cl < (̂supp ύ).
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PROOF. By Th. 3.9 we have cL<^(supp u) = β(u(φ)) = ΰ(vφ(pι)) = cL supp
vφ. Since supp vψ = (cL supp vφ) — {00} and cl ^(supp u) = (cL^(supp u)) —
{00}5 the corollary results.

Let us denote by &"(A2) the algebra of all infinitely differentiable complex
functions defined in A2( — Ax A — RA) endowed with the topology of the uni-
form convergence of all derivatives on compact sets.

LEMMA 3.11. Let u, v be two commuting spectral distributions. Then
there is a unique vector distribution

w: ®°°(A2)-+Λ

such that w(φ0φ) = u(φ)v(φ), φ, φ £ &°°. The vector distribution w is multi-
plicative and w(po<g)po) = e.

PROOF. The map (φ, ψ)-+u(<p)υ(φ) is separately continuous; therefore
it is continuous. If we put wo(Σ(^y®0y) = Σu(φj)v(ψj) the map wo: β°°(g)β"
-> A is continuous if we endow β0 0®^0 0 with the protective topology. Since
we have (g°°®(§~ = β~(g)β~ = (8~(Λ2) (see [8], II §2, No. 3, Th. 10 and [15],
Prop. 28) we can extend w0 by continuity to a vector distribution w defined
in ©-(A2).

The uniqueness of w results by the condition w(φ®φ) = wo(φ(g)ψ) = u(φ)
w(ψ). Trivially w0 is multiplicative; therefore w is so and w(po(g)po) = wo(po

Do) = u(po)v(pQ) = e.

Notation. Let α, v be two commuting spectral distributions. We shall
put

(u + v) (φ) = w{φo{px<S>pQ +po®pύ), φ € ©*°

(u X v)(φ) = w(<po(pι<g)pi))9 φ € ©~

where w is defined in Lemma 3.11.

If β{ 6 A) is a given number then we denote by δμ the spectral distribu-
tion defined by the equation δμ(φ) = φ(u)e (δμ is Dirac's distribution).

LEMMA 3.12. Let u, v be two commuting spectral distributions. Then u +
s s s

υ, uxv are spectral distributions such that (uJrv)(pι) = u(pι) + v(p1), (u + v)
s s

(pi) = u(pι) + υ(pι), (u X v) (px) = u(pi) v(px), (u X υ) (pi) = u(px) v(pι).
s s

PROOF. I t results by the definition of u + v, uxv and by Lemma 3.11.

Notation. Let u be a spectral distribution. We shall put (Re u) (φ) — u

(φo R e joi), ( I m u)(φ) = u(φo I m p x ) . If 0 i s u p p u t h e n \u\(φ) = u(φoψι),
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uo(φ) = u(φoψ2) where φλ = \px |, φ2 = -T^jin a neighbourhood of supp u.
\pι I

Evidently all the above maps are spectral distributions commuting each
other.

THEOREM 3.13. Let u be a spectral distribution. Then we have u — Re
s s s

u-\-δiXlm u. I f 0 $ supp u then the equality u — u o x \ u \ also holds.

PROOF. By Lemma 3.12 we have (Re u + δiXlm u){pλ) = u(pι) and (Re

u + δiX Im u)(pι) = u(pι) which suffice for the first equality. The second one
results analogously.

COROLLARY 3.14. Let x( e A) be a generalized scalar element. Then there

are two commuting scalar elements y, z such that <τ(y), G(Z) C R W {°°}, x =

j + iz. If 0 $ ΰ(x) then γ, z can be chosen in such a way that c{y)C {λ e A \λ\

= 1}, σ(z) C {t 6 R; *;>

PROOF. We have to apply Th. 3.13 and Th. 3.9.

§ 4. The problem of regularity of spectral distributions

Definition 4.1. The spectral distribution u is called regular if it is
valued in the bicommutant (i.e. the commutant of the commutant) of u(pι)

Definition 4.2. The generalized scalar element χ( e A) is called a regular
one if it possesses a regular spectral distribution.

In [6], VI, 5(d) the following problem is raised: let T be a generalized
scalar operator in a Banach space; is it a regular one? Concerning this pro-
blem we shall exhibit an example of generalized scalar operator in a locally
convex space which is not regular (Th. 4.4). A sufficient condition for regu-
larity is given:

THEOREM 4.3. Let x( e A) be a generalized scalar element such that d(x)
- {oo} C R' Then x is regular.

PROOF. Let u be a spectral distribution of x and put γ=iu (Im px).
Since u is continuous and supp u C R (Cor. 3.10), we obtain easily that there
is a map a-+na(: j4-^N\J {0}) such that

I y»* + ku(φ) \a=\ u(Im Pι)
n« + kφ \a - 0, k 6 JV, ψ € ©~.

It follows that the series v(f) = Σ ^—}u(f(m)oRepι), fe@°°(R) is a finite
m = o 771 I

sum in the topology of each pseudonorm | | a.
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If / is a polynomial we have v(f) = / ( # ) thus v is valued in the bicom-
mutant of x. The map v is a multiplicative distribution defined in &"{R).
For any φ e &* we consider the function φ c &™(R) defined by the equation
φ(i) — φ(t). If w(φ) — v(φ), φ c (8~, then w is a regular spectral distribution of x.

THEOREM 4.4. Let A be the algebra of all continuous linear operators
defined in @™, endowed with the topology of uniform convergence on bounded
sets. The operator Te A defined by the equation Tφ—pχφ is a non-regular
generalized scalar operator.

PROOF. The map u defined by the equation u(φ)φ = <pφ is a spectral
distribution such that u(pθ = T. Thus T is a generalized scalar operator.
Since we have DT= TD, Du(pι) — u(pι)D-\-e, u results to be non-regular.

If x possesses a regular spectral distribution v then putting h = v(pι)p0

we obtain v(pι) φ = v(pι) u(φ)p0 = u(φ)h = hφ, φ e &~.
Given n, K, φ we can find m,(see Cor. 3.4) such that \ (u(px) — v(pι))mφ \ n>k

= \(pι—h)mφ\nίk = 0, which implies pi=h. It follows that u = υ> which is
impossible because v is regular, and the proof is finished.
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