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1. Introduction

In this paper we consider parabolic equations with boundary conditions:

(a) ^ + Au=f, u(O) = uθ9

(b) -d

d

u- + Au=f, u(0) = u(T),

where A is a non-linear operator*
In 1965 J. Leray and J. L. Lions [4Γ\ introduced a non-linear operator on

a reflexive Banach space into its conjugate space and showed that it is
surjective under the condition of coerciveness. Making use of this result,
J. L. Lions [5] showed the existence of solutions of (a) and (b) for a certain
kind of non-linear operator A.

In 1968 H. Brezis [1] introduced a new operator, called of type M, which
is more general than the operator of J. Leray and J. L. Lions, and showed
that the operator of type M on a reflexive Banach space into its conjugate
space is also surjective under the condition of coerciveness.

The purpose of this paper is to extend J. L. Lions' results in \ΊΓ\ on the
existence of solutions of (a) and (b) to the case where A is a bounded coercive
operator satisfying conditions which are more general than Lions' [ΊΓ]. In
the proof we shall make use of the result by H. Brezis mentioned above.

The author would like to express his deepest gratitude to Professors
M. Ohtsuka and F-Y. Maeda for advice and many helpful suggestions.

2. Notation and statement of theorems

In general, for a Banach space U over C (complex numbers), we shall
denote the anti-dual space of U by U'. Let H be a Hubert space over C, (, )
be the scalar product in H, and | | be the norm in H. One may identify Hf

with H. Let V be a reflexive Banach space over C, ((,)) the natural pairing
between V and F, \\v\\v the norm of v e Fand ||v*||^ the norm of v* e V.

Assume that VQH, V is dense in H and the injection is continuous.
Then VCHC V. Let F be a linear space whose elements are vector-valued
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functions defined on a fixed real finite interval (0, T) with values in H and
©(0, T; V) the space of all C°° functions on (0, T) into V with compact sup-
port. Assume that F is a reflexive Banach space, that

L°°(0, T; V)CFCL\0, T; H)

and

F'CL'Qd, T; V'X

where all injections are continuous, and that ©(0, T; V) is dense in F. We
denote the natural pairing between F' and F by < , >, the norm of u e F by
\\u\\F and the norm of u* e F' by | | H * | | F ' . For each M* = M*(0 eZ2(0, Γ; If),
consider

r
(M*(0J u(t))dt, u € F.

0

This is a continuous anti-linear form on ί1, and hence belongs to F'. We ex-
press this fact by L2(0, Γ; H)CFr. For this reason we write

T

(tti(ί)j U2(t))dt
0

for any M15 w2 6 L2(0, Γ; If) too.

For g e i^O, Γ; F7) we define .Kf # by

1 (τ ( t — s \(Kιg)(t) = — \ expί )g (5)d5, ε>0.
ε jt \ ε J

Then K{g e L\0, T; V) for any ε>0.

We assume that

(Ai) if g e F\ then Kfg e F' and if G is a bounded set in F\ then {Kfg ;
g e G, ε>0} is bounded in Ff.

This condition is satisfied, for instance, when F=Lp(0, T; F), 2 </>< + °°.

Throughout the paper we shall use the symbols "_£_>", "—22->" and "_J£L>"
to denote the convergences in the strong, weak and weak* topology respec-
tively.

Since FCL2(0, T; H)CF\ any u e F may be regarded as an element of F'.
Hence, u is a continuous anti-linear from on iO©(0, T\ F), so that u may be
considered to be a F'-valued distribution. Therefore ur exists in the distri-
bution sense.

Let A be an operator on F into Ff and assume that A satisfies the fol-
lowing conditions :

(Aι) if {ui} CF is such a directed set that ||M, | | F < ^ £ , u'i £ Fr, | |^ ||
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Ui—m-+ύ in F, ufi-^->uf in F', Aιn-^->ψ in Fr and l i m s u p i ? e < ^ , u{><Re
i

<φ, u>, then Au = φ;
(A2) A is bounded, that is, A maps bounded sets in F to bounded sets

i n ί " ;
(A3) (coerciveness) Re<A^υ> -^oo as H^^-^oo.

\\V\\F

Under the above hypotheses we shall establish the following theorem.

THEOREM 1. For given f e F' and u0 e H, there exists u e F such that u(t)
is a continuous function on [0, T~] into V\ u' e f , u' + Au=f and u(0) = u0.

For g eZ^O, T; V) we set

Γexp(*~*~ΓW)<k ε>0.
c J 0

Then i^|^ e Lι(0, Γ; F0 for any ε>0.
In addition we suppose that
(h2) if g- 6 F, then ίΓfg e F7 and if G is a bounded set in F\ then {K\g\

geG, e>0} is bounded in Fr.
This condition is satisfied, for instance, when F=Lp(0, T; V), 2 </?< + °°.
Then we have the following theorem.

THEOREM 2. For given f £ F\ there exists u eF such that u(t) is a con-
tinuous function on [0, TJ into V\ u' e F , u/ + Au=f and u(0) = u(T) in H.

For the method of proof we essentially follow J. L. Lions [ΊΓ].

3. Lemmas

Let B be a reflexive Banach space, t0 a positive real number and
2y(0, to Bf) the space of all distributions on (0, ί0) with values in B\ that
is, the space of all continuous anti-linear,forms on ©(0, to; B).

If u e Lιφ, to; Bf) and the distributional derivative u' e L1^, to; Bf), then
there exists a strongly absolutely continuous function u(t) on [0, ί0] into Br

such that u(t) = u(t) almost everywhere on (0, t0) and the strong derivative
of u is equal to u' in the distribution sense (cf. Chap. I, 11 of pΓ]; Chap. Ill,
3.7, 3.8 of [3]; IV, §5 of [6]). Therefore we assume that such a function
u(t) is strongly absolutely continuous on [Ό, ί0] and ur(t) is the strong deri-
vative of u(f). Let v(t) be a strongly absolutely continuous function on
[0, ίoj with values in B such that the strong derivative v'(t) e Lιφ, to; B).
Then we have the formula for integration by parts for u and v:
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where (( , )) is the natural pairing between Br and B.
Making use of this formula, we shall prove the following lemmas.

L E M M A 1. Let {ui} be a directed set, u{ e Z^O, to; Br), u\ d ^ O , to; Bf),

Ui-jϊ-+u i n i i ( 0 , ίo; B') and ufi-^->ur in L1^, to; B'). Then Ui(t)-^->u(t) in

B' for all t e [0 , ί o ]

PROOF. Let a be any element of B and set υ(t) = ta. Clearly υ is
strongly absolutely continuous on [0, toj and υr e Lιφ, to; B). Therefore, by
integration by parts we have for any t' e (0, ι^\

ι = ι'((u,i(t'), a))
JV Jΰ

and

rV rV

\ (\u'(t), υ(t)))dt+\ (\u(t), v\t)))dt = t\(u(t), a)).
Jo Jo

Since

\ ((wί(ί), #(#))) <iί—M ((zz/(ί), v(t)y)dt
Jo Jo

and

*'(0))^,

we obtain (Sui(tr), a)) -> ((u(O> ̂ )) The arbitrariness of α implies that Mf(ίO
w* > u(tf) in .δ7. Considering the function v(t) = (to — t)a, we obtain ẑ  (0) w* >

w(O) in £ ; . q.e.d.

L E M M A 2 . L e i {in} be a directed set, UieLι(<d, to; B'), uΊ 6 L ^ O , to; B'),

ιii-—£—>u in LL(0, to; Br) and uΊ-^-^u' in Lλ(§, to; Br). Then Ui(ι)—*-+u(ι) in

B' for all t e [ 0 , ί 0 H

PROOF. Let U be the closed unit ball in B, X the family of functions
{va(t) = ta;a€ U} and Fthe family {v'a(i) = a; a e U}. Clearly Xand Fare
bounded in t h e a n t i - d u a l space of L^O, to; B

r). Since for a n y tf e (0, ί0H

rV rV
\ (\Ufi(t), V α (O)) dt —>\ ((u'it), Va(t)y)dt
Jo Jo

uniformly on X and

((Ui(t), tfα(ί)))dί-M ((M(0> Va(t)))dt

) Jo

uniformly on F, using the formula for integration by parts again we infer
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that ((Hί(O> a))-+((u(t'\ a)) uniformly on U. Thus Ui(tr)^->u(t') in B'.
Considering the family {va(t) = (t0 — t)a\ a e £/}, we obtain Ui(0)—^—>u(0) in
B'. q.e.d.

To show THEOREM 1 we consider the space W= {v e F; υ' e L2(0, T; H)}.
Define a norm in W by \\v\\ψ = IMU + lkΊU2(o,τ;̂ ) Then W is a reflexive
Banach space. It follows from (3.1) that

<u\ v> + <u, vf>=(u(T), υ(T))-(u(O), t (O)) for ttj v e W.

In particular,

(3.2) 2Re<^/

? ^> = | u ( Γ ) | 2 - K 0 ) | 2 for u a W.

Given ε>0, we set for u, v e W

(3.3) lΛεu, v^ = e<u\ vr> + <ur, v>+(u(0), v(0))+<Au, v>,

where [ , ] is the natural pairing between W and W. By this formula A6 is
defined to be an operator on W into Wr.

We have the following lemma.

LEMMA 3. For given ε>0,
(1) Aε is a bounded operator on W into W\
(2) if {ui} C W is a directed set such that \\ui\\w<LC, Ui w >u in W,

Aεui~^φ in W and limsupReQ^z^, wJ<Re[0, uj, then Aεu = φ,
i

PROOF. TO prove (1) we first observe that the mapping v-+v(O) is
bounded linear on W by LEMMA 2. Hence there exists a positive constant M
such that \v(0)\<M\\v\\w for all v e W,. If | | ^ | U < ^ 5 then for all t; 6 r

\[_Aεu, ^ ] | < ε | | ^ / | | Z 2 ( 0 ) Γ . i 7 ) . | | ί ; / | | Z / 2 ( 0 > Γ . i 7 )

where M' is a positive constant. Since A is a bounded operator,
\\u\\w <ίK} is bounded. Consequently for a sufficiently large iV>0? we have

This implies that Aε is bounded.
To prove (2) we choose a subdirected set {ίa} such that
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By hypothesis (A2), we may choose {ίa} in such a way that Auia-
 w* >η in F'.

Since Ui-^->u in F and u —^-* u

f in Z,2(0, Γ; # ) , it follows from LEMMA 1 that
Ui(0)-^->u(Q) in H. By (3.3), £Aεuia, υ~] = e<uf

ia, vf> + <ur

ia, v>+(uia(0),
v(β))+ <Auia, v>, and, taking limit in a, we also have

(3.4) [0 , v~l =

for all v e W.

Hence, by (3.2),

(3.5) ^

^ a uia, uia>

and

(3.6) ί 2 ^ 2

On the other hand, since liminf| |^<α | | |2 ( 0 > : r.F )>||u / | | |2 ( 0 } : Γ.^ ) 5 liminf | uia(Q) \2

^ U ( O ) 12 and liminf | ^ β ( Γ ) | >.\u(T) \ \ we have by (3.5)

limsup Re<Aui , Uί >

Thus, by (3.6) and the hypothesis that

we obtain

l i m s u p R e < ^ ; ,u, α > ^

Therefore, by hypothesis (A{) we have Au = η. Then by (3.4)

QJ,c^, v]] = [l05 D̂ ί ° r all v e W.

Hence Aεu = φ.

Finally to prove (3) we use the relation
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υ. v>,

which follows from (3.2). Hence

Ί l | R υ>
\\v\\w " l

Then, using (Λ2), we see that (3) is valid. q.e.d.

Now we recall the results by H. Brezis

DEFINITION. (H. Brezis [1]). Let E be a Banach space and E' the dual
space of E. A mapping T: E^Ef is said to be of type M if T satisfies the
following conditions (Mi) and (M2).

(Mi) // {%i} is a directed set such that Xi-^x in E, | |^/|U<C, Txi-^
g in Er and limsup(r#/5 χd<ί(g, x), then Tx = g.

ί

(M2) The restriction of T on any finite dimensional subspace of E is
continuous with respect to the weak* topology.

Remark: If T is bounded, then condition (Mi) implies (M2).
We shall use

THEOREM. (H. Brezis \ΎJ) Let E be a Banach space, Er be the dual space
of E and T be an operator of type M on E into E\ Suppose that

\(Tx,x)\ ^^ a s i i ^ i ^ o o

Then T is surjective, that is, the range R(T)=E;.
Remark: The above definition and theorem were given in real Banach

space in [1~]. However, it is easy to extend them to the case of complex
Banach spaces replacing (, ) by R e ( , ).

LEMMA 3 and the above Remark show that Aε is a bounded operator of
type M on W into W. Thus we have

LEMMA 4. For given f 6 F1 and u0 e H, there exists u6 e W such that

(3.7) [Aεu£, tΓ]= </, v> + (u0, v(0)) for all v e W.

PROOF. The functional v -+ </, v> + (u0, v(0)) is a continuous anti-linear
form on W. Therefore this lemma is an immediate consequence of the above
THEOREM by H. Brezis. q.e.d.

For the family {uε; ε>0} of solutions of (3.7), we prove
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LEMMA 5. Let εo>O be a constant. Then

(1) The set {uε; 0 < ε < ε 0 } is bounded in F.

(2) The set {u€(0); 0 < ε < ε 0 } is bounded in H.

(3) The set {4εu'e\ 0 < ε < ε 0 } is bounded in L2(0, T; H).

(4) The set {uε 0 < ε < ε 0 } is bounded in F1.

PROOF. From (3.7) we obtain (cf. (3.5))

, aε>

Hence

\UB\\F

This together with (A3) implies (1). Then (2) and (3) are easily obtained.

Let us prove (4). Substitute φ e 2)(0, T; V) for υ in (3.7). Then

ε<uU φ'> + <uU φ> + <Auε, φ> =

Thus in the distribution sense

(3.8) -εu

and hence u'e' €F' + L2(0, T; H) = F/CL\0, T\ F) , so that (3.8) holds in Ff.
For a 6 V, we set v(ι) = ta. By integration by parts

-ε<u"6, υ'>=ε<u'e, vf>-e({

Using (3.8),

e<uε, υ'> + <u'6, υ> + <Auε, υ>-ε{{uf

ε{T), v(T)))=<f, υ>.

On the other hand, since v(0) = 0, (3.7) implies that

υ'> + <u'6, v> + <Auε, v> =

Therefore ({u'e(T\ v(T))) = 0, and hence ((u'ε(T), ά)) = 0. Since a may be
any element of F, we have

(3.9) uε(T) = 0 in V.
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(β.8) and (3.9) imply that

T

— Aits) (s)ds in V.
)t \ ε

In fact, we have

MW-
t \ S

= -Γexpf-^-)u' s'(s)ds-exv( t^^λu ί

ε(T) + u'E(t)
jt \ ε J \ ε J

Since {f—Auε} is bounded in F' by (Λ2), hypothesis (hi) implies that {u'6} is

bounded in F'.

§ 4. Proof of the theorems

PROOF OF THEOREM 1: It follows from LEMMA 5 that there exists a suit-

able directed set {ε} tending to zero such that

(4.1) uε-^-*u inF,

(4.2) u'6-^>z inf,

(4.3) λ/ε^-^->|0 in L2(0, T; H\

(4.4) u6(0)—y->.ξ0 in H,

(4.5) Aue-^Ux in Fr.

For any φ c ©(0, T\ V), <u£,φ> = — <u6,φ
/>-+—<u,φ/> as ε->0. Hence,

(4.2) implies that - <u, φ'> = <z, φ> for all φ e ©(0, Γ; V). Thus u' = z in

F'. By (4.1) and (4.2) LEMMA 1 implies that u6(jd)-^-^u(0) in V\ so that

u(0) = ξ0 on account of (4.4). From (4.3) we see that as ε->0, εu6'-+0 weakly

in the distribution sense. In fact, for any φ e ©(0, T; V)

Thus letting ε^O in (3.8), we have
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(4.6) u' + x=f

in the distribution sense. Since ©(0, T; V) is dense in F, (4.6) holds in F'.
For β e F, we set v(t) = (T-1) β. Then we have by (4.1) — (4.4),

ε<u'6, ί/>-+0, <u£, v>-+<u\ υ>, <Λuε, υ>-^<%, v>

and (u€(0), v(P))=T(u€(0), β)-+T(u(0), β). Hence by (3.7) we have

> + T(u0, β).

By (4.6) the left hand side is equal to T(u(0), β)+<f, v>. Thus we infer
that (w(0), β) = (u0, β). The arbitrariness of β implies that u(0) = u0.

It remains to prove that Au = x. There exists a sequence {εn} such that
εn —• 0 and

X^liminf [Re<uί, u£> + \ ue(0) \2]

= lim[Re< uίn, u£n> + \ u£n(0) \ 2 ] .
n—>oo

By (3.2) in the proof of LEMMA 3, for any k, j

Έ,e<uίk-u'ej, uSk-u€j> + \u£k(0)-u£.(0)\2>0,

that is,

[ReOί, , u6k> + I^ft(0)12] + [Re<u£ p u£j> + \u£j(0)\2]

-Re<uίk, u6j>-Έ,e<u'6fi u£k>-(u£k(0), u£.(0))

-(u£.(0\u£k(0))>0.

Letting k-+oo and then y-> °°, we have

2[X-Re<u\ u>-\ u(0) 12]>0.

Thus

(4.7) X>Re<^ / , u>+ Iu(0)|2.

On the other hand, by (3.3), (3.7), (4.1), (4.4) and (4.6), we obtain

(4.8) limsupRe<^w£, u£>

= limsup[Re</,
£ > 0
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%, u>

Hence, from (4.7) and (4.8), we derive

Then it follows from (Λι) that Au — %. q.e.d.

PROOF OF THEOREM 2: We consider the space W= {v e F; v' e L2(0, T; H),

v(Q) = v(T)}. Define the same norm in W as in W. Then W is a reflexive
Banach space. For given ε>0, we set for u, υ e W

Then we can show that A6 is a bounded coercive operator of type M on W
into W' in the same way as LEMMA 3. Thus by H. Brezis' result, for given
f£F' there exists uε e W such that

[_A£u£, vΊ=<f,v> for all v e W.

Just as in the proof of THEOREM 1, there exists a suitable directed set
{ε} tending to zero such that

(4.9) {uε} is bounded in F and uε-^->u in F9

(4.10) Vεz4-^->p in Z2(0, T; H),

(4.11) U£(0) = u6(T)-^->ξ inH,

(4.12) Au6-^->χ in F\

We can show as in the proof of THEOREM 1 that, for any ε>0,

(4.13) -εu'e' + u's + Aue=f

and

(4.14) uί(P) = u'a(T) in V.

Also as in the proof of THEOREM 1, (4.13) and (4.14) imply that
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This implies by hypotheses (hi) and (h2) that {uf

6} is bounded in F'. There-
fore we may assume that

(4.15) u'-^u'ίnF.

By (4.9) and (4.15) LEMMA 1 implies that u(ΰ) = u(T) in H.

In the same way as in the proof of THEOREM 1, we obtain

limsupRe<Au ε , u£><^Re<%, &>,

and, by hypothesis (At), Au = x. On the other hand, for all φ e ©(0, T; V\

Letting ε->0, we have u +Au=f in the distribution sense. Since ©(0, T; V)
is dense in F, the equality u' + Au = f holds in F'. Thus u is a solution.

q.e.d.
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