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This paper is an extension of Wood's results in [_4Γ\. All rings considered
are assumed to be nonzero commutative rings. A ring R is called an AM-
ring if whenever A and B are ideals of R with A properly contained in B, then
there is an ideal C of R such that A = BC. An AM-ring in which RA — A for
each ideal A of R is called a multiplication ring. Wood characterized in \JΓ\
rings with identity for which each proper homomorphic image is a multiplica-
tion ring. Such rings are said to satisfy property (Hm). An example is
given in [_4Γ] to show that a ring satisfying (Hm) need not be a multiplication
ring. In fact, a general method is given for constructing such examples.
This paper considers u -rings satisfying property (Hm) where a ring S is
called a u-ring if the only ideal A of 5 such that \lA = S is S itself. Section 2
shows that the characterization of rings with identity satisfying (Hm) carries
over to u-rings safisfying (Hm).

The notation and terminology is that of [ΊΓ| with two exceptions: c de-
notes containment and C denotes proper containment, and we do not assume
that a Noetherian ring contains an identity. If A is an ideal of a ring i?, we
say that A is a proper ideal of R if (0) CACR and that A is a genuine ideal
of R if ACR.

1. Rings Satisfying Properties (H*) and (//**).

Let R be a ring. We say that R satisfies property (*) (satisfies property
(**)) if each ideal of R with prime radical is primary (is a prime power).
If each proper homomorphic image of R satisfies (*) (satisfies (**)), we say
that R satisfies porperty (£f*) (satisfies property (//**)). In Q3J it is shown
that an AM-ring satisfies (*) and (**) and that if S is a zz-ring, S satisfies
(**) if and only if 5 satisfies (*) and primary ideals are prime powers.
Therefore, in a u-ring, (jff**) implies Off*). We give here a partial char-
acterization of α-rings satisfying (if*) and then show that the characteriza-
tion of u-rings satisfying (J?**) is the same as the characterization of rings
with identity satisfying (if**).

DEFINITION. A ring R is said to have dimension n or to be n-dimensional
if there exists a chain PoCPiC C^of n + 1 prime ideals of R where Pn C R,
but no such chain of n + 2 prime ideals exists in R.
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LEMMA 1.1. Let Rbea ring satisfying (//*) such that V (0) = P is a genuine
nonmaximal prime ideal of R. If P—P2, R is either a zero-dimensional or
one-dimensional domain. Hence, R satisfies (*).

PROOF. This follows from the proof of [4; Lemma 1.3] using [2; Theo-
rem 1].

LEMMA 1.2. Let R be a ring satisfying (H*). If P is a genuine non-
maximal prime ideal of R and if P2φ(0), then P—P2.

PROOF. Since P2φ(0), R/P2 satisfies (*). Thus, P2/P2 is P/P2-primary
since <JP2/P2 = P/P2. [2; Theorem 1] implies that P2/P2 = P/P2

9 and it fol-
lows that P=P2.

DEFINITION. A ring R is said to be a primary ring if R has at most two
prime ideals.

LEMMA 1.3. If S is a primary u-ring, then S contains an identity. Hence,
S satisfies (*).

PROOF.1 Let Λf=V(O). Since 5 is a u-ring, MCS. Also, since 5 is a
primary ring and since V (0) is the intersection of all prime ideals of 5, M is
a prime ideal of S. Let s e S\M. Since M is prime, s2 $ M and it follows
that \l~sS=S. Therefore, sS=S. For some e e S, se = s. If t e 5, then t = sx
for some x e S and et = esx = sx = t. Hence e is the identity of S.

LEMMA 1.4. Let R be a ring such that V (0) is not a nonzero maximal ideal
of R. Then R satisfies (H*) and each genuine nonmaximal prime ideal of R
is idempotent if and only if R satisfies (*).

PROOF. (<-) If R satisfies (*), R clearly satisfies (#*)• Also, if P is a
genuine nonmaximal prime ideal of R, P2 is P-primary. Thus, [2 Theorem
1] implies that P=P2.

(->) This follows from cases 1 and 3 in the proof of [4; Theorem 1.5].

THEOREM 1.5. Let S be a u-ring. Then S satisfies (H*) and each genuine
nonmaximal prime ideal of S is idempotent if and only if S satisfies (*).

PROOF. The proof of this is an immediate consequence of Lemmas 1.3
and 1.4.

THEOREM 1.6. Let S be a u-ring. If S is not a primary ring, then S
satisfies (H**) if and only if S satisfies (**).

PROOF. This follows immediately from the proof of [4 Theorem 2.2]
and the following observation. Let P be a nonmaximal prime ideal of a u-

1. The authors are grateful to Professor Kanroku Aoyama for suggesting a shorter proof of Lemma 1.3.
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ring T satisfying (**). Then T satisfies (*) and P2 is P-primary. Thus, P=
P2 by [2; Theorem 1].

REMARK 1.7. Since Lemma 1.3 shows that a primary u-ring must con-
tain an identity, Theorem 1.6 and [4; Theorems 2.3 and 2.5, Lemma 2.4] give
a characterization of u-rings satisfying (if**).

2. Rings Satisfying Property (Hm).

We now are able to show that the characterization of u-rings satisfying
(Hm) is the same as the characterization of rings with identity satisfying
(Hm). Theorem 2.4 shows that in a nonprimary wring S, S satisfying (Hm)
is equivalent to S being a multiplication ring.

THEOREM 2.1. Let A be an ideal of a ring R satisfying (Hm) such that
A<£\l(0). If B is an ideal of R containing A, there exists an ideal C of R
such that A = BC. Therefore, if V(0) = (0), R is a multiplication ring.

PROOF. See the proof of [4; Theorem 3.1].

LEMMA 2.2. If R is an indecomposable multiplication ring, R contains
an identity and is either a Dedekind domain or a special primary ring.

PROOF. Since R is a multiplicaiton ring, R = R2. Thus, [3; Lemma 7]
shows that R contains a nonzero idempotent element. Since R is indecom-
posable, [4; Lemma 3.7] implies that R contains an identity. Therefore, R
is either a Dedekind domain or a special primary ring. Q3 Theorem 16].

THEOREM 2.3. Let Sbea u-ring satisfying (Hm). If \l (0)=Pisa genuine
nonmaximal prime ideal of 5, then P=(0) and S is a Dedekind domain.

PROOF. Since \I(O)=P is a genuine nonmaximal prime ideal of 5, the
proof of Lemma 1.3 shows that S is not a primary ring. Thus, S satisfies
(**) by Theorem 1.6. But S also satisfies (*) so that (0) is a P-primary ideal
of S. Hence, [2; Theorem 1] shows that P=(0) and it follows that 5 is a
multiplication domain by Theorem 2.1. Since an integral domain is inde-
composable, S is a Dedekind domain by Lemma 2.2.

THEOREM 2.4. Let S be a u-ring. If S is not a primary ring, then S
satisfies (Hm) if and only if S is a multiplication ring.

PROOF. This proof follows from the proof of [Λ; Theorem 3.8] and
Lemma 2.2 and Theorem 2.3.

REMARK 2.5. Again using Lemma 1.3, we see that H4; Theorem 3.12]
characterizes primary u-rings satisfying (Hm). This together with Theorem
2.4 gives a characterization of u-rings satisfying (Hm).
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