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This paper is an extension of Wood’s resultsin [4]. All rings considered
are assumed to be nonzero commutative rings. A ring R is called an AM-
ring if whenever 4 and B are ideals of R with 4 properly contained in B, then
there is an ideal C of R such that A=BC. An AM-ring in which R4A= A4 for
each ideal 4 of R is called a multiplication ring. Wood characterized in [4]
rings with identity for which each proper homomorphic image is a multiplica-
tion ring. Such rings are said to satisfy property (Hm). An example is
given in [4] to show that a ring satisfying (Hm) need not be a multiplication
ring. In fact, a general method is given for constructing such examples.
This paper considers u-rings satisfying property (Hm) where a ring S is
called a u-ring if the only ideal 4 of S such that v4=S is S itself. Section 2
shows that the characterization of rings with identity satisfying (Hm) carries
over to u-rings safisfying (Hm).

The notation and terminology is that of [5] with two exceptions: < de-
notes containment and C denotes proper containment, and we do not assume
that a Noetherian ring contains an identity. If A is an ideal of a ring R, we
say that A4 is a proper ideal of R if (0) C ACR and that 4 is a genuine ideal
of Rif ACR.

1. Rings Satisfying Properties (H*) and (Hx*x).

Let R be a ring. We say that R satisfies property (x) (satisfies property
(x%)) if each ideal of R with prime radical is primary (is a prime power).
If each proper homomorphic image of R satisfies (x) (satisfies (xx)), we say
that R satisfies porperty (H*) (satisfies property (Hxx)). In[3]it is shown
that an AM-ring satisfies (x) and (x*) and that if S is a u-ring, S satisfies
(x%) if and only if S satisfies (x) and primary ideals are prime powers.
Therefore, in a u-ring, (H*x) implies (Hx). We give here a partial char-
acterization of u-rings satisfying (Hx) and then show that the characteriza-
tion of u-rings satisfying (Hxx) is the same as the characterization of rings
with identity satisfying (Hxx).

DerFINiTION. A ring R is said to have dimension n or to be n-dimensional
if there exists a chain P,C P, C... C P, of n+1 prime ideals of R where P,CR,
but no such chain of »+2 prime ideals exists in R.
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LemMa 1.1.  Let R be a ring satisfying (Hx) such that v (0)=P is a genwine
nonmaximal prime ideal of R. If P=P?% R 1is either a zero-dimensional or
one-dimensional domain. Hence, R satisfies (x).

Proor. This follows from the proof of [4; Lemma 1.3] using [2; Theo-
rem 17].

LemmAa 1.2. Let R be a ring satisfying (Hx). If P is a genuine non-
maximal prime ideal of R and if P?*+#(0), then P= P2,

Proor. Since P?+~(0), R/P? satisfies (x). Thus, P?/P? is P/P?-primary
since VP?/P:=P/P?. [2; Theorem 1] implies that P?/P?=P/PZ, and it fol-
lows that P= P2

DeriNiTION. A ring R is said to be a primary ring if R has at most two
prime ideals.

Lemma 1.8.  If S is a primary u-ring, then S contains an identity. Hence,
S satisfies (x).

Proor.! Let M=v(0). Since S is a u-ring, MCS. Also, since S is a
primary ring and since v (0) is the intersection of all prime ideals of S, M is
a prime ideal of S. Letse S\M. Since M is prime, s* ¢ M and it follows
that vsS=S. Therefore, sS=S. For some e€ S, se=s. If t€ S, then t=sx
for some x € S and et=esx=sx=t. Hence e is the identity of S.

Lemma 1.4. Let R be a ring such that \/(T) 18 not a nonzero maximal 1deal
of R. Then R satisfies (Hx) and each genuine nonmaximal prime ideal of R
18 1dempotent if and only if R satisfies (x).

Proor. («) If R satisfies (%), R clearly satisfies (Hx). Also, if P is a
genuine nonmaximal prime ideal of R, P? is P-primary. Thus, [2; Theorem
1] implies that P= P2,

(—) This follows from cases 1 and 3 in the proof of [4; Theorem 1.5].

Tueorem 1.5. Let Sbe a u-ring. Then S satisfies (Hx) and each genuine
nonmaximal prime ideal of S is idempotent if and only if S satisfies (x).

Proor. The proof of this is an immediate consequence of Lemmas 1.3
and 1.4.

Tueorem 1.6. Let S be a u-ring. If S is not a primary ring, then S
satisfies (Hxx) if and only if S satisfies (xx*).

Proor. This follows immediately from the proof of [4; Theorem 2.2]
and the following observation. Let P be a nonmaximal prime ideal of a u-

1. The authors are grateful to Professor Kanroku Aoyama for suggesting a shorter proof of Lemma 1.3.
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ring T satisfying (xx). Then T satisfies (x) and P? is P-primary. Thus, P=
P? by [2; Theorem 17].

Remark 1.7. Since Lemma 1.3 shows that a primary u-ring must con-
tain an identity, Theorem 1.6 and [4; Theorems 2.3 and 2.5, Lemma 2.47] give
a characterization of u-rings satisfying (Hxx).

2. Rings Satisfying Property (Hm).

We now are able to show that the characterization of u-rings satisfying
(Hm) is the same as the characterization of rings with identity satisfying
(Hm). Theorem 2.4 shows that in a nonprimary u-ring S, S satisfying (Hm)
is equivalent to S being a multiplication ring.

TueoRrEM 2.1. Let A be an ideal of a ring R satisfying (Hm) such that
AZN(0). If B is an ideal of R imtaining A, there exists an ideal C of R
such that A=BC. Therefore, if N (0)=(0), R is a multiplication ring.

Proor. See the proof of [4; Theorem 3.17].

Lemma 2.2. If R is an tndecomposable multiplication ring, R contains
an identity and s either a Dedekind domain or a special primary ring.

Proor. Since R is a multiplicaiton ring, R=R2?. Thus, [3; Lemma 7]
shows that R contains a nonzero idempotent element. Since R is indecom-
posable, [4; Lemma 3.7] implies that R contains an identity. Therefore, R
is either a Dedekind domain or a special primary ring. [ 3; Theorem 16].

TueorEM 2.3. Let Sbe a u-ring satisfying (Hm). If V(0)=Pisa genuine
nonmaximal prime ideal of S, then P=(0) and S is a Dedekind domain.

Proor. Since ¥(0)=P is a genuine nonmaximal prime ideal of S, the
proof of Lemma 1.3 shows that S is not a primary ring. Thus, S satisfies
(x*) by Theorem 1.6. But S also satisfies (x) so that (0) is a P-primary ideal
of S. Hence, [2; Theorem 1] shows that P=(0) and it follows that S is a
multiplication domain by Theorem 2.1. Since an integral domain is inde-
composable, S is a Dedekind domain by Lemma 2.2,

THEOREM 2.4. Let S be a u-ring. If S is not a primary ring, then S
satisfies (Hm) if and only if S is a multiplication ring.

Proor. This proof follows from the proof of [4; Theorem 3.87] and
Lemma 2.2 and Theorem 2.3.

ReEMARK 2.5. Again using Lemma 1.3, we see that [4; Theorem 3.127]
characterizes primary u-rings satisfying (Hm). This together with Theorem
2.4 gives a characterization of u-rings satisfying (Hm).
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