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Let P(D) be a linear partial differential operator of order m>1 with

constant coefficients, where D stands for (D,, Dy, ..., D,), Doz—i%, D,
——i %  p=—i The Cauchy problem for P(D) in Ry, ,—={(t, x):

0x, 0x,
t>0} and with initial hyperplane t=0 will be understood in the sense of M.
Itano [5]. If P(D) is hyperbolic with respect to z-axis, the Cauchy problem
to find u € @'(R;.,) such that

P(D)u=f  in Rj,,
with initial conditions

limDju=a;, j=0,1,..,m—1,
tlo

for arbitrarily given fec D'(R;,,) and «; € D'(R,), admits a unique solution
u if and only if f has a canonical extension over t=0. This follows from the
hyperbolicity of P(D) together with Corollary 1 in [5].

Our method of approach to study the problem will much rely upon the
L*-estimates, where &, ,(R,.1) and the spaces related to it will play a
central role. Strong hyperbolicity of P(D) being not assumed, we can not
make use of the energy inequality of Friedrichs-Levy’s type in its own form.
C. Peyser has derived an energy inequality from the properly hyperbolic
operator [9]. On the other hand, recently S.L. Svensson has shown [10]
that any hyperbolic operator is also properly hyperbolic in the sense of
Peyser. Peyser considered the Cauchy problem only in the case of vanishing
initial data, however, it will be possible to develop a more general treatment
based on a modified energy inequality in which the initial data play a part.
This will be done in this paper. By doing so, we have also succeeded in
generalizing a result about a differential system established by J. Kopadek
and M. Sucha [8] with a method of finite difference, and also succeeded
in improving on some results of L. Hérmander [ 3, Theorem 5.6.4, p. 140]
and A. Friedman [ 2, Theorem 14, p. 1987] concerning the classical solutions.
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1. Preliminaries

In an Euclidean space R,.,=R x R, with points (¢, x)=(¢, x1, x2, ---, 2,),
we denote by R;,; the half space {(¢, x) € R,,1: t>0} and by Vr, T>0, the
slab [0, T]x R,. In what follows, we use multi-index notations. Let v

=Yg, V1, ---, V), ¥; being non-negative integers, and let D=(D,, D, ---, D,),

D.=(Dy, Ds, ..., D,), where Do——i 2 p=—i %  p—=—i- % By
0t axl 0xn

vy’ we mean (yq, vy, ---, ¥,) and write v=_(y,, v’). Let us write |y|= Z u], D’

=DypDy...Dir, DY =D5\Dyz...D» and so on. Let 5, be the dual space of R with

scalar product<x, £>= Z x;&;, where & denotes a point of &,. The Fourier
i=1

transform ¢(¢) of ¢ € #(R,) is defined by @(5):g¢(x)e*"<"'5>dx, and extend-
ed by continuity to a temperate distribution u ¢ ¥’(R,) by the formula
<b, p>=<u, §>.

Let P(D)=Dp +mZ_]1 >ia,D” be a differential operator of order m>1

vo=0 |vI<m

with constant coefficients. Let us consider the Cauchy problem for P(D) in
R; ., with initial hyperplane :=0: To find a solution u of the equation

(1.1) P(D)u=f in R},
with initial data

(1.2) ltilrgl(u, Dyu, - Dy tu)=«
for given f and «, where feD'(R;,;) and a=(a, ai, ---, An-1) € D'(R,)
X D(R,) x - x D'(R,).

From now on, for the sake of simplicity, we shall write a € D'(R,) if
each component «; belongs to D’(R,). A similar abbreviation will be used
for a vector distribution when there occurs no fear of confusions. If a
solution u exists, then » and f must have the canonical extensions u. and
f~, the equation (1.1) with initial data (1.2) is rewritten with v=u_ in the
form:

(1.3) P(D)v=f- +:§1056,® 1),

where 7(a)=—i f} > a, D)« ,,rk 1

vo=R+1 [¥]=m
Conversely any solution v € @ (R;.,) of the equation (1.3) is the canonical

extension of a solution u of the equation (1.1) with initial condition (1.2)
[5, p. 19]. Here we note that the mapping
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I's a—(rola), 7i(@), - Tm-1(a))
is an automorphism of @'(R,) x D'(R,) % --- x D'(R,).

Lemma 1.1, Let u and f have the canonical extensions u. and f. respec-
tively. Suppose that there exists a sequence ¢; € C3(Ry.,), j=1, 2, ..., with the
properties :

D (e)-—ur in D(Ryin)
i (PDeD~-—f.  inD(R,0)

Sfor j—oo, then (9;)0=(¢;(0, x), Dop;(0, x), ---, D7 1¢;(0, x)) converges to
a € D'(R,) for j— oo, and u satisfies (1.1) and (1.2) with this .

Proor. Owing to (1.3) we can write

P(D)(¢,)-=(P(D) <o,->~+':§: DEOR74((¢,)0).

Consequenty, since {P(D)(¢;)-} and {(P(D)g¢;).} converge in D'(R,.;) to
P(D)u. and f. respectivety, there exists a r, € D'(R,), k=0, 1, ..., m—1, such
that 7.((¢;)0) > 7. The mapping 7": 83— (70(B), 11(B), ---, Tw-1(B)) being an
automorphism of D'(R,)x D'(R,)x - xD'(R,), it follows that (¢;)—« in
D'(R,), and that u. satisfies the equation (1.3), as desired.

In the rest of this section we shall always assume that f has the
canonical extension over :=0.

Recall that P(D) is hyperbolic with respect to z-axis if and only if there
exists a fundamental solution with support in R;,,. If this is the case, then,
in view of (1.3), we can easily verify that the Cauchy problem has a unique
solution for any given f and «.

As for a system of differential operators, it is well known that under
certain conditions by introducing new unknowns the Cauchy problem can be
reduced to the problem for a system of differential operators of the following
type:

L(D)=Do+ A(D.),

where A4(D,) is an m X m matrix whose components are linear differential
operators in D, of order <p(p=>1) with constant coefficients.

Let Q(D)=det(L(D)). It is easy to verify that Theorem 5.2.2 of
Hérmander [ 3] remains valid with an additional requirement R(D,)u =<0 for
null solution z, where R(D,) is any given non-trivial differential polynomial.
Owing to V.M. Borok’s reduction method [17], we can see that the hyperplane
t=0 is characteristic with respect to Q(D) if and only if L(D)u=0 admits a
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non-trivial null solution with respect to R;,,. Observe that the uniqueness
of the solution to the Cauchy problem for L(D) is guaranteed whenever the
hyperplane t=0 is non-characteristic with respect to Q(D).

L(D) is called hyperbolic with respect to ¢-axis if so is Q(D). Suppose
that L(D) is hyperbolic. Consider the Cauchy problem: To find a solution u
of the equation

(1.4) LD)u=f  in Rj,,

with initial data

(1.5) limu=«
tio
for given f and a, where € D'(R;,,) and o e D'(R,) As in the case of a
differential operator, the problem is equivalent to find a solution v= (v, v2,
oy vy) € D'(Ry. ;) of the equation

(1.6) LD)v=f.—id,Qa.

Taking into account this together with the fact that there exists a funda-
mental solution of L(D) with support in R;,;, u we can easily conclude that
the Cauchy problem has a unique solution » for any given f and «.

ReMArk. One can obtain various charactarizations of the hyperbolicity
of L(D) by relating it to the Cauchy problems. Among them we shall men-
tion here without proof the following results; however, they will not be used
in our later discussions.

Prorosition 1.1. L(D) is hyperbolic if and only if any of the following
conditions is satisfied
i) There exists a unique fundamental solution € D'(R,..) with support
wn Ry,
i) There exists a unique solution € D'(R;.,) of the Cauchy problem (1.4)
with (1.5) for all a € C3(R,) and f=0.
iii) When considered in IO/T, the Cauchy problem with « € Cy(R,) and

f=0 admits a solution u € @’(IO/T) with bounded support in Vr.

From now on we assume that P(D) is hyperbolic with respect to z-axis.
As observed in Introduction, P(D) is also properly hyperbolic in the sense of
C. Peyser, and therefore, an obvious modification of his method of estimation
enables us to obtain the following energy inequality :

an  { leenrar<e| | B 1000 2%

vis<m-—1
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([ 1e@owwiax)a ], 0<i<T, peCiRi,

where Cr is a constant independent of ¢ € C;(R,.;). A sharp form of this
inequality will be given in Section 2.

Let J((R,) be understood as in [3, p. 45]. It is a Hilbert space
with norm v—||v||(s):

ol =gy L 1£1)°10(8) 2.

(1.7) holds also for ¢ € #(R,.1) since both sides of (1.7) are continuous in the
topology of #(R,.1). Consequently we obtain from (1.7)

(E)s lle(t, )”(s><CT[ZHD 10(0, )||Zimq- -t

+ I @, ), 0<t<T, ¢ € Ci(Rar),

where Cr is a constant independent of ¢ € C5(R,.1).

2. The Cauchy problem for hyperbolic differential equations

Throughout this section we shall assume that P(D) is hyperbolic with
respect to ¢-axis. Clearly then the same is true of P*(D), the formal adjoint
of P(D).

To begin with, we shall give a brief account for notations encountered
in the subsequent discussions. According to L. Hérmander [37], we shall
mean by K, (Ri1), XL&(Ry.,) and so on respectively the spaces introduced
there [ 3, Chap. 27]. Let us denote by g(f(,, o(Ry,1) the space of all u € D'(R;, )
such that pu belongs to %, ;(Rs.,) when ¢(z) is taken arbitrarily in C3(R).
The projective locally convex topology is introduced there (in accordance
with the general principle) so that the mappings u —gu € X, (R;,,) may
be continuous. Thus & .(R;,,) will be a Fréchet space as seen from the
case of A!2%(Ry.,) [3,p.60]. By H¥ . (R;,,) we also mean the adjoint

space of HZ(A,,,S)(R;{H), which consists of the elements of 906(,,,3>(R;+1) with
support in [0, T ]x R, for some positive 7>0. It is to be noticed that

Ko, (Ryyy) and 3(5(, oRED) may be identified for |o| < [6, Proposition 7.
Similarly for &, s)(Rn+1) and gﬂ(a o(Ry 1)

Let 2(&)=Q+ €| 2)2. We shall denote by A(D,) the convolution operator
with symbol A(¢). The operator (D,—ii(D,))"! with symbol (r—i(&))!
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defines the isomorphism between 576(,,,5)(1?;;1) and 306(”1,3)(12,;1) [3, p. 537,
which will be extended to the isomorphism between ﬁ(,,s)(ﬁ,tﬂ) and
jﬂ(ﬁl,s)(ﬁ,fﬂ) in an obvious way.

Let us write H,, instead of the product space & .m 1)(Rx) X (s im—2)(Rn)
XX gf(s)(R,,), and H?S) instead Of gg(s)(Rn) X gg(surl)(Rn) XKoo X gg(s+m~1)(Rn)-
We shall also use the notation &%(&,,) to denote the space of all the con-
tinuous &, (R,)-valued functions u(z) defined on [0, o). The space is pro-
vided with topology defined by the semi-norms sup [|u(z)||s), and therefore a

0<t<T
Fréchet space. Similar notations will be used for the others when the
meanings seem to be obvious.

Lemma 2.1. Let fc gZ(k,s)g‘z;H) and a € He.py, k being~ a non-negative
integer. Then there exists one and only one solution u € K, (R;.,) to the
Cauchy problem (1.1) with (1.2) such that

D({u € g(t)(gg(SJrk—J')), ]:Oa 1) ) k.
Proor. Consider the case k=0. We shall first show that the graph
G={(P(D)¢, po): ¢ € CF(R;,1)}

is everywhere dense in the product space %(o,s,(ﬁ;ﬂ) x H¢;), where we have
denoted by ¢, a vector function (¢(0, x), Do¢(0, x), --., DF 1¢(0, x)) in H,,.
Let we H*o (R}, and B e HE ., ., be such that

(P(D)(O, W)’f‘(@o, 3)20’ fOI' any ¢ € C:(R;+1 .

To our end it is sufficient to show that w==0. Since (P(D)¢, w)=0 for
any ¢ € Cy(R#.,), we obtain (¢, P*(D)w)=0 and therefore

P*(D)w=0  in Ri,,.

On the other hand, there exists a 7 >0 such that w=0 for t\gTT since

w € X*q o (Ri.r), whence lim (w, Dow, .-, Dy ~'w)=0. Observing that P*(D)
t1 T
is hyperbolic with respect to s-axis, we see that w=0. Consequently (¢,, 3)

=0 for any ¢ € C5(R}.,), which implies that #=0, because the set {¢p,: ¢
€ C3(R,,1)} is everywhere dense in H,, [3, Theorem 2.5.77].

Now we can choose a sequence {¢;}, ¢; € C;(R:.,), such that
PD)p;—f  in K (Rii1)s

and
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((ﬂf(oa x), (0;‘(0, x)y tty DB”“I(/’;'(O» x)) —a in H(S)'

In virtue of the estimate (E), (see Section 1), {¢;} is a Cauchy sequence in
&YX (s)) and therefore converges in E(H,,) to an element w, which must
coincide with u because of Lemma 1.1 and uniqueness of the solution.

The general case will be proved by induction on k. Suppose that &>0
and that the assertion of Lemma 2.1 is true for k—1. Let fe€ Ky o(Riy)
and « € H,,;. We must show that

Dju € g(t)(‘gé(s+k—j)), j=0,1, ..., k.
From our assumption on induction we have
gu € gg(gg(8+k—i))5 ]209 1’ L) k—1.

Put v=Dyu and g=D,f. We can write

m—1
Dr-tv=Dpu=f— 3 X a,D’u.

vo=0 [¥I<m

From this and the fact that liln(r)l fe&k ( N +k—5 (R,) [8, Theorem 2.5.6] we obtain
t

lilm(v, DO Uy -o oy Df)n_l’l)) € H(s+k—1)-
tio

Consequently, since v satisfies the equation

PD)v=ge Ko 15[Ri)  in Ry,
we obtain

§v € ENH s 1), j=0,1, .., k—1,
which, in turn, implies

Diu € EYHisin-ip)s  j=0,1, -, k,

and therefore u € ﬁ(k,s)(z‘egﬂ) by Theorem 2.5.4 of L. Hérmander [37]. Thus
the proof is complete.

With the aid of the lemma just proved we can show the following

ProrosiTion 2.1. For any given f € j(f(o,s)(l_{;ﬂ) and o € H,, there exists
one and only one solution u € K, s\(R;.,) such that

Dgu € é(t)(g(j(s—f))’ ]:09 1, ) m—1.

Proor. Owing to the uniqueness and the existence theorem of the
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solution, we can write u=u;+u,, where u; and u, are the solutions to the
Cauchy problems:

P(D)u,=f  in R},

l,iff,l(u“ Douyy -y DP~up)=0,
and

P(D)u,=0 in R},,,

lim (w2, Do us, -, DY~ us)=c.
tio

We then obtain from Lemma 2.1
Djuz € EYHsp),  j=0,1, ..., m—1L.
Consequently we have only to show that
Diu, € &) (Hp), j=0,1,...,m—1.
Let v, g€ 92(,,,,1,3)(1—{,‘;”) be defined by the relations:
v=(Do—iA(D,))"™ Vu,, and g=(Do—id(D,)) " Vf.
It follows then that lim (v, Dyv, ..., Dy~%2v)=0, and therefore, from the rela-

tion Dz~ 1v—u1—Z (") (—iA(D))" ' Djv, we obtain hmD'" 1p=0. Con-
sequently, since P(D)v— gin R}, ,, we see from Lemma 2. 1 that

Dé.’ll € é?(%(s*,m,_l_j)), jZO, 1, cey m—1.
Since g€ gZ(,,,_l,s)(R;H), it follows from [ 6, Proposition 4] that

Dggf é(t)(gg(s+m_,_k))<é (gg(s 1- k)), k:0, 1, cey m—2.
From this and the relations:

Dp+ky=Dig— Z 2. a,D’Dkv, k=0,1, ..., m—2,

vo=0 |V|<m

we get
D{)"U € é?(gg(3+m_1_]~)>, ]:0, 1, ceey 2m—2

On the other hand, we can write down
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. m—1 .
Déu1=kZ "e(=id(D )" *Di e,  j=0,1, ..., m—L1
=0
Then using the fact that

(_il(Dx))m*l_kDéibkv € é(t)(gg(s-j))a j) k:Oa 19 tty m’_la

we have

D(;ul € g?(gﬁ(s,j)), ]:0, 1, ceey m—l,

which comletes the proof.

Owing to the closed graph theorem, Proposition 2.1 implies that
m—1 X m—1 t
]ZO”D{) u(t, - )“(ZS—J')S Cr [ZE) lle; |2 smo1-jF SOHf(t’, IEs,de”],
- e

0<t<T,

where Cr is a constant independent of u. Especially if we take u=¢

€ Cy(R#.,), we have a sharp form of the energy inequality (E), given in
Section 1.

m—1 . m=1 .
JgollDé(ﬂ(t, NEs-j <Cr [j§0||06¢(0, MEsm—1-p+

t
+{ IO )@, ], 0<e<T,
for any ¢ € C3(R;..).

Now we are in a position to show the following

TueorEM 2.1. Let 0+ % be positive, but not an integer and let k= l:O' + %} .
For any given f E~92(,,5)(R;‘H) and a € Hy,,y; Then there exists one and only

one solution u € Ko s my(Ryiyy) to the Cauchy problem (1.1) with (1.2) such
that

D(J;u € 8?(%(54_,4/‘)), ]:Oa 1) ] k+”L—1'

Proor. When k>0, by applying D,, DZ, ..., Dt~ to both sides of the
equation, we are led to the case £=0. Therefore, without loss of generality,

we may assume that |o‘l<%. If we let gi=(Do—id(D,)'f and g

= —id(Dy)(Do—iA(D,))"' f, then

g1 € Xoer,x(Rivy) and gz € Hosr,s-1y(Risy)-
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Let us consider the following Caucht proplems:
P(D)v=g in R}y,
lim (v, Dyv, ---, D7 19)=0,
tlo

and
P(Dw=g;  in R,

hm(wa Dow; Tty Dg‘_lw)za.
tlo

In virtue of Lemma 2.1, we have
ngGé(t)(gg(s+v+l—j))) ]:0’ 1’ ) m_la
and
DgWEg?(gg(s+,_j)), ]20, 1, cey m—1.
On the other hand, g€ 5’2(,“,5)(1—{;“) and 6+1>%, and therefore g,
€ &UX (s +1)) [6, Proposition 4]. This together with the relation DZv=g;
72

m—1
—> 2 a,D’v shows that

vo=0 I¥|<m

Dsn v € é(t)(%(s+7+ l—m))-

Now, since u=Dyv+w, in view of Theoerm 4.3.1 of L. Hérmander [37] it
follows that u has the required properties. The proof is complete.

If we assume in the preceding theorem that
fE é(t](gg(s))’
then we must have
Domu € é(t)(glg(s—m))'

Indeed, this follows from the relation

D7u =f—m21 > a,Du.
vo=0 |¥I<m
Let I'*(P: N) be the convex cone introduced by L. Héormander [ 3, p. 137 ]
which is associated with P(D) and N. Here we take N=(1,0,0,-..,0) € F,,,.
Let (2o, x0) € R4,; be an arbitrary point. Owing to Corollary 5.3.3 of L.
Hoérmander [3] u € D'(R;,;) vanishes in the interior of ((to, xo)—I*(P: N))
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MR}, if satisfies the conditions:
P(D)u=0 in the interior of ((¢¢, xo) —I"*(P: N)NR .1,

and

liJrn(u, Dou, -, D3 'u)=0 on ((tg, x0)—1*(P: N)N{t=0}.
tlo

From these considerations we shall obtain the following theorem as an
immediate consequence of Theorem 2.1.

Tueorem 2.1'. Let ¢ and k be chosen as in Theorem 2.1. Then, for any
given fe 25 (Ri.) and a € HIS,, there exists one and only one solution
u€Hilem som(Ri ) to the Cauchy problem (1.1) with (1.2) such that

Diu e &YHigs, ),  j=0,1,..., k+m—1.

For non-negative integers k, j, we shall denote by C*/(R,..) the space of
functions u defined on R,,; which are continuous with their partial deriva-
tives D*u, vy <k, vo+ |v'| <k+j.

Theorem 2.1’ allows us to state a generalization of Theorem 5.6.4 of
L. Hérmander [ 3] with respect to the classical solutions.

CoroLLARY 2.1. Let rZ[%:I—I-l. For any given feC®"*"™(R;.) and

a€C Y RY)X CTH2" 2R, X - x C"*™(R,), there exists ome and only one
solution u € C™(R},,) to the Cauchy problem (1.1) with (1.2).

More generally let k and j be nom-negative integers For any given
feCH (R, and € CTHFI (R, x CTHRHIM2(R ) x - x CTHFYI(R,,), there
exists one and only one solution u € C**"/~'(R;},,), l=min(m, j), to the Cauchy
problem (1.1) with (1.2).

Proor. Owing to Sobolev’s lemma we have

c@””mn)C%éﬁ%]+1+,-)<Rn><cf<Rn>, j=0,1, -

Combining with Theorem 2.1’ yields the conclusions of Corollary 2.1.

8. The Cauchy problem for hyperbolic systems

Let us consider a temperate weight function &, (v, &)= +7*+ | £| 2")%

x (14 lslz)g where ¢ and s are real numbers, and p is a positive integer.
We shall denote by %k(m)(R,,H) the space of the temperate distributions
u € ¥ (R,.1) such that the Fourier transform i is a function and

Sg(l+r2+ |€120)7(L+ | £]2)° | iz, &)] de dE < +oo.
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We consider &, (R,.1) as a Hilbert space with norm ||« defined by

il = gy L+ 1£1207 (L 113 e, §) e d.

From our definition we see that &, (R.,.1)=X ¢, s(Rsi1) for p=1. It
is clear that most of the statements concerning the space &, ;,(R,.1) will be
extended in a natural fashion to those of the space &, (R,,1). Thus the

related spaces such as jﬁk(d,s)(ﬁgﬂ), X, (Ry+1) and so on are defined in a
similar way as done for &, ;).

The present section is devoted to the Cauchy poblem for the system
L(D) which is assumed hyperbolic with respect to :-axis. We denote by °L(D)
the matrix formed by the cofactors in L(D), thus

(“°’L)L=L(*°L)=(det L)1,
where I stands for the m x m unit matrix, m being a positive integer >>2.

Prorposition 3.1.  Let 0‘+—;— be positive, but not an integer and let k
:[(H-_l_] . For any given f¢ é’ﬂk(m oy (Rav) and € X, .. (Ry), there

exists one and only one solution u € X, wimo_pm Pnr1) to the Cauchy problem
(1.4) with (1.5) such that

D(]‘;u € é(t)(%(&kl)o—j)), ]:Oa 1) ] m—l)

D{;u € é(t)(gg(sfm-!-1+[7(a-+m—l—j))), j=m, m+1, .., k+m—L

Proor. First consider the case where |o| <%. In virtue of the trace

theorem of M. Itano [4], we have limD(]).fG%(s+p(v+mfg~j))(Rn)7 i=0,1, ...,
tlo

m—2. If we combine this with the relations Dj*‘u=D}f+ A(D,)Dju, r=0,
1, ..., m—2, it is easy to verify that hm(u Dou, -, Dy 'u) € Hes i poy.

Now applying °°L(D) to both s1des of the system (1.4), we are led to the
Cauchy problem for Q(D) where each component of z is a solution of the
problem of the following type:

QD)w=g  in R},
with
llm(w, Dowa Tty Dgt—-lw):B,

tlo

where g¢ é’dk(, S(RiDand Be H(Hp,).' We shall show that w e 5’@(“%34”)(1_{,’;“)
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and D(J)WE g?(gg(Ser,,j)), ]:0, 1, ceey m—1.

Let us write g in the form g=D,g:+ g3, where glz(Do—i/Ip(Dx))’lg
cgﬂk(m o (Ros1) and gz—(—z/lp(Dx))(Do—M,,(D,,)) g€ %k winep(Ras1).  Here
,,(5) 1+ |5|21’)2 If we observe that %k(, . s)(RnH)Cg(f(o seper1y(Rie1) and

gé’k(m . p)(R rel) C%(O sipe(Rj41), We can proceed along the line of the proof of
Theorem 2.1 to reach the conclusion that we &, I pm)(R *.,) and Diw
€ EWHsipoin), j=0,1, ..., m—1.

Let us turn to the general case where k is a positive integer. Applying
D71, D7, ..., DE*™2 to both sides of our system successively, as in the proof
of Theorem 2.1, the same reasoning will allow us to conclude the assertions
of Proposition 3.1.

Tueorem 3.1.  Let (7+l be positive, but not an integer and let k= [(T —i—%:l .

For any given fggZ,, (R +1) and « € K, pr(R,) there exists one and only
one solution u € X, (M,Hm)(R,,H) to the Cauchy problem (1.4) with (1.5) such
that

.D(]) u € g(t)(%(s+p(a—m+l—j))), j:O’ 1’ ceey k_
Proor. We can write f in the form

f:Dg~1g0+D6n_2g1+ +gm—1)

where
gf:(mr—l)<—llp(0x)) (Do—idy(Dy)) ™ Dngﬂk(m . s_W+m( )

Let then v,,r=0,1, ..., m—1, be respectively the solutions of the following
Cauchy problems:

LD)v,=g, in R},

limv, =0, r=0,1, ..., m—2,
110

and
L(D)vm—l:gm—l in R;+1,

lim Um-1—0«.
tio

Then owing to Proposition 3.1, we have

D(I;Ur € é(t)(g&(s—‘pf‘(—l)a'—j))’ j: r=0,1, ..., m—1.
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Since we can write u=D7"1v,+ D2 20, + -+ v,_1, it follows that
u € EUH s pio—m+1y)-

Combining this with the relations Dj*'u=Dj;f— A(D,)Dyu, r=0,1, ..., k—1,
yileds the required properties of wu.

Remark. Consider the case where p=1. Then we see that Theorem 3.1
is a generalization of the result due to Kopacek and Sucha [8].

As in Section 2 we can show the following

TueoreMm 3.1’. Let ¢ and k be chosen as in Theorem 3.1. Then for any
given f e Hjoc ( R}.1) and a € Hles 0 (R,) there exists one and only one solution

ueioc (R}.1) to the Cauchy problem (1.4) with (1.5) such that

k(d+1,s¥pm)
j 0 4 -
Dju e @,(gﬂ(s"jp(,_mﬂ_m), j=0,1, ..., k.

For non-negative integers £, j, we shall denote by C(l,) (R,.1) the space of
functions v defined on R,.; which are continuous with their partial deriva-
tives D’ u, vo <k, pvo+ |V | <pk+j.

As an immediate consequence of Theorem 3.1’ we have the following
corollary which is a generalization of a result of A. Friedman [2, Theorem
14 p. 1987

CororLARY 3.1. Let r:[—g—:lel. For any given f € CY%/**™(R;.,) and

a € C"*"(R,) there exists one and only one solution u € CLI(R},,) to the Cauchy
problem (1.4) with (1.5).

More generally let k,j be non-negative integers. Then for any given
feCkmi(RY) and a € CT*P™+*Pk(R ) there exists one and only one solution
ue€ C"”"(R +1) to the Cauchy problem (1.4) with (1.5).
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