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§1. Introduction

The purpose of this note is to prove some results on the stable homotopy
types of the stunted lens spaces analogous to those in pΓ], [9] and [6].

The (2n + l)-dimensional standard lens space mod k is the orbit space

Ln(k) = S2n+1/Zh9 Zk = {e2«li'k\l = 0, 1,..., £ - 1 } , ( * > 0 ) ,

where the action is given by z(zo, 9 zn) = (zzOy, zzn). Let Oo3 , *nH 6 LH(k)

denote the class of (*<»•••, *») e S2n+1. Imbed natural ly Lm(k)CLn(k) by iden-

tifying [>o, , *mH = D*o> 5 ̂ »,0,..., 0 ] for τ?ι<^, and consider the subspace

W 0 = {[>o,-, zm~}\zm is r e a l ^

Then Lm(k)-L%(k) and Lm

0(k)-Lm-\k) (m^n) are (2m+ 1)- and 2/τi-cells
which make LW(A;) a finite CίF-complex. The stunted spaces

Ln(k)/L»-\k), L\k)/Lξ(Jz\ Ll(k)/Lm-\k) and L&k)/L%k),

for &=// where /? is a prime and rc >m, will be studied in this note.
We say that two spaces X and Y are stably homotopy equivalent (S-

equivalent), if the suspensions SaX and SbY are homotopy equivalent for
some a and b.

We obtain the following theorem which is [8, Th. A] when r = l.

THEOREM 1.1. Let p be a prime and r a positive integer such that pr\2.
If the stunted lens space Ln(pr)/Lm-\pr) is S-equίvalent to Ln+t(pr)/Lm-1+t(pr)
for n>m, then

ί=0 /

The same is true for Ln(pr)/L%(pr), Ln

0(pr)/Lm(pr) and Ln

0(pr)/L%(pr).

For the case // = 2, we have the following theorem which is proved
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THEOREM 1.2. If the stunted projectίve space RPn/RPml is S-equivalent
to RPn+t/RPml+t for n>m, then

t=0 mod 2^ / 2 ] + 1 ί /><4, t^O mod 2 m a x ( ^ ) " 1 if φ^A,

where

[ \Ίjι — ra + l)/2] i / m is odd ί φ(n, πι — 1) if m^O mod 4

I C(ra—τ/ι)/2] if rn is even, [ φ(n, m) if m = 0 mod 4,

and φ(n, m) is the number of integers s such that m<s<,n and s = 0, 1, 2, or
4 mod 8.

For the converse of these results, it is known by Q4, Prop. (2.6), Prop.
(4.3)], [2-Π, (6.3)] and [1, Th. 7.4] that

THEOREM. 7/ ί = 0 mod 2φ(n~m'0\ then RPn/RPml is S-equivalent to RPn+t/
ΊD r>m-l+t

Also, by [6, Th. 3],

THEOREM. Suppose p is an odd prime. If t = 0 mod p^-™)^-1)^ then
Ln(p)/Lm'1(p) is S-equivelent to Ln+\p)/Lm-1+\p). The same is true for

\p) and

In addition, we have the corresponding results for Ln(p2).

THEOREM 1.3. Let p be a prime, and h = [_(n — τn)/(p — 1)]. Assume

[ mod ph if h^O mod p or h = 0
(1.4) ί=θj

I mod/?Λ+1 if h^O mod p and h>0,

then Ln(p2)/Lm-\p2) is S-equivalent to Ln+t(p2)/Lm-1+t(p2). The same is true
for L%p2)/L>S(p2).

For mp2)/Lm~1(p2) and L%(p2)/L%(p2), the same is also true when p is an
odd prime, and the same conclusion holds when p — 2 under the assumption that

(1.5) ί^Omod 2n~m+1 if rc-77i=2 mod 4, t=0 mod 2n~m otherwise.

Also, corresponding to [β, Th. 4], we have

THEOREM 1.6. Letp be a prime and n>m. Ln(p2)/Lm~1(p2) (resp. Ln(p2)
/L$(p2)) is S-equivalent to Ln~m(p2y (resp. Ln~m(p2)) if and only if (1.4) for
t = m holds. Ln

Q(p2)/Lm~ι(p2) (resp. Ln

Q(p2)/L7S(p2)) is S-equivalent to Ln

Q-m(p2) +

(resp. L%~m(p2)) if and only if it holds (1.4) for t = m when p is an odd prime
and (1.5) for t = m when p = 2. Here, X+ denotes the disjoint union of X and
a point.
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We prepare some elements of the K-groups of the stunted lens spaces in
§2 using the results on the K-group K(Ln(pr)) [7, Th. 1.1 (i)], and prove
Theorems 1.1 and 1.2 in §3 by the same way as in the proof of [8, Th. A],
using the properties of the Adams operation ψpr+ι on the K-groups [1].

Theorems 1.3 and 1.6 are proved in §§4 and 6 by the same methods of T.
Kambe-H. Matsunaga-H. Toda Q6], using the fact that the stunted lens space
is homeomorphic to the Thorn complex of some canonical bundle (cf. [6, Th.
1]), the results of M. F. Atiyah [4, §2] on the stable homotopy types of the
Thorn complexes, and the structures of the /-groups J(Ln(p2)) and J(L%(p2)).
They are determined in Theorems 4.5, 6.9 and 6.13, by making use of the /''-
group of J. F. Adams [2-IΠ], the results on the i09-groups KO(Ln(A)) and KO
(Lg(4)) [10, Th. B, Th. 5.22] and those on K(Ln(p2)) = K(Ln

0(p2)) [7, Th. 1.4].

§2. Some results on K-rings of stunted lens spaces

The following results on the K-rings K(Ln(k)) and K(L%(k)) are known
(cf. [7, Lemmas 2.3-4]):

(2.1) The induced homomorphism K{Ll(k))^K(Ll~ι(ky) of the inclusion
is epimorphic.

(2.2) K(Ln

Q(k)) contains exactly kn elements, and K±1(L%(k)) = 0.

(2.3) K(Ln(k))~K(L%(k)) by the induced homomorphism of the inclusion.

LEMMA 2.4. We have the following exact and commutative diagram:

i = i =
k)/L(k))iUK(L"(

where two j are the projections and others are induced by the inclusions.

PROOF. By (2.1-3), it is easy to see that the two sequences are the Puppe
exact sequences. Since the middle homomorphism is isomorphic by (2.3), the
left is also so by Five Lemma. q.e.d.

LEMMA 2.5. We have the following split-exact and commutative diagram:

0—>K(Ln(k)/L%(k))—>K(Ln(k)/Lm-\k))-^->K(S2m)—>0

1 = 1 = II
0—>K(mk)/L%(k))—^K(mk)/Lm-\k))—^ K(S2m)— 0

where homomorphisms are induced by the appropriate inclusions and projec-
tions.
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PROOF. We see that K1(L%(k)/L%(k)) = 0 by the lower Puppe exact
sequence of the above lemma and (2.2). Hence the desired lower sequence is
the Puppe exact sequence, since K~1(S2m)=0. The upper is also so, by the
fact that i' is epimorphic. This follows from the commutativity of the
diagram

K(Ln

0

+1(k)/Lm-\k))—>K(S2m)—>0

K(Ln(k)/Lm-\k)) -i

where the upper sequence is exact as is seen above. The desired left homo-
morphism is isomorphic by the above lemma, and the middle is also so by
Five Lemma. Finally, the two exact sequences are split since K(S2m)^Z.

q.e.d.
Now, let -η be the canonical complex line bundle over Ln(k) or LJ(Λ), and

put

(2.6) σ=7j -1 e K(Ln(k)) = £(£5(*)),

where the two rings are identified by (2.3). The following are known (cf.
[7, Prop. 2.6]):

(2.7) The ring K(Ln(k)) = K(Ln

Q(k)) is generated by σ, and

* - l = 0, σn+1=0.

Consider the exact sequences of Lemma 2.4. Because σm+i = 0 (£>0) in
K(m(k)) by (2.7), we can define

(2.8) σ(m+i)=ji-iσm+i 6 κ(Ln(k)/L>$(k)X for i>0.

For the case k=pr and p is a prime, it is proved that the element βι e
K{L\P

r)) is of order pr+\ h = l(n-ί)/(P-l)~], in [7, Th. 1.1 (i)]. Since;1 of
Lemma 2.4 is monomorphic, we see the following

PROPOSITION 2.9. For a prime p, the element σ{m+i) (i>0) of (2.8) is of

order /+\ h = t(n-m-£)/(/>-1)1 in

§3. Proof of Theorems 1.1 and 1.2

We prepare the following lemma.

LEMMA 3.1. Let p be a prime, and t — upv, (u, p) = 1, then

(pr±iy-(±iy^upv+r modpv+r+\
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Especially, let t = u2v, (u, 2) = 1, then

3 ί -1^2 y + 2 mod 2V+3 if v>X, ^ 2 mod 8 if υ = 0.

PROOF. Let / be a positive integer, and x and y be integers such that
x — y=pf mod pf+1. Then clearly

(3.2) xp- yp^γp-y+1 mod pf+\ if

(3.3) xn- yn = nyn~ιpf mod pf+\ for any integer n>0.

Since (pr±l) — (±l)=pr, the repeated applications of (3.2) show that

(pr±ϊ)p9-C±ΐ)pv=pv+r modpv+r+ι.

Then, for any integer &>0, we have

(pr±ΐ)upv-(±l)upv = upv+r modpv+r+1

by (3.3), as desired. Especially, for the case p = r = 2,we have

and so the desired result if v7>l. Also, if v = 0, then 3' +1=4 mod 8 and so
3' — l ^ 2 mod 8, as claimed. q.e.d.

To prove Theorem 1.1, we use some results on the Adams operations:

Ψj\ K(X)->K(X),

which enjoy the following properties [1, Th. 5.1]:

(3.4) Ψj is natural for maps, and is a ring homomorphism.

(3.5) If ξ is a complex line bundle over X, then Ψjξ — ξj.

For the element σ e K (Ln(k)) of (2.6), these show that

(3.6) FV = (((T + l ) ' - l ) f in K(Ln(k)).

Now, consider the following diagram:

ψj I ψi
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where / denotes the isomorphism defined by the Bott periodicity [5, Th.
This diagram is not commutative, and

by [1, Cor. 5.3].

For the case j = k + l, we see that the left ¥k+1 is the identity by (2.7),
(3.6) and Lemma 2.4. Therefore, we have

(3.7) Fk+1 = (k + l)f on K(S2t(Ln(k)/L$(k))).

PROOF OF THEOREM 1.1. In the first place, we shall prove the theorem
for Ln(k)/L$(k), where k=pr^2. Suppose that Ln(k)/L%(k) is S-equivalent to
Ln+\k)/LS+\k\ then there is a homotopy equivalence g: S2t+2s(Ln(k)/L%(k))^»
S2s(Ln+t(k)/L%+t(k)) for some integers s and t.

The map g induces isomorphisms of ^-rings, and the following com-
mutative diagram by (3.4):

)

Hence (3.7) implies that

On the other hand, K(S2t+2s(Ln(k)/L$(k)))(^K(Ln(k)/L%(k))) for k =pr con-
tains the element It+sσ{m+l) of order p'+U"-'"-mp-in by Proposition 2.9. Since
gι is an isomorphism, these facts imply that

Because pr + 1 ^ 0 mod /?, it follows that

(3.8) (/

Therefore, we have t=0 mod ̂ (»-»»-i)/(ί-i): ^y Lemma 3.1, as claimed.
The theorem for L%(k)/L%(k) is proved in the same way since K(Lζ(k)/

L%(k))^K(Ln(k)/Lm

0(k)) by Lemma 2.4. For Ln{k)/Lm'\k\ a cellular homo-
topy equivalence g'\ S2t+2s(Ln(k)/Lm-\k))-+ S2s(Ln+t(k)/Lm-1+t(k)) defines a
map g: S2t+2s(Ln(k)/L%(k))-+S2s(Ln+Xk)/L%+t(k)), and it is easy to see that g
induces an isomorphism of ^-rings by the direct sum decomposition of
Lemma 2.5. Thus we have the desired results for Ln(k)/Lm~1(k) by the above
proofs, and in the same way for mk)/Lm~1(k). q.e.d.
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PROOF OF THEOREM 1.2. Assume that there is a homotopy equivalence
g: St+2s(RPn/RPm-ι)-+S2s(RPn+t/RPm-ι+t) for n>m. Then we see that t is
even by their homology groups. By [1, Th. 7.3],

K(RPn/RPm-ι)^LZ2+ if 77i is odd, ^LZ2+®Z if m is even,

where ψ is the number of the theorem. Therefore, we have

by the similar way to (3.8). This shows that t=0 mod 4 if ^r=2 and

ί-0 mod 2ψ- ! i

by the latter half of Lemma 3.1. Thus, t=0 mod 8 if ψ^>L
On the other hand, under the assumption that ί^O mod 8, it is proved in

[9, Lemma (4.2)] that ί^O mod 2 ^ ! Ίί RPn/RPm ι and RPn+t/RPm~1 + ί are
mod 2 S-related, where ψ is the number of the theorem, using the Adams
operation ¥3 on KO -rings. It is clear that two spaces are mod 2 S-related if
they are S-equivalent, and so we have the theorem. q.e.d.

REMARK. For the numbers ψ and φ in Theorem 1.2, it holds that

§4. /-groups of £"(4) and Zg(4)

Let J(X) be the /-group of a finite CfF-complex X and /: KO(X)-+J(X)
the projection (/-homomorphism). Then, J. F. Adams [2-IΠ, Th. (l.l)H has
proved that the diagram

(4.1)

is commutative, where

• (4.2)
k e

and J" is the natural projection and p is an epimorphism.
The Xtf-groups of Z7(4) and ij(4) are given as follows [10, Th. B, Th.

5.22]:

I
Z2n+i 0 Z2nj2 for even n>0

Z2n φ Z2[ny2]+i for π = l mod 4

Z2n 0 Z2tnm for n=S mod 45



294 Teiichi KOBAYASHI and Masahiro SUGAWARA

~ ί Z2n 0 Z2ni2 for n = 0 mod 4, n>0
o( ))= { gfiφφ) for n^=0 m o d 4 j

and the first summand is generated by rσ and the second by ιc + 2Lnl21rσ9

where rσ is the real restriction of σ = η — 1 of (2.6) and fc = p — l is the stable
class of the non-trivial real line bundle p over 77(4) or ij(4).

LEMMA 4.4. 7%e Adams operation Ψj on KO(Ln(A)) or K0(Z,|}(4)) is #

ί Γ(T f 0 r 0 d d J . u /or odd;
r ^ = 2, /or ; = 2 mod 4 * ' * {

^ 0 /or /ΞO mod 4,

PROOF. Since * + l = p is a real line bundle, ¥J/c = (l + /c)J-l by [1, Th.
5.1]. Hence, we have the second equality using (1 + Λ;)2 = 1 of [10, (6.3)].

To prove the first equality, it is sufficient to show it in XO(ZW(4)) for the
case 7JΞ3 mod 4, by the naturality. Consider the complexification

c:

Then cΨj=Ψjc by [1, Th. 4.1], and crσ=σ2/(l + σ) and
by [10, Lemmas 3.10-11]. Therefore, we have

, σ2/(l+σ) = crβ if j is odd

= ] 2(1+ σ) 2-2 = 2σ(l) = 2c/c ify=2mod4

' 0 if y=0 mod 4,

by (3.4), (3.6) and (l + σ)4 = l of (2.7). Because c is monomorphic if n=S
mod 4 [10, Cor. 5.4], this equality implies the desired result. q. e. d.

By this lemma, (4.3) and (4.2), we see that Ker f' = 0 for X=Z/(4) or
Zg(4). Therefore, we have the following theorem by the commutativity of
(4.1).

THEOREM 4.5. The J-homomorphisms

J: K0(L"(4))Q±J(L"(4)), J: *0(Lδ(4))S/(ZS(4))

are isomorphic, and their reduced groups are given by (4.3).

COROLLARY 4.6. The order of the element Jrβ is equal to

2n+1 in J(Ln(4:)) for even n, or in /(ig(4)) for n=2 mod 4,
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2n in J(Ln(A)) for odd n, or in /(iS(4)) for n^2 mod 4.

The following results are used to prove Theorems 1.3 and 1.6.
For a real ^-vector bundle a over a finite CJF-complex X, Xa will denote

the Thorn complex of α, i.e., the mapping cone of the (s — l)-sphere bundle p:
E-+X associated with a. A cellular decomposition X=\je"i of X gives
naturally a cellular decomposition of X" = eo\J\Jes

i

+"i of Xa.

THEOREM 4.7. There exists a cellular homeomorphism between the stunted
lens space Ln(k)/Lm-\k) and the Thorn complex (Ln-m(k))mr\ where -η=σ+l is
the canonical complex line bundle and rrj is its real restriction.

This theorem is proved by the same proofs of [6, Th. 1], which is the
theorem for the case k=ρ.

COROLLARY 4.8. We have the following cellular homeomorphisms:

PROOF OF THEOREMS 1.3 AND 1.6 FOR p = 2. Assume (1.4) for /? = 2, then
tjrσ = θ in /(I/-w(4)) by Corollary 4.6, and so

J(mrη) = J(mrτ] + 2t + tτ&) =J((m + t)rη) in /(Lw"w(4)),

since 1 + σ^τy. Therefore (Ln~m(4))mrr> and (Ln-m(4:))(m+t)rr> are S-equivalent by
[4, Prop. (2.6)]. Then, Theorem 1.3 for Zw(4)/Lw-1(4) follows from Theorem
4.7. In the same way, we have the desired results for the other cases using
Corollaries 4.6 and 4.8.

Similarly, Theorem 1.6 is proved by use of Q4, Prop. (2.9)]. q.e.d.

§5. J-homomorphism for Lg(p2), p odd prime

Now, the rest of this note is devoted mostly to the /-group J(L%(p2)) for
an odd prime />, which is determined in Theorem 6.9.

Consider the real restriction r and the projection /" of (4.1):

LEMMA 5.1. For an odd prime p, r is an epimorphism, and Ker r is
generated additively by the elements

(5.2)



296 Teiichi KOBAYASHI and Masahiro SUGAWARA

PROOF. The first half is proved in the proof of [7, Prop. 2.11 (i)]. Let t
be the conjugation, then l-\-t = cr, r = rt and t is a ring homomorphism (cf.
[1]). By use of (l + σ)pl = l of (2.7), we have t((l + σ)J) = (t(l + σ)y = (l + σ)-j

= (l + σ)p2-J\ and so r((l+<r)'"-(l + <O*2~y) = 0.
Conversely, assume β e Ker r, then β e K(L%(p2)) and so a = β/2 exists

and ra=0 by (2.2). Also, β—aΛ-a — a — ta since α + ία = crα = 0. Then β is
a linear combination of the elements of (5.2), because a is a linear combina-
tion of (l + σ)y, 0<^j<p2 by (2.7). q.e.d.

LEMMA 5.3. The kernel of the epίmorphίsm Jπr is generated additίvely
by the elements

(5.4) σj-1 + σj (Kj<p), σ(l)σj-ι + σ(l)σj (I^j<p2-p),

where σ(l) = (l + σ)p-l.

PROOF. Since r¥k = ¥kr [3, Lemma A2], Ker J"r is generated by the
elements of (5.2) and A ke(¥k-l)K(L%(p2)\ by (4.2) and the above lemma.
Since ¥k(l + σ)j=(l + σ)kJ by (3.4-5) , it follows from (2.7) and (2.2) that A ke

(¥k-l)K(L%(p2)) is 0 if k^O mod p and is generated by (l + <r)*y-(l+ <?)'' if
ki^O mod p. Thus, Ker J'rr is generated additively by

(5.5) \

where α(0, l) = /9(l) = 0. Considering the elements σ(l) = (l + (T)/> —1, we have

Therefore, we see that Ker J"r is generated additively by the elements

It is easy to see that the elements of the lemma are linear combinations of
these elements and the inverse is also true. q.e.d.

LEMMA 5.6. Ker /=Ker /" in (4.1) for X=Ln

0(p2\ and so J(Ln

Q(p2)) =
J"(Lζ(p2)).

PROOF. It is proved in [2-1, Th. (1.3)] that, if a e KO(L$(p2)) is a linear
combination of 0(1)- and O(2)-bundles, then, for each k, there is an integer
e>0 such that J(ke(¥k-l)a) = 0.
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This is true for α = r((l + σy') = KvO a n d w e have

This implies that Jr((l + σ)kJ — (l + σy') = 0 if A^O mod p, since the order of
K(L%(p2)) is p2n by (2.2). Thus the elements of (5.5) vanish under /r, and we
have the desired results by the commutativity of (4.1). q.e.d.

Combining these lemmas with (2.7), we have

PROPOSITION 5.7. For an odd prime /?, the composition

Jr:

of the real restriction r and J-homomorphism is an epimorphism, and its
kernel is generated additively by the elements (5.4). Furthermore,
Z 0 f(L%(p2)) and J(L%(p2)) is generated additively by the elements

(5.8)

where σ = η — l is the element of (2.6) and

Furthermore, we have

LEMMA 5.9. Jr(σj) = ( - l ) ^ 1 ^ ; ) (α o -αi) + (-1) ;'"1^i for l<j <p2

), where Θ(j) is the integer defined by

Σ

To prove this lemma, we use the following lemmas.

LBMMΛ5.U. ^ C - i

PROOF. These are the coefficients of χc on both sides of the equality

(1 - (* + l)) α (* + 1 ) 6 = ( - l)aχa(χ + l)b. q. e. d.

LEMMA 5.12. For odd p and the integer θ(j) of (5.10),

PROOF. The left hand side is equal to

Σ
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as desired, using the above lemma. q.e.d.

PROOF OF LEMMA 5.9. If j<p, the desired equality is the first equality
of (5.8) since 0(/) = l. For j^>p, it is proved by the induction on / as follows:

(by <r(l) = (1+σY-ΐ)

= -(-l/Σ(-l)(^^^

(by (5.8) and the inductive assumptions)

= (-iy'-1θ(j)(a0-a1) (by Lemma 5.12 andf (- l ) ' (^Vθ) .

q.e.d.

The following properties of θ(j) are used in the next section.

LEMMA 5.13. Let j — l—a{p — ί) + b, 0<=b<p — l, then

(5.14) θ(j)=O mod pa for any ;>0,

(5.15) θ(j) = (-ΐ)apa mod pa+1 for b=p-2ora=p.

PROOF. Consider the integer θ(j, k)= Σ( — iy(. / ,) for 0<,k<p, then
i = 0 \ip-]-/€/

it is clear that

j) = θ(j\ 0) = 0(/-l, 0 ) - ^ ( ; - l , p - l ) .

Also, because (1 + χ)^1^ Σ0(/ —1, A:)Λ;Λ mod Λ ̂ + 1 , we have
* 0

(5.16) (l + ̂ ^ ^ Ϊ W - l , k)-(-l)kθ(j-l,P-l)}xk mod ?(.),

where P(Λ;) = (Λ;*+1)/(Λ; + 1 ) = ϊ f (- l)V, and the right hand side of (5.16)
ί = 0

has the constant term θ(j) by the above equality.
On the other hand, there is an integral polynomial Q(x) such that

since (P~7 j =( —I)1' mod p for 0^i<ip — l. Therefore, we have

xy mod P(%
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This equality and (5.16) show the first desired result.
Since Q( — 1) = — 1 by the definition, there is an integral polynomial

Q'(x) such that Q(χ) = (1 + x)Q'(χ)-1. Therefore, iίb=p-2,

1^Wi?iW mod P(χ\

for some integral polynomial Rι(x). Also, if a=p,

a+xy-^pxa+x)Q\x) - iya+χ)b

x)b +pp+1R2(x) +p>(l + xYQXxY

x)b+p*+1R3(x) mod P(A ),

for some integral polynomial Ri(χ). These and (5.16) show the second
desired property. q. e. d.

§6. J-group of L%(p2) and Ln(p2) for odd prime p

The reduced i£-group Z(Zg(p2)), which is isomorphic to K(Ln(p2)) by
(2.3), is given as follows [7, Th. 1.4]: Let

(6.1) n-pi + l = ai(pi+1-pi) + bi (0^>K/ + 1 -/) for £ = 0,1,

and consider the following elements of K(Lg(p2)):

( σ{l)ύj+P

a^-^σp+j (if δ i ^ ; < δ i + p - l )

(6.2) σ(l,/)= σ(l)σ'+/βi+1>(*-1>σ*+' (if ;<6i-(/?-l) 2 )

(otherwise),

for 0 ^ / ^ min (p2—p — l, n—p\ where 6 is the element of (2.6) and (T(l) =
(l + σ)p-l. Then,

(6.3) i<Vr α^ odd prime p and n>0,

K(mp2))^ΣZtj, 7τι=min (p2 — 1, n), (direct sum)

where Zt indicates a cyclic group of order t and

_ ί p2-ι+at (ifpi^j<pi + bi (i = 0, 1))

^"{ (i = 0, 1)),
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and the j-th direct summand Zt. is generated by

In connection to (6.1), we see easily the following

LEMMA 6.4. Let ci = [bι/(p—l)J, then

Hence, the condition αo=O mod p is equivalent to cι=p — l, and so to
p2-2p<bι.

By the results of the last sections, we have the following lemmas in

LEMMA 6.5. For the generators a0 and aλ of (5.8),

ί p1+a°a0 = 0 ifn^p-1 ( p^a^O if b1<,p2-

( ao = O ifn<p-l, \ pa^+l

ai = 0 if b1>p2-

PROOF. We see that p1+a^σp-1 = 0 if n^>p-l by (6.3) and l + bo^p-l,
σp-λ = 0 if n<p-l by (2.7), and / " ' ^ - ^ σ O O σ * 1 - * - 1 ^ by [7. Prop. 4.13].
These show the above results by (5.8) and (6.1). q.e.d.

By (5.14), there is an integer Θ\j) such that

(6.6) 0(7) =paθ'(j), a = [ ( ; - ΐ)/(p -1)].

LEMMA 6.7. For the elements of (6.2) and Jr of Proposition 5.7,

Jrσa,j)=

(if one of the above holds).

PROOF. The first equality follows from (6.2), (5.8) and Lemmas 5.9 and
6.5. The second follows from Lemma 6.4, (6.6) and the fact that

[(/>+7-l)/0>-D>ci + l if bι^j<bι+p-l, =1 if 0<7<δi-(/>-l) 2 . q.e.d.

ί 0 if b!<^p2-2p or n<p — l
LEMMA 6.8. pa°a0 = I

[ paia± if bι>p2 — 2p and n^p — 1.

PROOF. Let j0 be the integer such that
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(*) y 0 = α ( j D _ i ) + j P _ 2 and b^jo^ min (bx+p-2, P

2-p-l\

then ΘXp+jo)^(-l)a+1 mod p by (6.6) and (5.15).

If n^>p2 — l, σ(l, yΌ) is of order pai by (6.3), and so

o = ( - 1 ) y i M i , / o) =pαiαx+0'(/>+yo)pα°αo = / > α i α ! + ( - i ) β + y »α0

by the above two lemmas. This implies the lemma, because paiaι = 0 if δi<S
p2 — 2p by Lemma 6.5, and a=p — l if bχ>p2 — 2p.

If p —1<^</?2 — 1, then ax = 0 and bι = n— p+l = (a0 — l)(p — l) + δo, and
so α = α o - l and J D ^ J D + O^Λ + I by (*). Therefore, we have σp+J'° = 0 by (2.7),
and

by Lemma 5.9, (5.15) and Lemma 6.5. This shows the lemma as above.
If n<p — 1, then ao = O and αo = O by Lemma 6.5. q.e.d.

Now, the group structure of /(Lg(/>2)) is determined by the above con-
siderations.

THEOREM 6.9. Let p be an odd prime, and

be the integers of (6.1) for n >0. Then, the J-group J(Ln

0(p2))^Z(B /(Lg(
is given by

(0 ifao = O

) ^ Zpao 0 Zpax if αo^O mod p

Zpa0+i 0 Zpax if α o

Ξ O modp αr̂ d αo>O,

ίfee /irsί summand is generated by a0 and the second by cc\ —paQ~aia0 which
can be replaced by cc\ for the second case. Here, aQ — Jr6 and <Xι = Jrΰ(l) are
the elements of (5.8).

PROOF. For the case ao = O, we have n<p — ί and ao=aι = O by Lemma
6.5, and so the desired result by Proposition 5.7.

For the case n^p — 1, we consider the abelian group

I Zpa0 0 Zpaχ if αo^O mod p

Zpa0+i 0 ZPax if αo=O mod p,
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whose summands are generated by β0 and β[ respectively, and put

iffi = β[ (if αo^O mod p\ = β{ +pa°-aiβ0 (otherwise).

Then, by Lemmas 6.5, 6.8, 6.4 and Proposition 5.7, we see that the homomor-
phism

h: G-+J(Lξ(p2)), hβo = ao, hβλ = au

is well-defined and epimorphic. To prove that h is isomorphic as claimed, we
consider the diagram

where the homomorphism g is defined for the generators of (6.3) by

(6.11)
g(j(l, /')— (if bι<^j<bι+p — l or

(— l)J'βι (otherwise).

If it is proved that g is well-defined and

(6.12) ^((ίO = (-l)y-1fl(/X/?o-/9i) + (-l)y-1/Si for l^j

then the theorem is proved as follows: According to (5.8), Lemma 6.7 and
the definition of h, we see that the above diagram is commutative and so
Ker g CKer Jr. On the other hand, for 0<,j<p2—p, we have

by σ(l) = (l + σ)p-l9 (6.12) and Lemma 5.12. This and the first equality of
(6.11) show that g (Ker Jr) = 0 by Proposition 5.7. Thus we see that Ker g=
Ker Jr and h is isomorphic since g is epimorphic, and the theorem is proved.

Proof that g is well-defined. For the case bι^j<bι+p — l, the order of
6(1, j) is pa' by (6.3), and it is clear that pai(βι + ΘXp+j)pao~aιβo) = 0 if αoM)
mod p by (6.10). If αo=O mod p, then bι>p2 — 2p by Lemma 6.4, and so
j-l)/(p-l)J=p and θ'(p+j)=-l modp by (5.15) and (6.6). Thus

Pa<βi + Θ'(P+j)pa°'aiβ0) =paiβι -pa°βo = 0
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by (6.10). These show that g is well-defined for σ(l, /) if b^j'
The proofs for the other generators are easier.

Proof of (6.12). Suppose p-l<ίn<p2-l and n<j<p2, then σj = 0 by
(2.7). Also, aχ = 0 and l<;αo<Π/-l)/(/>-l)H<ί/>. If ao<p, then iS1 = 0 and
/Λ/90 = 0 by (6.10), and θ(/)=0 mod pa° by (5.14). If ao=p, then βι=pa*β0 by
(6.10), and Θ(j)=-pa° mod pa°+1 by (5.15). These show that the right hand
side of (6.12) is 0, and we obtain (6.12).

For n^>p2 — l^>j or p2 — l>n^>j, (6.12) is proved by the induction on/.
If b^j-pKbi+p-1, then we have σ(l)<r'"-*=<r(l, j-p)-pa'(p-1)σj by (6.2),
and so

inductively, using (6.11) and (6.6), by the same way as in the proof of Lemma
5.9. Also, the last is equal to

(1 +/Λ<>-1>)(( -1) j-ιθ(j)(β0 - 00 + ( - ly-Vi),

and so we have (6.12) since the order of G is a power of p. We can prove
(6.12) similarly for the other /. q.e.d.

For the /-group J(Ln(p2)) of the lens space mod p2, we have the follow-
ing theorem, which is proved by the same proofs of Q6, Prop. 2] using the
split-exact and commutative diagram

0 >K(L\p2)) >K(L«0(p2)) >0

_ r I r I
0 >KO(S2n+1) >KO{L\p2)) >KO(Ln

0(p2)) >0

(cf. [7, Lemma 2.4 (ii)]) and the fact that KO(S2n+1) = ΓχS2n+1) = J(S2n+1)
[2-Π, (3.5)].

THEOREM 6.13. For an odd prime p, J(Ln(p2))^J(Ll(p2)) if n^0 mod 4,

Z2 if n^0 mod 4.

COROLLARY 6.14. For an odd prime p, the order of the element Jrΰ of
J(Ln(p2)) or J(Ln

0(p2)) is equal to

pa° if ao^O modp or αo = O, pa°+1 if ao = O mod/? and α 0>0,

where ao= [_n/(p — l)J.

PROOF OF THEOREMS 1.3 AND 1.6 FOR ODD PRIME p. We can prove them
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for an odd prime p using the above corollary, by the same way as in the
proofs ίov p = 2 in §4. q.e.d.
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