On the Radon Transform of the Rapidly Decreasing Functions on Symmetric Spaces II

Masaaki Eguchi

(Received May 28, 1971)

1. Introduction.

One of the problems which are proposed by S. Helgason for the Radon transform is to study the relations between the function spaces on a space X and on the dual space \hat{X} by means of the Radon transform $f \rightarrow \hat{f}$. In [1], we considered the transform of the rapidly decreasing functions in $\Im(S)$ on a Riemannian globally symmetric space S. But to construct a \Im -theory for the Radon transform in a sense, it seems more favorable to study the Radon transform on the Schwartz space $\mathscr{O}(S)$, which is generalized by Harish-Chandra in [3], than on $\Im(S)$, since we know that the Schwartz space is invariant under the left translations by G [3].

In this paper we shall study the Radon transform for the functions in the Schwartz space $\mathcal{O}(S)$ on a Riemannian globally symmetric space of the non-compact type. The main results are Theorems A, B, C and D.

2. Preliminaries.

As usual, **R** and **C** denote the fields of real and complex numbers respectively. If *M* and *N* are two topological spaces, φ a homeomorphism of *M* onto *N* and *f* a function on *M*, we put $f^{\varphi} = f \circ \varphi^{-1}$. If *M* is a C^{∞} -manifold, $C^{\infty}(M)$ (respectively, $C_c^{\infty}(M)$) denotes the space of differentiable functions (respectively, differentiable functions with compact support) on *M*. If *G* is a Lie group and *K* a closed subgroup of *G*, for $x \in G$, the left translation by *x* of the homogeneous space G/K of the left cosets onto itself will be denoted by $\tau(x)$.

D(G/K) denotes the algebra of differential operators on the homogeneous space G/K which are invariant under the left translations $\tau(x)$, $x \in G$. We write D(G) instead of D(G/e), where e is the identity element of G.

Let S be a Riemannian globally symmetric space of the noncompact type, and $G = I_0(S)$ denote the largest connected group of isometries of S in the compact open topology, then G is a semisimple Lie group and has no compact normal subgroup $\neq e$. Let any point o in S fix, K denote the isotropy subgroup of G at o, g_0 and t_0 denote the Lie algebras of G and K, respectively, and let \mathfrak{p}_0 denote the orthogonal complement of \mathfrak{k}_0 in \mathfrak{g}_0 with respect to the Killing form B of \mathfrak{g}_0 . Then G/K has a G-invariant Riemannian structure induced from B. Let θ be the involution of \mathfrak{g}_0 which associates with the Cartan decomposition $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{p}_0$. Let $\mathfrak{h}_{\mathfrak{p}_0}$ denote a Cartan subalgebra for the space S and $A_{\mathfrak{p}}$ denote the analytic subgroup of G corresponding to $\mathfrak{h}_{\mathfrak{p}_0}$. Let C denote a Weyl chamber in $\mathfrak{h}_{\mathfrak{p}_0}$, then the dual space of $\mathfrak{h}_{\mathfrak{p}_0}$ can be ordered by calling a linear function λ on $\mathfrak{h}_{\mathfrak{p}_0}$ positive if $\lambda(H) > 0$ for all $H \in C$. By this ordering we have an Iwasawa decomposition of G, $G = KA_{\mathfrak{p}}N$. For $g \in G$, let H(g) denote the unique element in $\mathfrak{h}_{\mathfrak{p}_0}$ such that $g = k \exp H(g)n$ for $n \in N$ and $k \in K$.

Let M and M', respectively, denote the centralizer and normalizer of $\mathfrak{h}_{\mathfrak{p}_0}$ in K. Let W denote the Weyl group M'/M. Let \mathfrak{h}_0 be any maximal abelian subalgebra of \mathfrak{g}_0 containing $\mathfrak{h}_{\mathfrak{p}_0}$, let \mathfrak{g} denote the complexification of \mathfrak{g}_0 and \mathfrak{h} the subspace of \mathfrak{g} spanned by \mathfrak{h}_0 . Then \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} . Let Δ denote the set of nonzero roots of \mathfrak{g} with respect to \mathfrak{h} and let $\mathfrak{h}_{\mathfrak{t}_0}=\mathfrak{h}\cap\mathfrak{t}_0$, $\mathfrak{h}^*=$ $\mathfrak{h}_{\mathfrak{p}_0}+i\mathfrak{h}_{\mathfrak{t}_0}$. All the roots in Δ are real on \mathfrak{h}^* . Let C^* be any Weyl chamber in \mathfrak{h}^* whose closure contains the Weyl chamber C in $\mathfrak{h}_{\mathfrak{p}_0}$. We order the dual space of \mathfrak{h}^* by means of the Weyl chamber C^* . Let $\bar{\alpha}$ denote the restriction to $\mathfrak{h}_{\mathfrak{p}_0}$ of a root $\alpha \in \Delta$. Then the set Δ^+ of positive roots in Δ is a disjoint union, $\Delta^+ = P_+ \cup P_-$, where α belongs to P_+ or P_- respectively according to whether $\bar{\alpha} > 0$ or $\bar{\alpha} = 0$. Let $\rho = -\frac{1}{2} \sum_{\alpha \in P_+} \alpha$. The adjoint representation of \mathfrak{g} will be denoted by adX for $X \in \mathfrak{g}$. Let Σ denote the set of all linear functions on $\mathfrak{h}_{\mathfrak{p}_0}$ which are restrictions of the member of P_+ . Let

$$\begin{split} \varSigma_0 = &\{\lambda \in \varSigma \mid \lambda/n \in \varSigma \ \ for \ all \ integers \ \ n
eq 1\}, \ &\mathfrak{h}_{\mathfrak{p}_0}^+ = \{H \in \mathfrak{h}_{\mathfrak{p}_0} \mid lpha(H) \! > \! 0 \ \ for \ all \ \ lpha \in \varSigma\}, \end{split}$$

and put $A_{\mathfrak{p}}^+ = exp \mathfrak{h}_{\mathfrak{p}_0}^+$, where exp denotes the exponential mapping of g_0 into G. Let ${}^+\mathfrak{h}_{\mathfrak{p}_0}$ denote the set of all $H \in \mathfrak{h}_{\mathfrak{p}_0}$ such that $\langle H, H' \rangle \geq 0$ for every H'in $\mathfrak{h}_{\mathfrak{p}_0}^+$. Also let $Cl(A_{\mathfrak{p}}^+)$ denote the closure of $A_{\mathfrak{p}}^+$ in $A_{\mathfrak{p}}$.

The dual space of S is the space \hat{S} of horocycles in S, that is, the set of all orbits of subgroups of the form gNg^{-1} for all elements g in G, with a differentiable structure in such a way that \hat{S} is diffeomorphic to G/MN. We shall write D(S) for a D(G/K) and $D(\hat{S})$ for D(G/MN) respectively.

Let ξ be any horocycle in S, ds_{ξ} the volume element on ξ in the Riemannian structure on ξ induced by S. For a good function f on S we put

$$\hat{f}(\xi) = \int_{\xi} f(s) ds_{\xi}, \quad \xi \in \hat{S},$$

and call it the Radon transform of f. Let

$$\pi: G \rightarrow G/K, \quad \hat{\pi}: G \rightarrow G/MN$$

denote the projections, and let

$$F=f\circ\pi, \quad \hat{F}=\hat{f}\circ\hat{\pi}.$$

We can select a Haar measure dn on N such that the mapping $n \rightarrow n \cdot o$ of $\xi_0 = \{MN\}$ onto itself is measure-preserving, and then

$$\hat{F}(g) = \int_{N} F(gn) dn.$$

or any continuous function φ on \hat{S} , we define the dual Radon transform by

$$\check{\varphi}(p) = \int_{\xi \ni p} \varphi(\xi) \ dm \ (\xi), \qquad p \in S,$$

where the integral on the right is the average of φ over the set of horocycles passing through p. If we select $g \in G$ such that $g \cdot o = p$, we have

$$\check{\varphi}(g \cdot o) = \int_{K} \varphi(gk \cdot \xi_0) \ dk,$$

where the Haar measure dk on K is so normalized that the total measure of K is 1.

Let $D_0(G)$ denote the set of operators in D(G) which are invariant under all right translations from K. Let $S(\mathfrak{h}_{\mathfrak{p}_0})$ denote the symmetric algebra over $\mathfrak{h}_{\mathfrak{p}_0}$ and $I(\mathfrak{h}_{\mathfrak{p}_0})$ be the set of invariant polynomials in $S(\mathfrak{h}_{\mathfrak{p}_0})$ which are invariant under W. Then $D(A_{\mathfrak{p}})$ is canonically isomorphic to $S(\mathfrak{h}_{\mathfrak{p}_0})$. Let ν be a linear function on $\mathfrak{h}_{\mathfrak{p}_0}$ then $e^{\nu} \in C^{\infty}(\mathfrak{h}_{\mathfrak{p}_0})$. For simplicity, the function $a \to e^{\nu(\log a)}$ on $A_{\mathfrak{p}}$ shall also be denoted by e^{ν} . A C^{∞} -function f on a manifold can be regarded as a differential operator $F \to fF$. As is well known [5],

(i) for each $D \in \mathbf{D}(G)$ there exists a unique element $D_{\mathfrak{a}} \in \mathbf{D}(A_{\mathfrak{p}})$ such that

$$D-D_{\mathfrak{a}} \in \mathfrak{n}_0 \boldsymbol{D}(G) + \boldsymbol{D}(G)\mathfrak{k}_0,$$

(ii) if $\phi \in C^{\infty}(G)$ such that $\phi(ngk) = \phi(g)$ for all $n \in N$, $g \in G$, $k \in K$ then

$$(D\phi)^{-} = D_a \overline{\phi}, \qquad D \in \mathbf{D}(G),$$

where the bar denotes restriction to A_{ν} ,

(iii) the mapping $D \to e^{-\rho} D \circ e^{\rho}$ is a homomorphism of $\mathbf{D}_0(G)$ onto $I(\mathfrak{h}_{\mathfrak{p}_0})$ and the kernel is $\mathbf{D}_0(G) \cap \mathbf{D}(G)\mathfrak{k}_0$,

(iv) the factor algebra $D_0(G)/D_0(G) \cap D(G)\mathfrak{k}_0$ is canonically isomorphic to D(D/K)

Hence we have an isomorphism Γ of D(S) onto $I(\mathfrak{h}_{\mathfrak{p}_0})$. For each $D \in D$ (S), let D_0 be any operator in $D_0(G)$ which goes into D by the natural homomorphism μ of $D_0(G)$ onto D(S). Making use of the canonical isomorphism $D(A_{\mathfrak{p}})\cong S(\mathfrak{h}_{\mathfrak{p}_0})$, we obtain an isomorphism $\hat{\Gamma}$ of $D(\hat{S})$ ont $S(\mathfrak{h}_{\mathfrak{p}_0})$ under the diffeomorphism $\psi: (kM, a) \rightarrow kaMN$, of the fibre bundle $K/M \times A_{\mathfrak{p}}$ onto $\hat{S} [5]$. Also, under the canonical isomorphism $D(A_{\mathfrak{p}})\cong S(\mathfrak{h}_{\mathfrak{p}_0})$, the unique automorphism $p \rightarrow p$ of $S(\mathfrak{h}_{\mathfrak{p}_0})$ given by $H=H-\rho(H)$ $(H \in \mathfrak{h}_{\mathfrak{p}_0})$ corresponds to the automorphism $D \rightarrow e^{\rho} D \circ e^{-\rho}$ of $D(A_{\mathfrak{p}})$. If we define the mapping $\wedge: D \rightarrow \hat{D}$ by

$$\hat{\Gamma}(\hat{D}) = \Gamma(D),$$

it is an isomorphism of D(S) into $D(\hat{S})$. The image of this mapping will be denoted by $\hat{D}(\hat{S})$.

3. The functions ω , Ω , ξ , Ξ and σ .

For $x \in S = G/K$ and $g \in G$ such that $\pi(g) = x$, there exists a unique element $X \in \mathfrak{p}_0$ such that $x = \pi(\exp X) = \exp X \cdot K$. Put

$$\mathcal{Q}(g) = \omega(x) = \{ det(\sinh a dX/a dX)_{\mathfrak{p}_0} \}^{-\frac{1}{2}},$$

where $(\sinh a dX/a dX)_{\mathfrak{p}_0}$ denotes the restriction on \mathfrak{p}_0 of the linear transformation

$$\sinh a dX/a dX = \sum_{q \ge 0} (a dX)^{2q}/(2q+1)!$$

of g_0 and det() denotes the determinant of (). Put

$$\sigma(g) = \sigma(x) = ||X||,$$

where ||X|| denotes the norm of X by means of the inner product which is induced from the Killing form B. Also put

$$\xi(x) = \int_{K} e^{-\rho(H(\exp X \cdot k))} dk,$$

and

$$\Xi(g) = \int_{K} e^{-\rho(H(gk))} dk.$$

If we write $h = \exp H(h \in A_{\mathfrak{p}}^+, H \in \mathfrak{h}_{\mathfrak{p}_0}^+)$ and $\pi(h) = \bar{h}$, since

$$\omega(\bar{h})^2 = D(h),$$

where

$$D(h) = \prod_{\alpha \in \Sigma} (e^{\alpha(H)} - e^{-\alpha(H)}),$$

there exist a positive constant c_2 and a positive integer d such that

On the Radon Transform of the Rapidly Decreasing Functions on Symmetric Spaces II 165

(1)
$$\omega(\bar{h}) \leq c_2 \xi(\bar{h})^{-1} (1 + \sigma(\bar{h}))^d, \quad h \in A_{\mathfrak{p}}^+$$

[3].

4. The Schwartz spaces of S and \hat{S} .

After Harish-Chandra let us define the Schwartz space of S. For $f \in C^{\infty}$ (S), $D \in \mathbf{D}(G)$ and $d \geq 0$, put

$$\nu_{D,d}(f) = \sup_{\sigma} |D(f \circ \pi)| (1+\sigma)^d \hat{\varsigma}^{-1},$$

$$\tau_{D,d}(f) = \sup_{\sigma} |D(f \circ \pi)| (1+\sigma)^d \omega.$$

Let $\mathcal{O}(S)$ (respectively, $\mathfrak{I}(S)$) denote the space of all $f \in C^{\infty}(S)$ such that $\nu_{D,d}(f) < +\infty$ (respectively, $\tau_{D,d}(f) < +\infty$) for all $D \in \mathbf{D}(G)$ and $d \ge 0$. We topologize $\mathcal{O}(S)$ (respectively, $\mathfrak{I}(S)$) by means of the system of the seminorms $\nu_{D,d}$ (respectively, $\tau_{D,d}$) ($D \in \mathbf{D}(G)$, $d \ge 0$). Then $\mathcal{O}(S)$ and $\mathfrak{I}(S)$ are Hausdorff, locally convex and complete spaces. And we call $\mathcal{O}(S)$ the Schwartz space of S.

Let $\mathcal{Q}(\hat{S})$ denote the set of all functions $\varphi \in C^{\infty}(\hat{S})$ which satisfy the following condition: For every $E \in \mathbf{D}(A_{\mathfrak{p}})$, $u \in \mathbf{D}(K/M)$ and $r \geq 0$

$$\mu_{E,u,r}(\varphi) = \sup_{(kM,a) \in (K/M) \times A_{\mathfrak{p}}} (1 + ||\log a||)^r |[Eu(\varphi \circ \psi)](kM, a)| < +\infty,$$

where ψ is the diffeomorphism $(kM, a) \rightarrow kaMN$ of $(K/M) \times A_{\mathfrak{p}}$ onto \hat{S} . By means of this system of the seminorms, we topologize $\mathcal{O}(\hat{S})$. Then $\mathcal{O}(\hat{S})$ is a locally convex space too, and we call it the *Schwartz space of* \hat{S} .

5. Proof of the theorems.

As a colollary of the theorem 1 in [1], we obtain by (1) the following THEOREM A. For any $f \in \mathcal{O}(S)$ and $D \in \mathbf{D}(S)$

$$\widehat{Df} = \widehat{Df}.$$

Let us denote by e^{ρ} the function $(e^{\rho})(kan) = e^{\rho(\log a)}$ defined on $G = KA_{\mathfrak{p}}N$ and put

$$F_f(xMN) = \left[e^{\rho}(\hat{f} \circ \hat{\pi}) \right](x) = e^{\rho(H(x))} \int_N f(xn) dn, \qquad (x \in G).$$

THEOREM B. The mapping $f \rightarrow F_f$ is a one-to-one continuous linear mapping of $\mathcal{O}(S)$ into $\mathcal{O}(\hat{S})$.

PROOF. To prove $F_f \in \mathcal{Q}(S)$ and the continuity of the mapping $f \rightarrow F_f$, we use the following

Lemma ([3], pp. 106). Put $\bar{n} = \theta(n^{-1})$. Then there exist $d \ge 0$ and $c \ge 1$ such that

$$1\!+\!\max\left(\sigma(a),\,\rho(H(\bar{n}))\!\leq\!c(1\!+\!\sigma(an))\right.$$

and

$$\Xi(an) \leq c(1 + \sigma(an))^d \exp\{-\rho(\log a) - \rho(H(\bar{n}))\}$$

for $a \in A_{\mathfrak{p}}$ and $n \in N$.

Now let $E \in \mathbf{D}(A_{\mathfrak{p}})$ and $u \in \mathbf{D}(K/M)$. Then we can regard E, u as E, $u \in \mathbf{D}(G)$ in a natural way and there exists an elment $\tilde{E} \in \mathbf{D}(A_{\mathfrak{p}})$, depending on E but independent of u, such that

$$(Eu)(e^{\rho}f)(kan) = e^{\rho(\log a)} [(\tilde{E}u)f](kan)$$

for $k \in K$, $a \in A_{\mathfrak{p}}$ and $n \in N$. Applying the above lemma, for every positive integers d and l, we can find a constant c_1 such that

$$(1+\sigma(a))^{l} \left[(Eu)(e^{\rho}f) \right] (kan)$$
$$\leq c_{1}(1+\sigma(kan))^{l+1+d} (\tilde{E}uf)(kan)e^{-\rho(H(\tilde{n}))}(1+\rho(H(\bar{n})))^{-(1+d)}$$

for all $k \in K$, $a \in A_p$ and $n \in N$. Since there exists an integer d satisfying

$$\int_{\bar{N}} e^{-\rho(H(\bar{n}))} (1 + \rho(H(\bar{n}))^{-(1+d)} d\bar{n} < +\infty$$

([2], pp. 289), for every integers l and every differential operators $E \in D(A_{\mathfrak{p}})$, $u \in D(K/M)$ we have

$$\sup_{\substack{(kM,a)\in (K/M)\times A_{\mathfrak{p}}\\g\in G}} (1+\sigma(g))^{l+1+d} |(\tilde{E}uf)(g)| E(g)^{-1} \int_{\bar{N}} e^{-\rho(H(\bar{n}))} (1+\rho(H(\bar{n}))^{-(1+d)} d\bar{n} \\< +\infty.$$

which shows $F_f \in \mathcal{Q}(S)$ and the mapping $f \rightarrow F_f$ is continuous.

From now on, we assume that G is a complex semisimple Lie group. Then there exists an explicit differential operator $\Box \in D(S)$ such that for all $f \in C^{\infty}_{c}(S)$,

$$\Box((\hat{f}))) = cf,$$

where c is a constant $\neq 0$, independent of f [5]. Moreover we know that the inclusion mapping $C_c^{\infty}(S)$ into $\mathcal{O}(S)$ is continuous and the image is dense

166

in $\mathcal{Q}(S)$ and that $\mathcal{Q}(S)$ is invariant under the left translations $\tau(x)$, $x \in G$ [3].

THEOREM C. For any $f \in \mathcal{O}(S)$,

$$\Box((\hat{f}))) = cf.$$

PROOF. We prove this in the same way as in [5], by means of the density of $C_c^{\infty}(S)$ in $\mathcal{O}(S)$. Let $f_0 \in \mathcal{O}(S)$. Then there exists a sequence $\{f_m\}$ in $C_c^{\infty}(S)$ which converges to f_0 with respect to the topology in $\mathcal{O}(S)$. Put $F_m = f_m \circ \pi$ (m = 0, 1, 2, ...) and define F_{m1} by

$$F_{m1}(g) = \int_{K \times N} F_m(kng) \ dk \ dn, \qquad (m = 0, 1, 2, \dots).$$

Then we obtain

$$F_m(e) = c \lim_{\substack{b \to e \\ b \in A_n}} [\Box_0 F_{m1}](b), \qquad (m = 1, 2, \dots),$$

where c is a constant. We shall prove the same formula for F_0 . Since for any $D \in \mathbf{D}(S)$

$$[D_0F_{01}](g)-[D_0F_{m1}](g)=\int_{K\times N}([D_0F_0](kng)-[D_0F_m](kng))dk\ dn,$$

 $(m=1, 2, \dots)$, in particular, for $b \in A_{\mathfrak{p}}$,

$$\begin{split} |[D_0F_{01}](b)-[D_0F_{m1}](b)| &\leq e^{2\rho(\log b)} \int_{K \times N} |[D_0F_0](kbn)-[D_0F_m](kbn)| \, dk \, dn \\ &\leq e^{2\rho(\log b)} c_1^{-1} c_2 \sup_{g \in G} \mathcal{Q}(g)(1+\sigma(g))^d |[D_0F_0](g)-[D_0F_m](g)|, \end{split}$$

where c_1, c_2 are certain positive constants and d is a positive integer. Hence we have

$$\lim_{\substack{b \to e \\ b \in A_{\mathfrak{p}}}} |[D_0F_{01}](b) - [D_0F_{m1}](b)| = 0.$$

And therefore

$$F_0(e) = c \lim_{\substack{b \to e \\ b \in A_p}} [\Box_0 F_{01}](b).$$

Now since $\mathcal{O}(S)$ is invariant under the left translations $\tau(x)$ $(x \in G)$, if we put $F_0^x = f_0^{(x^{-1})} \circ \pi$ and put

(3)
$$F_{01}^{x}(g) = \int_{K \times N} F_{0}^{x}(kng) \, dk \, dn,$$

we have

(4)
$$F_0(x) = c \lim_{\substack{b \to e \\ b \in A_p}} \left[\Box_0 F_{01}^x \right](b).$$

Masaaki Eguchi

The rest of the proof is same as the one in [5]. From (3), we have

$$\begin{bmatrix} \Box_0 F_{01}^x \end{bmatrix} (g) = \int_N \left(\int_K \begin{bmatrix} \Box_0 F_0 \end{bmatrix} (x k n g) dk \right) dn.$$

Now let g=b and $b \rightarrow e$ in $A_{\mathfrak{p}}$. Then by (4)

$$f_0(x \cdot o) = F_0(x) = c \int_N \left(\int_K \left[\Box_0 F_0 \right] (xkn) dk \right) dn,$$

which, by commutativity of the mean value operators with the differential operators [4], equals

$$c \int_{N} \Box_{x} \left(\int_{K} F(xkn) \ dk \right) dn = c \Box_{0x} \left(\int_{K \times N} F_{0}(xkn) \ dk \right) dn,$$

where the subscript x denotes the argument on which \Box and \Box_0 act. Therefore we have

$$f_0(x \cdot o) = c [\Box(\hat{f}_0)^*](x \cdot o)$$

and the theorem is proved.

the proof of this theorem suggests the following

THEOREM D. Let $\check{E} \in \mathbf{D}(S)$ corresponds to $E \in \hat{D}$ under the isomorphism $\mathbf{D}(S) \cong \hat{\mathbf{D}}$. For any function φ in the image of $\mathcal{Q}(S)$ by the Radon transform, the following relation holds.

$$(E\varphi)$$
 $\check{=}$ $\check{E}\check{\varphi}$

PROOF. Let $\hat{f} = \varphi$, $f \in \mathcal{O}(S)$, and $\hat{D} = E$, $D \in D(S)$. And put $F = f \circ \pi$. Then

$$(\check{E}\check{\varphi})(x \cdot o) = D_0 \int_K \int_N F(xkn) \ dn \ dk = D_0 \int_N \int_K F(xkn) \ dk \ dn =$$
$$= \int_N \left(D \int_K F(xkn) \ dk \right) dn.$$

Since, in the last integral, we can exchange the mean value operator for the differential operator, the last integral equals

$$\int_{N} \int_{K} [D_{0}F](xkn) dk dn = \int_{K} \widehat{DF}(xk) dk$$
$$= (E\varphi)^{*}(x \cdot o).$$

This proves the theorem.

168

169 On the Radon Transform of the Rapidly Decreasing Functions on Symmetric Spaces II

References.

- [1] M. Eguchi, On the Radon transform of the rapidly decreasing functions on symmetric spaces. I, Mem. Fac. Sci., Kyushu Univ., Ser. A, 25 (1971), 1-5.
- [2] Harish-Chandra, Spherical functions on a semisimple Lie group. I, II, Amer. J. Math., 80 (1958), 24 1-310, 553-613.
- [3] _____, Discrete series for semisimple Lie groups. II, Acta Math., 116 (1966), 1-111.
- [4] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [5] _____, Duality and Radon transform for symmetric spaces, Amer. J. Math., 85 (1963), 667–692.
 [6] _____, The Radon transform on Euclidean spaces, Compact two point homogeneous spaces and Grassmann manifolds, Acta Math., 113 (1965), 153-180.
- [7] L. Schwartz, Theorie des distributions. I, Hermann, Paris, 1950.

Department of Mathematics, Faculty of General Education, Hiroshima University