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1. Let χ = (χi,-- 9 Xn) be a point of the ^-dimensional Euclidean space Rn

and let t be a non-negative number. The distance of the point % e Rn from
n

the origin of Rn is denoted by \χ\= (Σ * ! ) 1 / 2 The O + l ) -dimensional
ί = l

Euclidean half space Rn x (0, oo) is the domain of interest.
Consider a parabolic differential equation

(1) Lou= Σ ^ ^

in Rn x (0, oo). Krzyzaήski \JΓ\ proved the existence of the fundamental
solution of this equation. By using this fundamental solution, we can see
that the solution u(χ, t) of the above equation with Cauchy data u(x, 0) =
Mexp (α I x 12) (2a <k) is given by

/ ^ \w/2

u(x,t) = M \jΓcosh2kt-2asmh2kt)

\k (2a cosh 2kt - k sinh 2kt) , | 2 ; Ί
PL2(A:cosh2^-2αsinh2A;ί) ' ' ~*'US

So, if l — kn<0, then u(χ, t) converges to zero uniformly on every compact
set in Rn as £->°o5 (cf. [7]). This fact leads us to the question whether the
similar situation to the above holds or not for solutions of general parabolic
equations of unbounded coefficients with suitable Cauchy data.

2. The following results, Theorem A and Theorem B, of Kusano [ΊΓ]
give us an answer to the question.

Let

(2) Lu = ; Σ Λ .

be a parabolic differential equation in Rn x (0, oo)5 where the coefficients
aij( = ajΊ), bi and c are functions defined in Rnx[0, oo) and such that
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0 < Σ aijζiζj^h\ξ|2 for any real vector ξ = (ζ 1 ?. .? ξn)φ0,
ij l

in Rnx[0, oo) for some constants λi(>0), k2(>0)9 &3(>0) and k4.

THEOREM A. Put

(4) δ=min[ inf αz J.
i%i% u n i ? w [ o )

Let θ be the positive root of the equation Akxθ
2 + 2k2nθ — k3 = 0 and let u(x, t)

continuous in Rn x QO, oo) be a solution of (2) in Rn x (0, oo) in the usual sense
satisfying | u(x, 0) | <ΞΛf exp (a \ x | 2) in Rn for some positive constants M and
a. Suppose that the following inequalities are satisfied:

k3<0 and k4 + 2(k2 — a)nθ<0.

Then lim u(χ, t) = 0, the convergence being of exponential order and uniform

with respect to x e Rn.

THEOREM B. Suppose that there exists a positive constant δ such that

(5) Σfau + bixd^δ
i = \

for (x9 t) e Rnx[0, oo). Let u = u(x, t) continuous in Rnx[0, oo) be a solu-
tion of (2) in Rn x (0, oo) in the usual sense satisfying | u(x, 0) | ̂  M exp
(α I x 12) in Rn for some positive constants M and α. Assume the following
inequalities are satisfied:

+ 2k2na-k3<0 and

Then lim u(x, t) = 0, the convergence being of exponential order and uniform

with respect to x e Rn.
In this article we shall deal with the question stated in § 1 and extend

Theorems A and B to the more general parabolic differential operator L of
the form (2) whose coefficients satisfy the following conditions:

(6)

0 < Σ aijξiξj<,kι(\x\2 + l)1-χ\ξ\2 for any real vector
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for some constants &i(>0), &2G>0), &3(>0) and k± in Rnx(0, oo) for λe
[1, oo).

3. In the later discussion, we shall need the following lemma which is a
generalization of Krzyzaήski's theorem

LEMMA. Assume that the coefficients of L in (2) satisfy (6). Let u =
u(x, t) continuous in Rn x QO, oo) satisfy Lu = 0 and \ u(x, t) | <^M*exp[>*( | % \2

+ l) λ ] in Rn x (0, oo) for some positive constants M* and α*. // there exists
a positive constant M such that \u(x, 0)|<ίM, then it holds that \u{x, i)\<^
M(t) exp [—a{ \ x \ 2 + l) λ tanh βf\ in Rn x (0, oo) for some positive constants a,
β and for a positive continuous function M(i) in t >0.

PROOF : Consider a function

where <p(t)(>0) and ψ(t) are differentiate once in [Ό, oo).

From (4) and (6) we see that

(7)
n

- 1 V 1 / i Z.

h Kβii-tOiXi

^ ( \χ 12

so, if

(8) <p(t)=a tanh

where

is the positive root of the quadratic equation 4:kιλ2X2 + 2K2nλX—k3 = 0, then
we easily see that

ψ\t) + 4M V ( ί ) + 2k2nλ<p(t) - k3<:0.

Further, it is also easy to see that
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(9)

satisfies

for φ(t) given by (8). We have thus shown that the function

X

satisfies the differential inequality LV<,0 in Rnx (0, oo). Consider the func-
tion W±(χ, t)=V(χ, t)±u(χ9 t) and apply the maximum principle of Bodanko
[1] to JF±(x, t). Then we have JP±(x, 0>0, i. e. \u(x, t) \<V(x, t) for
(x, t) e Rnx [0, oo), thereby completing the proof of the lemma.

4. Now we assume that the coefficients of L in (2) satisfy the condition
(6) in Rn x (0, oo) for some constants &i(>0), k2(>0)9 A3(>0), k4 and λ e [1, oo).
Let u = u(χ, t) continuous in Rnx[0, oo) satisfy Lu = 0 and \u(x, 01 ̂ Λf* exp
[α*( I x Γ + l) λ ] in Rn x (0, oo) and | u(χ, 0) | ̂ Mexp [α( | Λ 12 + l) λ ] for positive
constants M*, M, α* and α. Suppose that these constants fulfil the inequality

(10) 4a2λ2k1-\-2aλk2n-k3<0.

Now we use an idea presented [_2J, [βj. First we introduce a parameter
p(>l) and put

^

where ro = (A;3α~:L—2λk2n—4aλ2kι)(\og p)"1. From (10) we see that r 0>0.
Since Λ ε [1, oo), it is easy to see that F(x, t) satisfies the differential

inequality

in Rnx(0, rό1!]. Putting JΓ±(Λ;, ί ) = ^(^? 0±^(*> ί) and applying the maxi-
mum principle of Bodanko [1] to W±(χ9 t) we have W±(χ, ί)^0, i. e.5
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x ^ Γ ,χ 1 9 , x > -rat 4

u(x, t) <M exp o( \x \z + l) λ p ° + — ΐ
L ro log p

in Rn x (0, ΓO 1]. Hence we have

(11) I u(x, ro1) I <M, exp [α( I x \2 +1) V 1 ] , x e i?w,

where

we consider t = rό1 as the initial time and (11) as the initial condition for
u. Repeating the above procedure, we obtain

u(x, t) I ^M1 exp[αp-χ( I x 12 +1) V'lC-'ir

ri log p

in i Γ x ^ o 1 , ΓQ1 + ΓΪ" 1], where ri = (A;3a"1p — 2λk2n — 4αΛiP~1)(lθg p)"1,

so that

I u{x, rό1 + ΓΓ1) I ^ M 2 exp [αp-2( I x \ 2 + l ) λ ] , Λ 6 i?w,

where

In general,

(12) \u(x, ro' + r^+ +rjηi^Mj^exviap-^Wxl' + iy-], x €

where rJ = (k3a~1p] — 2λk2n—4:aλ2kιp~J)(\og p)~x and

(13) MJ+1 =

Let us consider the convergent series
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f(p)= y n-vτi= y P " f l ° g <>

and

ff(o) = y Γτi = y

6K J ί-o * i~o kza-ιpi

It is a matter of simple calculation to derive the following:

(14) f(p)^ -j—j— λ l 0 g P-
k3a

 1— 2λk2n — Aaλ2kι 1 —

and

(15) lim g(p) = limΓ _, ,

=

= T0, say.

From (13) and (14) it follows that

(16) ^ ^ ^ ^ [ T ^ ^ 1 - ^ 1 ) ! / ^ 1 ] ' ;= 1>2> ,

where we have set

and on account of (15) it is possible to choose p o(>l) so that the right-hand
side of (16) does not exceed a constant, say M0 = 2Mexv(k4T0) provided
<Po Therefore it follows from (12) that

(17) I u(x, Σ ΰ1) I ̂ Mo exp [_ap~j~\ \ x 12 + l ) λ ] , x e Rn

ί=0

provided that p is sufficiently near to 1. Let x e Rn be arbitrary but fixed.
Given any positive number ε, we can find pi (>1) such that | u(χ, To) —

u(x,f(p))\ <~2 for l<p<pi, as can be seen from (15).

On the other hand, for a fixed p with 1 < p < min(p0, Pi) an integer JV
can be found such that
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\u(x,f(p))-u(x, trj^K-i-for j>N.

Thus we obtain | u(x, Γo) | < | u(x, Σ ΰι) \ + ε f or j > JV, whence in view

of (17),|n(*, Γ o ) |<M o exp[αp- y - 1 (kΓ + i ) λ ]+ εfor;>7V. This yields K * ,
Γo) I £S^o in the limit as/->°o and ε->0. Since x is arbitrary, this inequality
holds throughout Rn.

5. After these preparations, we can prove the following

THEOREM 1. Let

6e α parabolic differential operator in Rn x (0, oo) ̂ Λ,ose coefficients aij( = aji)9 b{

and c satisfy the condition (6) inRnx[β, oo) for some constants ifci(>0), A:2
(^0), A;3(>0), ki and λ e Ql, oo). Let u = u(x, t) continuous in Rnx[0, oo) sa-
tisfy Lu = 0 and \u(x, t)\<LM* exp \ja*(\x Γ + l) λ ] in Rnx(0, oo) for some
positive constants Λί* and α* α^d | U(Λ;, 0) | <^M exp Qα( | x 12 + l) λ ] foe positive
constants M and a. Assume that the inequalities (10) and

(18) - U2ha2 - 2λάna + h

are valid. Then lira u(x, 0 = 0, the convergence being of exponential order
f->oβ

and uniform with respect to x e Rn.

PROOF. By the argument in § 4, we can find To and Mo such that \u(x>
To) I <,M0. Now, we discuss how u(x, t) behaves for t > Γo. To make use of
Lemma we introduce the function

(19) W{χ, t)=M0 exp [ - α ( | x 12 + l) λ tanh 4^!/l2a(i- Γo)

+ (-4A2A1α
2

Then we can verify that

in Rnx(T0, oo). Thus, according to Bodanko's maximum principle, we con-
clude that I u(x, t) I <̂  W(χ, t) in Rnx(T0, oo). Now the assertion of the
theorem follows from the observation that the asymptotic behavior of W(χ,
t) as ί-*oo is determined by the factor
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which decays exponentially to zero as £—»oo provided that (18) holds. This
completes the proof.

By the quite similar method, we can prove the following. We may omit
the proof of it.

THEOREM 2. Let Lbe a parabolic differential operator of the form in (2)
satisfying (6) in Rn x QO, oo) for a number λ e (0, 1]. Suppose that a contin-
uous function u(x, t) in Rnx[0, oo) satisfy Lu = 0 and \u(x, t)\<?M*x
expQα*(| x 12 + l) λ J in Rnx(0, oo) for some positive constants M* and a* and
I u(χ> θ)ISS-^exp Cα(l#l 2 + l)λH for positive constants M and α. Assume
that the inequalities (10) and

(20) U(l-λ)a-2λnaά+h<0

are valid. Then lim u(x, t) = 0, the convergence being of exponential order

and uniform with respect to x e Rn.

Next we shall prove the following

THEOREM 3. Let L be a parabolic differential operator of the form (2)
with coefficients satisfying (6) for some λ e (0, 1] and let u = u(x, t) contin-
uous in Rnx[β, oo) satisfy Lu = 0 and \u(x, t)\^M* exp \jι*(\x \ 2 + l)λH in
Rnx(0, oo) for positive constants M* and a* and \u(x9 0) |^ ikίexp [ a ( | ^ | 2

+ l)λH f<>r positive constants M and a. Assume that the inequalities (10) and

(21)

are valid. Then lim u(x, t) = 0, the convergence being of exponential order

and uniform with respect to x 6 Rn.
To see this, it is enough to introduce the function

(t-T0)J

ΓxexpΓ-(lA;Γ(lA;| + l) /

and to proceed exactly as in the proof of Theorem 1. we may omit the
details.

REMARK 1. Our Theorem 1 corresponds to Theorem 2 of {ΊSJ. If we
take a = 0 in the Cauchy data | u(x, 0) ] <LM exp \ja{ \ x \ 2 + l)λH in our theorem,
then we get the result due to Kuroda [5~].

REMARK 2. In our Theorem 1, consider the case λ = l. If we put &i = l,
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λ;2 = 0, δ = l, k3 = k2 and k4 = k2 + l, our theorem can be applied to Lou = O sta-
k

ted in § 1. In this case, a is the positive root of 4x2 — k3 = 0 and α = -o", hence

the condition (18) is equivalent to l<kn. Thus Theorem 1 gives us, as a
special case, Krzyzaήski's result stated in § 1.

REMARK 3. If we take a = 0 in the Cauchy data | u(x, 0)| <JMexp [_a{\χ\2

+ l ) λ ] in Theorem 2, then we get the result stated in [ΊΓ].

REMARK 4. In the case λ = l9 Theorem 2 and Theorem 3 coincide with
results due to Kusano [8] (Theorems A and B stated in § 2).
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