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1. Let x=(x1, -+, x,) be a point of the n-dimensional Euclidean space R*
and let ¢ be a non-negative number. The distance of the point x € R” from
the origin of R” is denoted by |x|= ( Z} x)Y%.  The (n+1) -dimensional
Euclidean half space R”x (0, ) is the domaln of interest.

Consider a parabolic differential equation

%u

(1) L()u—— y a

x|+ Du—="=0, (k>0)

in R*x (0, o). Krzyzanski [4] proved the existence of the fundamental
solution of this equation. By using this fundamental solution, we can see
that the solution u(x, z) of the above equation with Cauchy data u(x, 0)=
Mexp (a|x|?) (2a<k) is given by

B k ni2
u (o, £)=M (k cosh 2kt —2a sinh 2kt>

k (2a cosh 2kt —k sinh 2kt) | |,
exp [2 (k cosh 2kt —2a sinh 2kt) |x]%+ lt].

So, if [—kn<0, then u(x, t) converges to zero uniformly on every compact
set in R" as t—>oo, (cf. [7]). This fact leads us to the question whether the
similar situation to the above holds or not for solutions of general parabolic
equations of unbounded coefficients with suitable Cauchy data.

2. The following results, Theorem A and Theorem B, of Kusano [8]
give us an answer to the question.
Let
& 0%u ou _ O0u _
@ Lu—;,§1a']0 i0x; T ,; b‘@xi+ cu W_O
be a parabolic differential equation in R”x (0, ), where the coefficients
a;;(=a;;), b; and ¢ are functions defined in R*x[0, o) and such that
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0< 20 @;€:i8;<k1|&|? for any real vector £=(¢,,..., &,)50,
71
G | b k(| 22+ D2, I<i<n),

c<—ks|x|?+ky

in R*x [0, o) for some constants k,(>0), k,(=0), ks(>0) and k,.
Tueorem A. Put

4) &= min [ inf ai; ).

1=i=n (%,1)€R™x[0,)

Let 6 be the positive root of the equation 4%,6%+2k,n6 —k;=0 and let u(x, t)
continuous in R” x [0, o) be a solution of (2) in R”x (0, =) in the usual sense
satisfying |u(x, 0)| <M exp (a|x|?) in R” for some positive constants M and
a. Suppose that the following inequalities are satisfied:

4k10%+2kona—k; <0 and ky+2(k,—&)n6<0.

Then lim u(x, t)=0, the convergence being of exponential order and uniform
o0
with respect to x € R”.

TueoreMm B. Suppose that there exists a positive constant ¢ such that
®) 2. (@it bix))=0
i=1

for (x, t) € R"x[0, o). Let u=u(x, t) continuous in R” %[0, =) be a solu-
tion of (2) in R”"x (0, o) in the usual sense satisfying |u(x, 0)|< M exp
(a]x|?) in R" for some positive constants M and a. Assume the following
inequalities are satisfied:

k10 + 2kyna —ks <0 and k4—6‘/:_3<0.
1

Then lim u(x, t) =0, the convergence being of exponential order and uniform

with r’gspect to x € R”.

In this article we shall deal with the question stated in § 1 and extend
Theorems A and B to the more general parabolic differential operator L of
the form (2) whose coefficients satisfy the following conditions:

0< i‘ aii€:8;<k:1(|x |2+ 1)'"|&|? for any real vector
i 7=1
’ 52(51,---, gn)#oﬁ

1|bi|gkz<|x12+1>“2; (1<<i<n)
e<—ks(| |2+ 1)+ ks
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for some constants k(>0), £.(=0), ks(>0) and %k, in R"x (0, o) for 1€
[1, o).

8. In the later discussion, we shall need the following lemma which is a
generalization of Krzyzanski’s theorem [4].

LemMmA. Assume that the coefficients of L in (2) satisfy (6). Let u=
u(x, t) continuous in R" x [0, o) satisfy Lu=0 and |u(x, t)| <M*exp[a*(|x |2
+ 1] im R” % (0, o) for some positive constants M* and a*. If there exists
a positive constant M such that |u(x, 0)| <M, then it holds that |u(x, t)|<
M(t) exp [ —a(|x|*+1)* tanh Bt ]in R”x (0, o) for some positive constants c,
B and for a positive continuous function M(t) in t>0.

Proor: Consider a function
Vix, )=Mexp [—o@)(|x]|*+1D*+ ()],
where ¢(:)(>0) and ¢(¢) are differentiable once in [0, o).
From (4) and (6) we see that

R OV ‘_ ‘]43 iy

@ —UG=DeW x|+ 1 3 ey,
—220(0)(| % |*+ 1" 2 (kb + ¢
+o' (x| 2+ —¢'(1)
< (1|24 D[/ (0) + 412202 (1) + 2kyndg(t) — ks ]
[ — 4k, 220%(8) — 22&n () + ke— ' (8) )

so, if
(8 ¢(t)=a tanh 4k, %at
where
= —kon+V k3n®+ 4k ks
4k,

is the positive root of the quadratic equation 4k;42X?+2K,nlX—k;=0, then
we easily see that

@' (£) +4k1220%(t) + 2kondo(t) — k3 =<0.

Further, it is also easy to see that
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8\2kjat
_ 2 € _
©)) O() = (—42%ka* —20ana+ k)t +——— 2/Uc log eBhat
2«
Westklar+1+a+ 2Mrlogz

satisfies

—4k1/12¢2—2/1&n(p(t)+k4—¢)’(t):0
for ¢(¢) given by (8). We have thus shown that the function

8\2k at

e an exp[~—2a— ot G log2]

V{x, t):M<W 22k, eSVhat 4 q 2]ng

exp [ —a(|x|?+1)* tanh 4k, 2at + (—42%k @ — 22ana+ kgt ]

satisfies the differential inequality LV<<0 in R”x (0, c0). Consider the func-
tion Wa(x, t)=V (x,t)+u(x, t) and apply the maximum principle of Bodanko
[1] to Wui(x,t). Then we have W.(x, )=0, i. e |u(x, t)|<V(x,t) for
(%, t) € R"x [0, o), thereby completing the proof of the lemma.

4. Now we assume that the coefficients of L in (2) satisfy the condition
(6) in R"x (0, o) for some constants £,(>0), k2(=0), k5(>0), ky and 2 € [1, o).
Let u=u(x, t) continuous in R”x [0, o) satisfy Lu=0 and |u(x, t)| <M* exp
Ca*(|x |2+ 1) in B (0, e0) and |u(x, 0)| <M exp [a(| x| *+1)*] for positive
constants M*, M, a* and a. Suppose that these constants fulfil the inequality

(10) 4azizk1+2alk2n—k3<0.

Now we use an idea presented [2],[6]. First we introduce a parameter
o(>1) and put

4l k1a+2lk1na+k4 (1 froz)jl

. 2 A ‘TO‘
V(x, )=Mexp| a(|x|*+ 1) iy

where ro=(ksa~t—22k;n—4ad’k,)(log p)~'. From (10) we see that r,>0.
Since 1 €[ 1, ), it is easy to see that V' («, t) satisfies the differential

inequality

d 0%V oV
D ¥ ,Z b: ax,+ V=70

in R"x (0, rg']. Putting W.(x, t)=V(x, t)+u(x, t) and applying the maxi-
mum principle of Bodanko [1] to W.(x, ¢t) we have W.(x, t)=>0, i. e,
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+ 4/Izk1a+21k1na—|- k4 /l_p—rot)]

= |: 2 N —TOt
|u(x, t)| <Mexp|a(|x|°+1)*0 ro log o :

in R”x (0, r;']. Hence we have

11 lu(x, r5t) | <My exp [a(|x |+ 1) '], » € RY,
where

_ 4/12k1a+21k1na+k4{ -1 _1]

Ml—Mexp[ Tog 0 A—po Hrgt |

we consider t=r;! as the initial time and (11) as the initial condition for
u. Repeating the above procedure, we obtain

lu(x, t)| =M, exp[ap"l(l x| 2 1) T

42%k1ap™  +22nkiao ™ + k4 (1— p_,l(,_,o-:)):l

+
rilog o

in R”x (rg', rot+rit]), where ry=(ksa= 0 —2kyn —4a2’k,0~ ) (log 0) 71,
so that
lu(x, rgt +rit) [ =M exp [ao (| x|*+ D], » € R”,

where

2
41 k]_(llo—g.zplk]_na (1_0—1)(TO—1+0—1r1—1)

M2:M epr:

ks =1y (=1 -1
ol (=0 (7D |

In general,
A2)  fulw, rg*+rit i) | =M 0 exp Lap” (|2 |2+ 1M, x € R,

where r;=(ksa 0’ —22k;n —4aA’k;0~7)(log 0)~! and

2
18) M., :Mexp[ 4 kl‘ijgi“‘l”“ A—0 G5 + 04+ 40747
ky P N e ST —1}
+ Tog o A—o DGt +rit++r7h |

Let us consider the convergent series



150 Lu-San CHen, Cheh-Chih YEH and Hung-Yih CHEN

e Y i1 o o~ ’log p
f) ig“op i iZ=:o ksa o' —22k,n —4al’k 07}

and

R TR log o
-_— o 1 = - r3
8(0) z';or’ iz=:0 ksa=t0'—2ksn —4a2’k,07"

It is a matter of simple calculation to derive the following:

1 log o
<
(14) f(p)= k3a_1—21k2n—4alzk1 l_pfl’
and
. i log o
15 1 ~1im|
(15) im g () =lim) — ot n gtk &

1 log ksa ' —kond+ AN kZn®+4kiks

T 20 KB+ Akrks ° kg —hand— AN kEn®+ Ak ks

=1T,, say.

From (13) and (14) it follows that

~ k TS .
— f(1—p? .1] =1.2...
a6 MsMex|h o) Lrit] j=L2.,
where we have set
o 42%ka+22k1na ]
M_Mexp[ k30_1—2/{k2n—4a/{zk1 ’

and on account of (15) it is possible to choose ©0,(>1) so that the right-hand
side of (16) does not exceed a constant, say M,=2Mexp(k,T,) provided 1<p
<po. Therefore it follows from (12) that

AD  ulx, X )| <Myexp [ap~*(|x|?+1)*], x€R"
i=0

provided that o is sufficiently near to 1. Let x € R” be arbitrary but fixed.
Given any positive number ¢, we can find p, (>1) such that |u(x, To)—
u(x, f(0)| <% for 1<p<p1, as can be seen from (15).

On the other hand, for a fixed p with 1 <p< min(p,, 0;) an integer N
can be found such that
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| u(x, fO) —ulx, 3 <4 Efor j>N.

i=0

Thus we obtain |u(x, Ty)| < |u(x ri |+ efor j>N, whence in view

of (17),|u(x, To)| <M, exp [ap™ (| x|? +1)‘]+ e for]>N This yields | u(x,
To)| <M, in the limit as j>co and e—>0. Since x is arbitrary, this inequality
holds throughout R”.

5. After these preparations, we can prove the following

TuaeoreM 1. Let

n 82 n a a
L= i ,Zla” 0x;0x; + ;;1 b'Tx,-—l_ ‘o

be a parabolic differential operator in R” x (0, o) whose coefficients a;;(=a;;), b;
and ¢ satisfy the condition (6) in R” x[0, o) for some constants k,(>0), k;
(=0), k3(>0), ks and 2 €1, ). Let u=u(x, t) continuous in R"”x [0, ) sa-
tisfy Lu=0 and |u(x, t)| <M* exp [a*(|x|*+1)*] in R"x (0, o) for some
positive constants M* and a* and |u(x, 0)| <M exp [a(|x|*+1)] foe positive
constants M and a. Assume that the inequalities (10) and

18) — 422k a® —22&na+ k<0

are valid. Then hm u(x, t)=0, the convergence being of exponential order
and uniform with Tespect to x € R”.

Proor. By the argument in § 4, we can find T, and M, such that |u(x,
Ty | <M, Now, we discuss how u(x, t) behaves for :>T,. To make use of
Lemma we introduce the function

(19) W(x, t)=M, exp [ —a(|x|*+1)* tanh 4k, 2%a(t — T,)
+ (—42%k a2 —22ana+ ky)(t— To) .
Then we can verify that

4 7 OW ow
. _ <
1(1,_, Ox,-fix,- i=1 6 6 0

in R"x (T, o0). Thus, according to Bodanko’s maximum principle, we con-
clude that |u(x, t)|<W(x,t) in R"x(T,, ). Now the assertion of the
theorem follows from the observation that the asymptotic behavior of W («,
t) as t—oo is determined by the factor

e(—4x2k1a2—2x&'na+k4)t
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which decays exponentially to zero as :—>oo provided that (18) holds. This
completes the proof.

By the quite similar method, we can prove the following. We may omit
the proof of it.

Tueorem 2. Let L be a parabolic differential operator of the form in (2)
satisfying (6) in R”x[0, o) for a number 2 € (0,1]). Suppose that a contin-
uous function u(x, t) in R*x[0, ) satisfy Lu=0 and |u(x, t)|<M*x
expla*(|x|2+1)*] in R"x (0, oo) for some positive constants M* and a* and
|u(x, 0)| <M exp [a(|x|2+1)*] for positive constants M and a. Assume
that the inequalities (10) and

(20) 42— Da—2Ana@+ k<0

are valid. Then lim u(x, t)=0, the convergence being of exponential order

o0
and uniform with respect to x € R”.
Next we shall prove the following

Tueorem 3. Let L be a parabolic differential operator of the form (2)
with coefficients satisfying (6) for some 2 € (0, 1] and let u=u(x, t) contin-
uous im R"x[0, o) satisfy Lu=0 and |u(x, t)|<M* exp [o*(|x|2+1)"] in
R"x (0, o) for positive constants M* and a* and |u(x, 0)| <M exp [a(|x|?
+1)*7] for positive constants M and a. Assume that the inequalities (10) and

@1) ka2 — ) Torkea —a,/%«)
1

are valid. Then lim u(x, t)=0, the convergence being of exponential order

11—

and uniform with respect to x € R”.
To see this, it is enough to introduce the function

2k1(1-0)—8

W(x, t):Mo [COSh 21\/161]1?3 (l— To)] 2)k1

xexp[—(lx 124 1) / 4k3 tanh 24y Erks(t — To)+ ks (1 — TO)}

A%k
and to proceed exactly as in the proof of Theorem 1. we may omit the
details.

Remark 1. Our Theorem 1 corresponds to Theorem 2 of [5]. If we
take a=0 in the Cauchy data |u(x, 0)| <M exp [a(|x|*+1)*]in our theorem,
then we get the result due to Kuroda [5].

Remark 2. In our Theorem 1, consider the case A=1. If we put k;=1,
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k=0, &a=1, ks=k® and k,=k?+1, our theorem can be applied to Lou=0 sta-
ted in § 1. In this case, « is the positive root of 4x%—%;=0 and asé, hence

the condition (18) is equivalent to I<kn. Thus Theorem 1 gives us, as a
special case, Krzyzanski’s result stated in § 1.

Remark 3. If we take a=0 in the Cauchy data | u(x, 0)| <Mexp [a(]|x|?
+1)*] in Theorem 2, then we get the result stated in [3].

Remark 4. In the case 2=1, Theorem 2 and Theorem 3 coincide with
results due to Kusano [ 8] (Theorems A and B stated in § 2).
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