Corrections to "The Reduced Symmetric Product of a Complex Projective Space and the Embedding Problem"

Tsutomu Yasui (Received February 25, 1972)

There is a mistake in §5 of my previous note [6], and the results (2) and (3) of theorem 5.5 on pages 28 and 39 are incorrect. This theorem should be replaced by

Theorem 5.5. Let n > 4.

- (1) There exists a unique isotopy class of embeddings of CP^n in R^{4n} .
- (2) There exist countable isotopy classes of embeddings of $\mathbb{C}P^n$ in \mathbb{R}^{4n-1} .
- (3) There exists a unique isotopy class of embeddings of CP^n in R^{4n-2} for $n \neq 2^r$.

This note contains some corrections of $[6, \S 5]$ and the proof of (2) and (3) of the above.

1. Some Corrections. In this note, denote simply by SZ the quotient manifold $SZ_{n+1,2}$ of [6, (1.3)] and let λ be the real line bundle associated with the double covering $Z_{n+1,2} \longrightarrow SZ$. (In $[6, \S 5]$, we consider also λ as the real line bundle associated with the double covering $CP^n \times CP^n - \Delta \longrightarrow (CP^n)^*$.) Let \mathscr{B} be the S^{m-1} -bundle associated with $m\lambda$ and let $\mathscr{B}(\pi_i(S^{m-1}))$ be the bundle of coefficients with fiber $\pi_i(S^{m-1})$ associated with \mathscr{B} . Then the obstructions for the existence of a non-zero cross section of $m\lambda$ are the elements of $H^{i+1}(SZ; \mathscr{B}(\pi_i(S^{m-1})))$ and the obstructions for two given non-zero cross sections being homotopic are the elements of $H^i(SZ; \mathscr{B}(\pi_i(S^{m-1})))$. If m is even, then the bundle of coefficients $\mathscr{B}(\pi_i(S^{m-1}))$ is trivial since $m\lambda$ is orientable, and so the above cohomology groups with local coefficients coincide with the ordinary cohomology groups.

Therefore the cohomology groups $H^*(SZ; \pi_i(S^{m-1}))$ for odd m in $[6, \S 5, pp. 38-39]$ should be replaced by $H^*(SZ; \mathcal{B}(\pi_i(S^{m-1})))$.

2. Proof of Theorem 5.5. (2). By $[4, \S37.5]$ and $[6, \text{Prop. } 5.2 \ (2)]$, it is sufficient to show that $H^{4n-2}(SZ; \mathscr{B}(\pi_{4n-2}(S^{4n-2}))) = Z$. Since $(4n-1)\lambda$ is unorientable, the bundle of coefficients $\mathscr{B}(\pi_{4n-2}(S^{4n-2}))$ with fiber $\pi_{4n-2}(S^{4n-2}) = Z$ is not trivial by $[4, \S38. \ 12]$. Let \mathscr{B}' be the tangent sphere bundle of SZ. Because SZ is a (4n-2)-dimensional unorientable manifold by [6, Th. 4.15], the bundle of coefficients $\mathscr{B}'(\pi_{4n-3}(S^{4n-3}))$ with fiber $\pi_{4n-3}(S^{4n-3}) = Z$ is not

trivial by [4, §38. 12]. Since $\pi_1(SZ) = Z_2$, which is easily seen, two bundles of coefficients $\mathscr{B}(\pi_{4n-2}(S^{4n-2}))$ and $\mathscr{B}'(\pi_{4n-3}(S^{4n-3}))$ with fiber Z are equivalent. Therefore we obtain $H^{4n-2}(SZ; \mathscr{B}(\pi_{4n-2}(S^{4n-2}))) = H^{4n-2}(SZ; \mathscr{B}'(\pi_{4n-3}(S^{4n-3})))$. Referring to [4, §39. 5], we have $H^{4n-2}(SZ; \mathscr{B}'(\pi_{4n-3}(S^{4n-3}))) = Z$ and so $H^{4n-2}(SZ; \mathscr{B}(\pi_{4n-2}(S^{4n-2}))) = Z$.

3. Proof of Theorem 5.5. (3). Consider the S^{4n-3} -bundle $p: E \longrightarrow SZ$ associated with $(4n-2)\lambda$. It is sufficient to show that there exists a unique homotopy class of cross sections of this sphere bundle. Since $(4n-2)\lambda$ is orientable, there exists a Postnikov system $\{E_i, p_i, h_i\}_{i\geq 1}$ where $p_i: E_i \longrightarrow E_{i-1}$ is the principal fibration with fiber $K(\pi_{4n-4+i}(S^{4n-3}), 4n-4+i)$ induced by $k^i: E_{i-1} \longrightarrow K(\pi_{4n-4+i}(S^{4n-3}), 4n-3+i)$ and $h_i: E \longrightarrow E_i$ is a (4n-3+i)-equivalence^(*) and a lifting of h_{i-1} ($E_0 = SZ, h_0 = p$).

Since h_2 is a (4n-1)-equivalence and SZ is a (4n-2)-dimensional manifold [6, Th. 4.15], [SZ, E; id] is equivalent, as a set, to $[SZ, E_2; id]$ by [2, Th. 3.2] where [X, Y; id] denotes the set of homotopy classes of cross sections of a fibration $Y \longrightarrow X$. Using the methods of [3], we shall showe that $[SZ, E_2; id]$ consists of one element.

Let $F=\Omega K(Z, 4n-2)=K(Z, 4n-3)$ and let $C=K(Z_2, 4n-1)$ which is considered as a topological group. Since the first invariant k^1 represents the Euler class of $(4n-2)\lambda$, which is zero for $n \neq 2^r$, we have $E_1 = F \times SZ$. Let

$$m: F \times E_1 = F \times (F \times SZ) \longrightarrow E_1 = F \times SZ$$

be the action defined by

$$m(\nu, (\mu, x)) = (\nu^{\vee}\mu, x)$$
 for $x \in SZ$, $\nu, \mu \in F$

where $\nu^{\vee}\mu$ is the composite of loops ν and μ in F [3, §§ 2-3]. Let $f = k^2$: $E_1 = F \times SZ \longrightarrow C$ and let

$$f_1: (F \times E_1, * \times E_1) \longrightarrow (C, *)$$

 $\tilde{f}_2: PF \times E_1 \longrightarrow PC, \quad f_2: \varOmega F \times E_1 \longrightarrow \varOmega C,$

^(*) A map $g: X \longrightarrow Y$ is called an n-equivalence for $n \ge 1$ if $g_*: \pi_q(X) \longrightarrow \pi_q(Y)$ is isomorphic for q < n and epimorphic for q = n.

denote the maps defined by

$$f_1(\nu, y) = f(m(\nu, y)) \cdot [f(m(*, y))]^{-1}$$

$$\tilde{f}_2(\mu, y)(t) = f_1(\mu(t), y), \quad f_2 = \tilde{f}_2 | \Omega F \times E_1,$$

where PF (resp. PC) denotes the path space of F (resp. C) and $\nu \in F$, $\gamma \in E_1$, $\mu \in PF$, $t \in I$ [3, §4]. By the definition of f_2 , it follows that

$$f_2(\xi^{\vee}\zeta, y) = f_2(\xi, y)^{\vee} f_2(\zeta, y)$$
 for $\xi, \zeta \in \Omega F$, $y \in E_1$.

Let η be the homotopy class of a cross section $s: SZ \longrightarrow E_1$ of $p_1: E_1 \longrightarrow SZ$ and let θ be the homotopy class of $f = k^2$. Define

$$\Delta(\theta, \eta): [SZ, \Omega F] \longrightarrow [SZ, \Omega C]$$

as follows; for a map $a: SZ \longrightarrow \Omega F$, let $b: SZ \longrightarrow \Omega C$ be the map given by

(1)
$$b(x) = f_2(a(x), s(x))$$
 for $x \in SZ$.

Put $\Delta(\theta, \eta)[a] = [b]$ in $[SZ, \Omega C]$. Then $\Delta(\theta, \eta) : [SZ, \Omega F] \longrightarrow [SZ, \Omega C]$ is well-defined and a homomorphism. Since $[SZ, \Omega C]$ is isomorphic to $H^{4n-2}(SZ; Z_2)$, we regard $\Delta(\theta, \eta)$ as $\Delta(\theta, \eta) : [SZ, \Omega F] \longrightarrow H^{4n-2}(SZ; Z_2)$. For the determination of $\Delta(\theta, \eta)$, we prepare some results.

Let σ denote the suspension homomorphism of the path fibration $\Omega A \longrightarrow PA \xrightarrow{p} A$ and $H^{i}(A)$ stand for $H^{i}(A; Z_{2})$ unless otherwise stated. Consider the following diagram:

$$H^{4n-2}(\Omega C) \xrightarrow{\approx} H^{4n-2}(\Omega C, *) \xrightarrow{\delta} H^{4n-1}(PC, \Omega C)$$

$$\downarrow f_{\frac{\pi}{2}} \qquad \qquad \downarrow f_{\frac{\pi}{2}} \qquad \qquad \downarrow \tilde{f}_{\frac{\pi}{2}} \qquad \qquad \downarrow \tilde{f}_{\frac{\pi}{2}$$

The commutativity of this diagram implies that

(2)
$$(\sigma \times id)f_1^* = f_2^*\sigma.$$

Let ι and $\bar{\iota}$ denote the mod 2 reductions of the characteristic classes of F = K(Z, 4n-3) and ΩF , and let ι' and $\bar{\iota}'$ denote the characteristic classes of $C = K(Z_2, 4n-1)$ and ΩC , respectively. Then

(3)
$$\sigma(\iota) = \bar{\iota}, \qquad \sigma(\iota') = \bar{\iota}'.$$

By the definition of $f_1:F\times E_1\longrightarrow C$, we have

(4)
$$f_1^*(\iota') = m^* f^*(\iota') - 1 \times f^*(\iota')$$
 in $H^{4n-1}(F \times E_1)$.

Now $f^*(\iota')$ is the element of $H^{4n-1}(F \times SZ) \cap \operatorname{Ker} h_1^*$ and $H^{4n-1}(F \times SZ) \cap \operatorname{Ker} h_1^*$ $= H^{4n-1}(F) \otimes H^0(SZ) + H^{4n-3}(F) \otimes H^2(SZ)$ has $\{Sq^2\iota \otimes 1, \iota \otimes v^2, \iota \otimes c_1\}$ as basis by [6, Th. 4,9]. Hence $f^*(\iota')$ has the form $f^*(\iota') = \varepsilon_1 Sq^2\iota \otimes 1 + \varepsilon_2\iota \otimes v^2 + \varepsilon_3\iota \otimes c_1$, where $\varepsilon_i = 0$ or 1 (i = 1, 2, 3). Referring to [5, IV], we have $\varepsilon_1 = \varepsilon_2 = 1$. $\varepsilon_3 = 0$ and so

(5)
$$f^*(\mathfrak{c}') = Sq^2\mathfrak{c} \otimes 1 + \mathfrak{c} \otimes v^2.$$

By the definition of $m: F \times (F \times SZ) \longrightarrow F \times SZ$, $m^*: H^*(F) \otimes H^*(SZ) \longrightarrow H^*(F) \otimes H^*(F) \otimes H^*(SZ)$ is given by

(6) $m^*(x \otimes y) = x \otimes 1 \otimes y + 1 \otimes x \otimes y$ for the primitive element $x \in H^*(F)$.

Using the above preparation, we now compute $\Delta(\theta, \eta)$.

$$\begin{split} & \varDelta(\theta,\eta) \lceil a \rceil = b^*(\bar{\iota}') \\ & = d^*(a \times s)^* f_2^*(\bar{\iota}') \quad \text{by (1), where } d \text{ is the diagonal map of } SZ \\ & = d^*(a \times s)^* f_2^* \sigma(\iota') \quad \text{by (3)} \\ & = d^*(a \times s)^* (\sigma \times id) f_1^*(\iota') \quad \text{by (2)} \\ & = d^*(a \times s)^* (\sigma \times id) (m^* f^*(\iota') - 1 \otimes f^*(\iota')) \quad \text{by (4)} \\ & = d^*(a \times s)^* (\sigma \times id) \{ m^* (Sq^2 \iota \otimes 1 + \iota \otimes v^2) - 1 \otimes (Sq^2 \iota \otimes 1 + \iota \otimes v^2) \} \quad \text{by (5)} \\ & = d^*(a \times s)^* (\sigma \times id) (Sq^2 \iota \otimes 1 \otimes 1 + \iota \otimes 1 \otimes v^2) \quad \text{by (6)} \\ & = d^*(a \times s)^* (Sq^2 \bar{\iota} \otimes 1 \otimes 1 + \bar{\iota} \otimes 1 \otimes v^2) \quad \text{by (6)} \\ & = d^*(a \times s)^* (Sq^2 \bar{\iota} \otimes 1 \otimes 1 + \bar{\iota} \otimes 1 \otimes v^2) \quad \text{by (3)} \\ & = Sq^2 a^*(\bar{\iota}) + a^*(\bar{\iota}) v^2 \quad \text{in } \quad H^{4n-2}(SZ) \; . \end{split}$$

The element $c_1^{2^{r+1}-2}c_2^s$ of $H^{4n-4}(SZ)$ $(n=2^r+s, 0 \le s < 2^r)$ is contained in the lamge of the mod 2 reduction and so there exists $a: SZ \longrightarrow \mathcal{Q}F$ such that $a^*(\overline{\iota}) = c_1^{2^{r+1}-2}c_2^s$. For such a map a, $\Delta(\theta, \eta)[a] = Sq^2(c_1^{2^{r+1}-2}c_2^s) + c_1^{2^{r+1}-2}c_2^sv^2 \rightleftharpoons 0$, because $c_1^{2^{r+1}-2}c_2^sv^2 \rightleftharpoons 0$ and $c_1^{2^{r+1}-1}=0$ by [6, Prop. 4.14]. Thus $\Delta(\theta, \eta): [SZ, \mathcal{Q}F] \longrightarrow [SZ, \mathcal{Q}C]$ is an epimorphism. While $[SZ, F] = H^{4n-3}(SZ; Z) = 0$ by [6, Th. 4.10]. Using [3, Th. 4.3], $[SZ, E_2; id]$ consists of one element and so there exists a unique isotopy class of embeddings of CP^n in R^{4n-2} for $n \rightleftharpoons 2^r$.

REMARK. Theorem 5.5. (2) is a special case of A. Haefliger's theorem of [1, 1.3.e] for $V = CP^n$, k=1,

Refernces

- [1] A. Haefliger, Plongements de Variétés dans le domaine stable, Séminaire Bourbaki, 150 (1962/3), n° 245.
- [2] I. James and E. Thomas, Note on the classification of cross-sections, Topology 4 (1966), 351-359.
- [3] —, On the enumeration of cross-sections, Topology 5 (1966), 95-114.
- [4] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
- [5] E. Thomas, Seminar on Fiber Spaces, Lecture Notes in Math. 13 (1966), Springer-Verlag.
- [6] T. Yasui, The reduced symmetric product of a comlex projective space and the embedding problem, Hiroshima Math. J., 1 (1971), 27-40.

Department of Mathematics Faculty of Science Hiroshima University

