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0. Summary

In the previous paper [37], the admissibility of certain tests and classi-
fications in multivariate normal analysis was obtained using the method in
Kiefer and Schwartz [2]. In this paper we consider the problem of testing
the equality of mean vectors and covariance matrices. Two cases are consi-
dered. One case is that of testing the equality of mean vectors and covari-
ance matrices in k£ normal populations, and the other case is testing the
equality of a mean vector and a covariance matrix to given vector and
matrix in a normal population. We shall prove admissibility of certain test
procedures for the problems by modifying the Kiefer-Schwartz’s method.
The test procedures include the likelihood ratio test for each problem.

1. Preliminaries

Throughout this paper we consider random matrices whose columns are
independently distributed, each p-variate normal. The parameter space in
each problem will be denoted by 2={6}=H,+ H,. The Lebesgue density
function of X for given 6 will be denoted by fx(x; 6). A priori probability
measure or its constant multiples will be denoted by I7 and [T =11,+ IT, with
II; a finite measure on H;.

Let V'=(X,U) be a random matrix whose columns, under H;, have
common unknown covariance matrix ' and EU=y(p x 1) (unspecified). Let
0* be the parameter of the distribution of X, i.e., =(6*, v). Let HF be
the domain of 6* under H;, and consider the case where the domain of v is
E? and H,=H¥ < E? i.e, 0 € H, if and only if 6* ¢ H¥. Let HF* be a subset
of H¥ for which X can be written as Y=(C,+ D) where C, is a given
positive definite matrix and D is nonnegative definite matrix. And consider
a finite measure II§¥ on H¥ which assigns whole measure to H¥*. Then the
following lemma holds:

Lemma 1.1.  There exists a finite measure I, on H, which satisfies
WD) | fw; 0) Mi(d0)=cwetr{— 5 CoU—vo) (U~ }-{ fxlx; 0)ITE(d0%)

for any fixed vector v,.
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Proor. As in the proof of Lemma 3.1 in Kiefer and Schwartz [2] let
the marginal distribution of 6* be given by II¥. Then we define the con-
ditional distribution of v, given 6*, as follows: Let rank D=r, then we can
write D=yy" for 7(pxr). Let y(rx1) be distributed according to N(0,
(I,—%'2Z9)™') and define the conditional distribution of v by

I v—vo)=1r.

For this a prior: distribution we obtain the lemma.

Lemma 1,1. is of course available for i=0. Moreover it can be extended
to the case when V'=(V®, V®) where the parameters of V¥ and V® are
independent and each V' ® is of the above form. Using this lemma and Lemma
1.1 in Nishida [3] we derive Bayes critical regions for 0-1 loss, which are
admissible.

2. k sample problem

Let pxN; matrix X®=(X{",..., X{)) be a random sample from a multi-
variate normal distribution with unknown mean vector u; and unknown
covariance matrix 2(i=1,..., k). Then we want to test the hypothesis
Hy: y1=-=p, 2,=---=2, against the alternatives Hi: y;=~u; or 2;=2;
for some i and j. We write

go— 1 Jye g1 Zk: %iXm
AP R PP
N: . (i . —
(21) Si: Z (_Xt(i)_X(l))(Xt(t)_X(t))/’
t=1

kE N; _ . _
=3 % (XP— X)X —X,
i=11=1

where N= Zk] N;. Then the following theorem holds where n;=N;—1, n=
i=1
N—-1:
Tueorem 2.1. Suppose p—1<r<n—p+1, p—1<r;i<n;—p+1G@=1,.., k),
then a test with the critical region
|S1”

% =c
il;Illsil”

(2.2)

18 admissible Bayes.

Proor. We prove this theorem in the case when k=2. The proof to
the case when £>2 is a straightfoward extension. Consider an _grthogonal
matrix Q© under H, such that (X, X®)Q©® = XQ»=(Yy,-.-, Y,, YNX) where
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each column vector of XQ® has common unknown covariance matrix 5 and
EY,=0. Similarly consider an orthogonal matrix Q" under H; such that
XQO=(Y®,..., Y, N, XD, Y2, VP, N, X®), where column vectors
Y{H,..., ¥ and yN; X have common unknown covariance matrix J¥; and
EY;?=0. We apply Lemma 1.1 to YN X, VN, X@® and YN, X® respectively,
by setting vo=0. Let I '=1I,+77 under H, for 7(pxq) where ¢>>p and
let S;t'=1,+7%; under H; for 7{p:q;) where ¢;>p. We set

dITo(n)/dy= |97 |~ D2 I+ 97| "

(2.3) 2
I \(p)/dy= I [ 7] e a2 [ty | "]

for the Lebesgue density function of IT,(y) and IT,(y) respectively. The
integrability of (2.3) under the condition of Theorem 2.1 is proved in [2].
For this a prior: distribution, the statistic giving the Bayes critical region
(1,1) in [ 8], is calculated as follows:

etr {—-%(NJZ‘“X(”HLNzX(”XT(Z)’)}
etr {—%NXTXT’}

2
[ [ 1 cmsozete{— 21,498 Jandn,

S |77 |~ etr {——;—(Iﬁw’)s} dy

5|7 S I1 [In?‘v?"l(”"“)’z etr {——%—v?v?"}}dﬂkdv?

i=1

I S1lf1/2| Sl I 722 gln*v*'/l(r—q)/z etr{—%ﬁ*ﬁ*/} d77*

1 1
where 7*=S2y, y¥=S7?%; Since the integral in the last line is constant,
we obtain the theorem by Lemma 1.2 in [37].

CoroLLARY 2.1. The likelthood ratio test
|S|Y

(2.4) %
,1;11 R

>c

is admaissible Bayes, when min n;>2(p—1).

Proor. put r=c;N, r;=c1N; in Theorem 2.1 where c; is slightly larger
than (p—1)/min N;, and we obtain Corollary 2.1. To satisfy the integrability
condition, it is required that min n;>2(p—1).

If we replace N and N;s by n and n;’s respectively in (2.4) and in the
proof of Corollary 2.1, we obtain the same statement. This is a modified
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version of the likelihcod ratio test by the degrees of freedom. It is easy to
obtain tests with more complicated critical regions by using a prior: distribu-
tion like (3.2) in Section 3.

8. One sample problem

Let p x N matrix X=(X,,---, Xy) be a random sample from a multivariate
normal distribution with unknown mean vector x# and unknown covariance
matrix 2. From this sample we want to test the hypothesis Hy: u=#o, 2=2,
against the alternatives H,: x>y, or Y23, where y, is a given vector and
J, is a given positive definite matrix. This problem can be reduced to the
following form: Y =(Yi, .., Y, yNX)(N=n+1) with EY;=0(px1),X
N

=% > X; and all the columns of Y are independently distributed with com-
i=1

mon unknown covariance matrix X. We treat the problem in this form. If

we write S= Z" Y; Y/, then the following theorem holds:
i=1

TueoreM 3.1.  For given pxp positive definite matrix B, and nonnega-
tive definite matrices By, By, im, @ test with the critical region

3.1) etr [(25! BO)"S—i—NgX o) (X —10)'}] >c
[ st AT mesie]

is admissible Bayes, provided that (i) q;=>p for i=mi+1,...,mi+m, where
Cy Gmyem, OTE positive integers, (ii) p—1<q;+t; for i=my+1,..., m+m; and

(111) lemzq1+ Z max (0,:)<n—p+1. When m;=0 and m,=1, the cond-

i=mi+

ition (111) 18 'me'roved togi+u,<n—p+1.
Proor. We apply Lemma 1.1 to YN X by setting vo=+Ny, under H,.

mit+my

Let '=Bo+ ). 7 under H;, for 7,(pxq:). We set
i=1

mi+m mi+mz

B2 am@)/dr=] T |nil"*] | Bot 5, i)

1 mi+mz
-etr{—— P Biﬂiﬂz{}
2 %

for the Lebesgue density function of I7,(y). The integrability of (3.2) under
the assumptions is shown in[8]. After the same calculations as for Theorem
2.1 in [37], we obtain the theorem.

CoroLLARY 3.1. The likelithood ratio test

3.3) etr [251{54']\"'(5;#0)()2—/10)’}]2C
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18 admissible Bayes when n>p.

Proor. Let mi=1,m;=0, ¢g;=1, By=0and B,=[(N—1)/N 23! in Theo-
rem 3.1. Then we obtain the corollary.

We can generalize these results to the & sample case. Let px N; matrix
XD =(X{",..., X§#)) be a random sample from a multivariate normal dlstrlbu-
tion with unknown mean vector x; and unknown covariance matrlx 2(i=1,...,
k). We consider the problem of testing H,: u#;= tg;, 2:=20; (z k) agalnst

Ni
Hy:pi=5 po; or ;523 for some j. We write X(”— Z XH, 8= Z}l

t=
(X —XN(XP—-XDY and n;=N;—1.

Tueorem 3.2. For given pxp positive definite matrixz B,; and nonnega-
tive definite matrices Bij, -y Bu,, im,,i» @ test with the critical region

3.4 ﬁi { etr (53} = Bu)LS,; +Nm<“)f;f:—ﬂo]><x< D — s1;) ]} -
ji=1 [ II IBif+ Sj|q”][ H IB,]‘FS |lI@]+t“:'
i=1

i=mij+1

18 admissible Bayes, provided that (i) q;;=>p for i=my;+1,..., mi;+my; where

G1jy s Gmy my,i Q1€ POSitive integers, (i) p—1<gi+t;; for i=my;+1,...,my;
mijtmzy mijtmaj
+my; and (iii) Z qij+ Z max (0, ¢;;)<nj—p+1 hold for all j=1,..
i=mij+1

When m;=0 omd m2]—1 the condition (iii) 2s ¥mproved to q1]+t1]< n; p+1

The admissibility of the likelihood ratio test in this case is obtained as
follows: Put m,;=0, my;=1, Bll—O(p/<p),q1,+t1j~c1N and By;=(1—c1)35}
for j=1,..., k in Theorem 3.2, where ¢, is slightly larger than (p—1)/minN;.

J
To satisfy the integrability condition, it is required that min n;>2(p—1).
i
CoroLLARY 3.2, The lrkelihood ratio test

etr IS+ N{(X D — poi) (XD — pg /)]
| S;| ¥

k

(3.5) II

o1

s admissible Bayes, when min n;>2(p—1).
7

Birnbaum [17] proved that the Bayes acceptance region for the exponen-
tial family is convex when null hypothesis is simple. In this case, he also
proved that the set of convex acceptance regions is the minimal complete
class under some additional assumptions. It can be shown by his method
that our Bayes rules in this section have convex acceptance regions. But the
minimal complete class for our problem seems to be unknown yet, even in
the simplest case where p=1 and k=1.
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