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Introduction

Recently B. Hartley [3] and I. Stewart [9, 10] investigated the structure
of infinite-dimensional Lie algebras in the spirit of infinite group theory.
They considered subideals as the Lie analogue of subnormal subgroups of
infinite groups and studied the connections between subideals of a Lie al-
gebra and the structure of the algebra as a whole.

A subideal of a Lie algebra I is a member of a finite series of subal-
gebras ending with L such that each member is an ideal of the following.
A class X of Lie algebras is called coalescent [10] if in an arbitrary Lie
algebra the join of any two subideals belonging to X is always a subideal
belonging to £. It has been shown in [3] that if the basic field is of charac-
teristic 0, the class f$ of finite-dimensional Lie algebras and the class 3lr\$
with 9ΐ the class of nilpotent Lie algebras are coalescent. We may ask whe-
ther there exist coalescent classes besides f$ and ϊcΛ^.

A finite-dimensional Lie algebra has two kinds of radicals, the solvable
radical and the nilpotent radical. As the Lie analogue of radicals of infinite
groups, several radicals corresponding to the nilpotent radical in finite-di-
mensional case have been introduced for a Lie algebra L which is not neces-
sarily of finite dimension [3, 10]. The Fitting radical v (L) is the sum of all
nilpotent ideals of L. The Hirsch-Plotkin radical p (L) is the unique locally
nilpotent ideal of L. If the basic field is of characteristic 0, on the base of
the coalescency of %lΓ\% the Baer radical β (L) is defined as the subalgebra
generated by all subideals of L belonging to TcΓ\%$. As for the interrelation
of these radicals it is shown [3, 10] that if the basic field is of characteristic
0, v(L)^β(L)<^p{L) and these are different in general, although these reduce
to the nilpotent radical in the case where L is finite-dimensional. They are
called locally nilpotent radicals. However, no study has been made about
the ideals corresponding to the solvable radical in finite-dimensional case.
We define local solvability of a subalgebra just as local nilpotency, that is,
we call a subalgebra H of L locally solvable if every finite subset of H lies in
a solvable subalgebra. Thus we may ask what can be said about locally
solvable radicals of L.

The purpose of this paper is to investigate the structure of infinite-
dimensional Lie algebras, especially to search for coalescent classes of Lie
algebras and to study locally nilpotent and locally solvable radicals of a Lie
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algebra.
Part I will be devoted to the study of coalescent classes. For a class X

of Lie algebras, we define X(ω) (resp. Xω) as the class of Lie algebras L such

that L/L(ω) (resp. L/Lω) belongs to X, where L(ω)= f\L(n) and Lω= f\Ln.

Denoting by @ the class of solvable Lie algebras, we consider the operations
of getting, from X, other classes @Λϊ, 5WΠΪ, $nX, X(ω) and Xω. By applying
these operations to g and SflωΓ\% where © is the class of finitely generated
Lie algebras, we obtain thirteen classes % ©Πg, ϊ ί n g , g(ω), gω, ( sJϊng) ( ω ),
©Λgω, (©Λgω)(ω), 5R(ω)n8, 9?ωΛ®, ©Λ9ΐωn@, (9?ωΛ@)(ω) and (@ΛsJίωΠ@)(ω)

(Theorem 3.7). We show that these classes are all coalescent if the basic
field is of characteristic 0 (Theorem 4.4). We shall also show some general
theorems on coalescent classes (Theorems 4.1, 4.2 and 4.3).

In Part II, we shall study the locally solvable and the locally nilpotent
radicals of a Lie algebra. Denote by L@ (resp. ιM) the class of all locally
solvable (resp. locally nilpotent) Lie algebras. For a class X such that either
@ Λ g c ϊ c L @ or 9?n??cχeL9Γί5 W e define the radical Rad s_ s l ( i ) (resp. Rad*
(I)) as the subalgebra generated by all the subideals (resp. ideals) of L be-
longing to X. Then Rad^(Z) = v(i), RadR Λ g_ s ί(Z) = /?(£) and RadLa(L) = p(I).
We show that RadgmsC^) is the union of all the ideals belonging to %lr\% is
a locally nilpotent characteristic ideal of L and is different from v (L), 0 (L)
andp(L) in general (Theorems 7.1 and 7.2). It of course reduces to the-
nilpotent radical when L is finite-dimensional. We show that if the basic
field is of characteristic 0, Rad@rΛδ(Z), Rad@ΛR<|Λ(»(Ir), Rad@Λδβ(Ir), Rad@(L),
Rad@ΛS_Sί (Z), Rad©n»βΛ(B-s/(ίr) and Rad@nδω_Sί (L) are the union of all the
ideals or subideals belonging to the corresponding classes, are locally solva-
ble characteristic ideals of L and are different from each other in general
(Theorems 8.1, 8.3 and 8.5), although these radicals reduce to the solvable
radical when L is finite-dimensional. It is furthermore shown that for any
one X of the thirteen coalescent classes stated above, the subalgebra genera-
ted by all subideals (resp. ideals) of L belonging to X is a characteristic ideal
of L and every finite subset of the subalgebra lies in a subideal (resp. ideal)
of L belonging to X (Theorems 6.3 and 6.10).

PART I. COALESCENT CLASSES

§ 1. Definitions and lemmas

We shall be concerned with Lie algebras over a field Φ which is not nec-
essarily finite-dimensional. Throughout this paper, the basic field Φ will be
of arbitrary characteristic and L will be an arbitrary Lie algebra over a field
Φ, unless otherwise specified.

We write H<L when H is a subalgebra of L and H<\ L when H is an
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ideal of L. We denote by <KU , Kn> the subalgebra generated by subsets
Ku ..., Kn of L. The concepts of subideals and coalescency are fundamental
in this paper. So we first recall their definitions.

DEFINITION 1.1. A subalgebra H of L is called an n-step subideal of L if
there is a finite series of subalgebras

H = H0<H1< .<Hn = L

such that i/jO//,+!(()<£<ra). We then write H n-si L. H is called a sub-
ideal of L if it is an n-step subideal of L for some n>0. We then write H
si L.

DEFINITION 1.2. A class X of Lie algebras over a field Φ is called coales-
cent if H, K si L and H, Ke % imply <ϋΓ, K> si L, e X.

We need the following classes of Lie algebras over a field Φ:
$ is the class of finite-dimensional Lie algebras.
© is the class of finitely generated Lie algebras, that is, the class of Lie

algebras L such that L= <K> where K is a finite set.
SI is the class of abelian Lie algebras.
9Ϊ is the class of nilpotent Lie algebras.
@ is the class of solvable Lie algebras.
We furthermore introduce the following concepts.

DEFINITION 1.3. Let Tίbe a class of Lie algebras.
(1) We denote by L Ϊ the class of locally X Lie algebras, that is, the class

of Lie algebras L such that every finite subset of L lies in a subalgebra of L
belonging to X.

(2) We denote by X(ω) the class of Lie algebras L such that L/L(ω) e X and
oo

by Xω the class of Lie algebras L such that L/Lω e X, where L(ω)= f\L(n) and
00 « = 0

Lω= f\Ln as usual

We here state the following three fundamental lemmas, which are known
and may be used without reference.

LEMMA 1.4. (1) // H si L and K<L, then Hr\ K si K.
(2) // H si K and K si L, then H si L.
(3) If Hsi L and K<] L, then H+ K si L.
(4) Let f be a homomorphism of L onto a Lie algebra I . // H si L, then

f(H) si L. If H si I, then f~ι{B) si L.

The proofs of these are all immediate ([3, Lemma 7] and [7, Theorem

1]).

LEMMA 1.5.
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PROOF. Let Z e ϊ Ϊ Λ ® . Then L= <χι, • ••, χn>- L is spanned by all pro-
ducts [•••[>*1, XiJ, "-iXijJi where only finitely many of them are non-zero
since L e ϊ£. Hence L e g.

LEMMA 1.6. // H si Z, then Hω and H(ω) are characteristic ideals of L.

PROOF. Let ®(Z) be the derivation algebra of L and let M be the semi-
direct sum Z, + S)(Z,). Assume H n-si L. Then H (n + l)-sί M, since L is
an ideal of M. Hence for A > 1 we have

It follovv̂ s that [M, HωJ^Hω, that is, Hω<]M. Therefore IΓ is a character-
istic ideal of L. On the other hand, we can see by induction on k that

It follows that [M, H^^H(ω\ that is, H{ω)<\M. Thus # ( ω ) is a character-
istic ideal of L.

§ 2. Coalescency of 31ΓΛ g

THEOREM 2.1. For a field Φ of characteristic 0, 3lΓ\$ is coalescent.

This has been shown by B. Hartley in [3, Theorem 2]. But it will play
a fundamental role for the development of our study in this paper. So in this
section we shall give his proof with a slight modification. Φ is of character-
istic 0 throughout this section.

If D is a nil derivation of Z, then exp D= Σ Dn/n\ is an automorphism
n = 0

of L.

LEMMA 2.2. Let D be a nil derivation of L and M be a subspace of L.
Then

PROOF. Let x e M and xDk = 0. Then there exist au- , ake Φ such t h a t

Σα w 7i ί / i ! = ί i > ί (i = 0, •••, k — 1).
n=l

Hence Σanx
c*p{nΌ)] = xD, from which the result follows.

Let M be a finite-dimensional subspace of L. For a subset S of the deri-
vation algebra ®(L), the subspace M 5 is defined by Λfs = ΣΛ^i -D* summed
over all choices of Du , Dk e S for any &>0. For a subset 4̂ of the auto-
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morphism group of Z, < A > is the subgroup generated by A and the sub-
space M<Λ> is defined by M<Λ> = ΣMa. Then we have

ae<A>

LEMMA 2.3. If M is a finite-dimensional subspace of L and S is a finite-

dimensional nil subspace of ®(L), then

ps>=ΣMa\ cti€ <exp5>.
f = l

PROOF. By Lemma 2.2, for any D e S we have

(M<cxpS>)D^ Σ (M<expS>)cxp(nD) <^ M<cxps>.

It follows that

Ms c (Af < c x p s > ) 5 c M < e x p 5 > C M 5

and therefore Ms = M<cxpS>. Let {Z>i, ..., £„} be a basis of S. Since 5 is nil
and M is finite-dimensional, there exists m>0 such that MDfl A M = (0) for
any &Ί, , ίm e {1, 2, ••, τι}. Therefore Ms is finite-dimensional.

LEMMA 2.4. // K si L, e 9i, ίfee^ ad i^ is nil.

PROOF. Let K n-si L and let m be the class of nilpotency of K. Then

LEMMA 2.5. // H, K si L and H,Ke Vlr\% and if [_H, KJ c H, then H+K
sί L, 6 3lΓ\%.

PROOF. Let H n-si L. Then

H=H0<Hι<. <HH = L.

Let A = <exp(ad K) > and put Hi = f\H°[. Then H0 = H,Hn = L and fi, <] F z +1.
_ _ aβA _ _ _

By Lemma 2.2, [ff, , KJ^H{ and therefore Hi<\Hi+ι + K. Since iC « Hi+ι
Hi + K si Hi+ι + K. It follows that i ί + i ί 5 i £. If AT Jfc-si X and Km+l =
by Lemma 2.4 we have

Thus H<\H+K, He^Sl and H+K/H2e3l. Hence H+KeW (see [2]) and
therefore H+Ke %lΓ\% completing the proof.

We can now prove the theorem. Assume that H n-si L, K si L and
H,Ke yir\%. We must show that / = < H, K> si L and 6 3ίΛg. We show
it by induction on n. If τ& = l, then H<\L and therefore ί Γ + ^ 5/ L, 6"
by Lemma 2.5. So we assume that n>l and put m = n — l. Then
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Since ad K is a finite-dimensional nil subspace of ®(L) by Lemma 2.4, it fol-
lows from Lemma 2.3 that

Now H^ = Hm, whence HΛί m-si Hm and Haί e ϊ ί n $ for each i. By induction

hypothesis

Therefore <H%άκ>sί Z, e Ήnfr Obviously / = £ + <H*άκ> and
£ ] C < Hzd κ >. Therefore by Lemma 2.5 we see that JsiL, eϊftr\% Thus
ϊίnf? is coalescent. This completes the proof of Theorem 2.1.

§ 3. Thirteen classes of Lie algebras

First we give the following definition for our convenience.

DEFINITION 3.1. A class X of Lie algebras is said to have the property (P)
if Le?ί and N<] L imply L/N<=H.

LEMMA 3.2. // X has the property (P), then ϊ ( ω ) and ϊ ω have the property
(P)

PROOF. Suppose that L e ϊ ( ω ) and N<\ L. By Lemma 1.6, (L/N)(ω)<\ L/N
and therefore (L/NYω) = M/N with M<\ L. Hence L(ω) c Af and therefore L/M
~(L/L(ω))/(M/L(ω)). Since L/L(ω) e X and 3£ has the property (P), we see that
L/M e X. From the fact that

(L/N)/(L/N)^ - (L/N)/(M/N)~L/M,

it follows that L/NeTί{ω), that is, X(ω) has the property (P).
The proof of the statement that Xω has the property (P) is similar.
Now assume that L e i Since L(ω)<\L by Lemma 1.6, L/L(ω) e ϊ and

therefore L e X(ω). Thus X c X(ω). Next assume that i 6 X(ω). Since L(ω)< L,
L/L(ω) ε X. i /^ ω is the quotient algebra of L/L(ω) by Lω/L(ω\ Hence
that is, Z e Xω. Thus X(ω) c Xω5 completing the proof.

LEMMA 3.3. @nX ( ω )=@nX

PROOF. If Le@, i ( ω ) = (0). Therefore Z,eX(ω) if and only if LeX.
Hence @ΠX(ω) = @nX and 9ΐΠX(ω)=:9ΐnX. 5RnXω = 9ΐnX is similarly proved.

LEMMA 3.4. (@ΛX)(ω)=X(ω) for
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PROOF. If L e £(ω), L/L^ e X. Since £ c @(ω), (L/L^)w = (Z/X(ω))(ω) = (0)
and therefore Z,/X(ω) e ©Π*, that is, L 6 (@ΛΪ)(ω). Hence ϊ ( ω ) = (@n3ε)(ω).

The other formula is similarly proved.

LEMMA 3.5. // X c χ(o>) £ £ω, then

PROOF. It is evident that

ω c £ ω ω and ϊ( f f l )cϊ ( ω ) ( ( B ) l

If L e ϊω ω 5 then Z,/£ω ^ ϊ ω . Since (L/^ω)ω = (0), L/Lω e 1 and therefore L e Xω.
Thus ϊ ω ω c 3eω. Similarly ΐ ( ω ) ( ω ) c ϊ ( ω ) . Hence Xω = 3£(ω)ω = Xωω and 3£(ω) = £(ω)(ω).
Finally, since (L/L(ω))/(L/L^)ω~L/Lω, L/tiωW$,ω if and only if Z / L ω e ϊ .
Hence ϊ ω ( ω ) = 3εω, completing the proof.

LEMMA 3.6. (1) gc@ ( ω ).
(2) ag.cg^.
(3) f5,5R, ϊ ί π g , f5ω, © n g ω , ? ί ω n© αnrf @Π?ϊωΛ@ Λαvβ the property (P).

PROOF. (1) and (2) are evident. % % SίΠg, @ and © obviously have
the property (P). By Lemma 3.2, gω and ϊiω have the property (P) and
therefore so do @Λgω, ϊ i ω π© and @π9ΐωπ®. Hence (3) is proved.

By making use of these lemmas we shall now prove the following

THEOREM 3.7. We consider the operations of getting, from a class X of
Lie algebras, the classes

(1) Ê / applying the above operations to f$,

(2) By applying the above operations to 5JίωΠ®, we have the following
classes besides the classes in (1).

PROOF. (1) First we have

Applying the operations to ©Πg and 9ΐng, we obtain (9ίΛ$)(ω). For, by
Lemmas 3.4 and 3.6
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Applying the operations to ^ ( ω ) and gω, we obtain <SΛgω. For, by Lemma 3.3

by Lemmas 3.2 and 3.6

by Lemmas 3.2, 3.5 and 3.6

Applying the operations to (S'ίπg)^), we obtain 9>Ϊ((O)Λ£$ . For, by Lemma
3.3

by Lemmas 3.2 and 3.6

by Lemmas 3.2, 3.5 and 3.6

Applying the operations to ©Λgω> we obtain (@A^ω)(ω). For, by Lemma 3.3

by Lemmas 3.2 and 3.6

by Lemmas 3.4, 3.5 and 3.6

Applying the operations to SR^Λg, we obtain no new classes. For, by
Lemma 3.3
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by Lemmas 3.2, 3.5 and 3.6

by Lemmas 3.2, 3.4, 3.5 and 3.6

Applying the operations to (@Π^ω)(ω), we obtain no new classes. For, by

Lemma 3.3

by Lemmas 3.2, 3.5 and 3.6

Sπ(@πg ω ) ( ω )

by Lemmas 3.2, 3.4, 3.5 and 3.6

(2) By the first application of the operations we have

For, by Lemmas 1.5, 3.2 and 3.6

by Lemma 3.6

by Lemmas 1.5, 3.2, 3.4, 3.5 and 3.6

Applying the operations to ξ>Γ\$lωΓ\®9 we obtain (©Λ^Λ©)^) . For by
Lemma 1.5

by Lemma 3.6

by Lemma 3.4
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Applying the operations to (3lωΓ\®\ω^ we obtain no new classes. For by
Lemmas 1.5 and 3.3

by Lemmas 3.2, 3.5 and 3.6

δΛ(^ωΠ@) ( ω

by Lemmas 3.2, 3.5 and 3.6

Applying the operations to (©π9ίωΓ\©)(ω), we obtain no new classes.
For by Lemma 3.3

by Lemma 3.6

by Lemmas 3.2, 3.5 and 3.6

Thus the theorem is completely proved.
We shall here ask whether or not the classes in the theorem are differ-

ent from each other.

EXAMPLE A. Let L be the 2-dimensional non-abelian Lie algebra, that
is, L = (x, y) with [>, y} = y. Then L does not belong to

but L belongs to

EXAMPLE B. Let L be a finite-dimensional semisimple Lie algebra over
a field Φ of characteristic 0. Then L does not belong to
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but L belongs to

EXAMPLE C. Let A = (e0, eu e2?•••) be an infinite-dimensional abelian Lie
algebra over a field Φ of characteristic 0. Let x9 y and z be the following
linear transformations of A:

x: βi >ei+ι (ί^O, 1 ? 2 , . . )

0 / 1 0 \
5 e i >ιei~l V i = = J - 5 A " V

z .et >βi (£ = 0,1,2,..-)-

Then QΛ;, y} = Z'> Lχ^ ̂ J^Cj? r̂J = O. Therefore (#, j , z) is a nilpotent Lie al-
gebra over Φ. Let Z be the semi-direct sum (see B. Hartley

Then Z(ω) = L(3) = (0) and Lω = L3 = A. Hence Z does not belong to

but L belongs to

EXAMPLE D. Let L be the following subalgebra of the Lie algebra in
Example C:

Then Z(ω) = Z ( 2 ) = (0) and Lω = L2 = A. Hence L belongs to

but Z does not belong to

EXAMPLE E. Let Z,, be the 3-dimensional simple Lie algebra over a field
Φ of characteristic 0 (i = l, 2,...). Let L be the direct sum of all Zf. Then Z
does not belong to
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but L belongs to

EXAMPLE F. Let A = (e0, eu e2, ) be an infinite-dimensional abelian Lie
algebra over a field Φ of characteristic 0. Let x, y and z be the following
linear transformations of A:

x: e{ >ei+1 O' = 0, 1, 2? )

j : e0 >0, βi >ί(ί — l)e;_i (ί = l, 2, .)

s : ef >2ie, (ΐ = 0, 1, 2, . ).

Then (x, y, z) is the 3-dimensional simple Lie algebra over Φ such that

[>, z^ = 2x, [ j , ^ ] = - 2 y , [x, yH = ̂ .

Now let L be the semi-direct sum:

L = A + (x, y,z).

Then L does not belong to

but L belongs to

Finally we have no examples to show

(ω) and (5

§ 4. Coalescency of the classes obtained in the preceding section

In this section we show three general theorems on coalescency of classes
of Lie algebras and also show the coalescency of the thirteen classes obtain-
ed in Theorem 3.7.

We begin with

THEOREM 4.1. Let X be a class of Lie algebras over a field Φ having the
property (P). // X is coalescent, then so are 9£(&)) and 3cω.

PROOF. Assume that ϊ is coalescent and that H, K sί L and H, K e 3c(ω) for
any Lie algebra L. Put J=<H, K>. By Lemma 1.6, # ( ω ) < L and K(ω)<] L
and therefore / = H(ω) + K(ω) <] L. Hence (H+I)/I, (K+1)/1 si L/L We
have
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and H/H<ω) e 36. Since 36 has the property (P), it follows that (H+1)/1 e 3c.
Similarly, (K+1)/1 e 36. Since 3c is coalescent,

///= <H/I, K/I> sί L/I, e 3c.

Hence / si L. It is clear that / c / ( ω ) . Therefore

Since /// e 36 and 3c has the property (P), it follows that ///(ω) e 3c, that is,
/ e ϊ ( ω ). Thus 3c(ω) is coalescent.

The coalescency of 36ω is similarly proved.

THEOREM 4.2. Let Hbe a class of Lie algebras over a field Φ contained in
sJίω and having the property (P). // 3c and sJίπ36 are coalescent, then so is
36.

PROOF. Assume that X and 9ΐΛϊ are coalescent and that H, K si L,
e@Λϊ for an arbitrary Lie algebra L. Put J=<H, K>. Then J sί L,
β 3c since 3c is coalescent. By Lemma 1.6 I = Hω + Kω<3 L. Hence (H+1)/7,

(K+1)/1 si L/I. We have

~ H/(IΓ\H) ~ (H/Hω)/((IίΛH)/Hω)

and H/Hω € 5R since 3cc^ω. It follows that (#+ / ) / / e 5TC. Since 36 has the
property (P), it follows that (H+1)/1 e ϊ . Similarly, (ί:+ / ) / / e 9?n3c. We
now use the coalescency of 5ftΠ36 to see that /// e 5ίiΠϊ. Combining with the
fact that I e ©, we see that /e @. Thus @Λ36 is coalescent, completing the
proof.

THEOREM 4.3. Let H be a class of Lie algebras over a field Φ having the
property (P). // 3c and 9ΐ/Λ3c are coalescent, then so is 9ί

PROOF. Assume that X and 5ftΠ36 are coalescent and that H, K si L, e
sJi(ω)Π3c for an arbitrary Lie algebra L. Then / = < # , j?> s£ Z, e 3c since 36
is coalescent. Put / = # ( ω ) + i£(ω). Then /<] L by Lemma 1.6. Hence (H+1)
//, (K+1)/1 si L/I. We have

and # / # ( ω ) 6 9Ϊ since i7 e 9?(ω). It follows that (H+I)/I e 3G. Since J7e 36
and X has the property (P), it follows that (H + I)/I e 3c. Similarly (K+1)/
16 SRΛΪ. Since 9ΪΠ36 is coalescent, /// e 9ΪΠ36. But then /(w) c / c /(ω> for
some n and therefore / = / ( ω ) . It follows that /6 9ΐ(ω). Thus 3l ( ω )πϊ is coa-
lescent, completing the proof.

Now we are in a position to show the main theorem of Part I which con-
tains as part the results of B. Hartley [3, Theorems 2 and 5].
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THEOREM 4.4. // Φ is of characteristic 0, then the thirteen classes

g, Θng, Ήng, g(ω), gω,

are aίί coalescent.
If Φ is of arbitrary characteristic, any classes containing 31, e.g. @, 9ί, L®,

L5JΪ5 are woί coalescent.

PROOF. (1) ίϊϊΛg is coalescent by Theorem 2.1.
(2) Coalescency of g and 3lωΓ\®: Assume that H, Ksί L and H,Ke3lω

Γ\% (resp. g) for an arbitrary Lie algebra L. Put / = <//, X>. We have
Hω = Hp<]L and Kω = Kq<^L by Lemma 1.6 and therefore I = Hω + Kω<]L.
Hence we have (#+ / ) / / si L/7, (K+1)/1 si L/I. We also have

(H+I)/I-H/(IίλH)-(H/Hp)/((IΓ\H)/Hp) e

Similarly (K+1)/1 e 5Rπg. Since 9ΐng is coalescent by (1),

Hence J si L. Since J/Ie%l, JmΩlQj for some m and therefore / =
Hence /e9ίωΛ©. (resp. Since /// and /eg, we have /eg.) Thus
(resp. g) is coalescent.

(3) g, 9ΐng and 9ΐωΓ\© have the property (P) by Lemma 3.6 and are
coalescent by the first part and Theorem 2.1. Hence by Theorem 4.1 g(ω), gω,
(9ΪΛg)(ω) and 0Kωn©)(ω) are coalescent.

By Lemma 3.6 gQsJiω and g has the property (P). Since gand 3ίΠg are
coalescent, by Theorem 4.2 @Λg is coalescent.

By Lemma 3.6 gω^9ϊω and gω has the property (P). Since gω and 9ΐΓλgω

=9ΪΛg are coalescent, so is Sng,, by Theorem 4.2. It follows from Lemma
3.6 and Theorem 4.1 that (@Γ\gω)(ω) is coalescent.

Since g has the property (P) and g, 31 Ag are coalescent, by Theorem 4.3
we see that 9Z(ω)Λf$ is coalescent.

3lωίΛ® has the property (P) by Lemma 3.6 and 9?ωΛ®, 9ΐΓ\(9ΐωn©) = 9?n
g are coalescent. Hence by Theorem 4.2 @Λ9iωΛ® is coalescent.

If follows from Lemma 3.6 and Theorem 4.1 that (βΓ\3lωΓ\®\ω) is coales-
cent.

(4) It has been shown by I. Stewart [10, Theorem 12.1̂ ] that there ex-
ists a Lie algebra L over an arbitrary field Φ having the following properties:
1) L= V+J is the semi-direct sum with F< L and e SI; 2) J=<H, K> where
//, K<CL, /Γ, Ke%, K is 1-dimensional and H is infinite-dimensional; 3)
H b-sί L, K 5-5i L; 4) J=IL(J\ whence / is not a subideal of L. This
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example shows that any class containing §1 is not coalescent.
Thus the theorem is completely proved.
It should be noted that the assumption on the characteristic of Φ is es-

sential in the first part of Theorem 4.4. If we drop it, the theorem does not
hold. In fact, the example 7.2 in \Jf] shows that if Φ is not of characteristic
0, any class containing %Γ\% is not coalescent. Therefore any class of Theo-
rem 4.4 is not coalescent.

PART II. RADICALS

§ 5. Definitions

When we are concerned with a finite-dimensional Lie algebra L, we have
two kinds of radicals, the solvable radical and the nilpotent radical. Fur-
thermore, if we restrict the basic field Φ to be of characteristic 0, it is known
[7] that the subalgebra generated by all the solvable (resp. nilpotent) sub-
ideals of L coincides with the solvable radical (resp. the nilpotent radical) of
L.

However, if we take off the restriction of finite-dimensionality, we are
in a different situation. As the Lie analogues of the radicals introduced in
(JL, 4, 6] in the study of infinite groups, several radicals corresponding to the
nilpotent radical were introduced to a Lie algebra L over a field Φ which is
not necessarily of finite dimension ([3,10]). The Fitting radical v(L) is the
sum of all nilpotent ideals of L and the Hirsch-Plotkin radical p(L) is the
unique maximal locally nilpotent ideal of L. If Φ is of characteristic 0, the
Baer radical β(L) is the subalgebra generated by all finite-dimensional nilpo-
tent subideals of L. If Φ is of characteristic 0, v (L) c β (L) c p (L) and these
are different in general ([3, Section 7.1] and [10, Corollary to Theorem
12.11).

However, no study has been made in [3, 10] about the ideals which cor-
respond to the solvable radical of a finite-dimensional Lie algebra. Thus in
this part of the paper, we shall give the general definition of radicals which
correspond to the solvable radical of a finite-dimensional Lie algebra and
make use of the coalescent classes of Lie algebras found in Part I to intro-
duce the seven kinds of such locally solvable radicals. We shall furthermore
introduce one more locally nilpotent radical which together with v (i), β (L)
and p(L) reduces to the nilpotent radical in finite-dimensional case.

DEFINITION 5.1. Let 3c be a class of Lie algebras over a field Φ. We call a
subideal (resp. ideal) of a Lie algebra L over Φ an X subideal (resp. ideal) of
L if it belongs to 36.

DEFINITION 5.2. Let L be a Lie algebra over a field Φ and let X be a class

of Lie algebras over Φ such that
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(resp.

We call the sum of all the £ ideals of L the X radical of L and denote it by
Racial,). We call the subalgebra of L generated by all the 3c subideals of L the
%-si radical of L and denote it by RacU_sz(Z,).

The existence of these radicals are known by Zorn's lemma. According
to this definition, Radgι(L) = v(Z) and R&dLyι(L) = p(L). If Φ is of character-
istic 0, RadfRΛg_st (L) = /9(L) and B. Hartley has shown that Rad^_sί (Z) exists
and is equal to β(L) (see [10, Theorem 10.4]). Radϊ(Z) for L e g and
Rads-SI (L) for L e g and Φ of characteristic 0 reduce to the solvable or the
nilpotent radical of L.

§ 6. Characteristic ideals

Before we begin the discussion on radicals, in this section we shall
derive several general theorems connected with radicals from the results in
Part I. We shall show that if Φ is of characteristic 0 and if 3£ is any class
of Lie algebras stated in Theorem 4.4, then the subalgebra generated by all
X subideals (resp. ideals) of L is a characteristic ideal of L belonging to LX.

LEMMA 6.1. Let Hbe a class of Lie algebras having the property (P). As-
sume that the sum of two X ideals of any Lie algebra is an X ideal. Then the
sum of two ϊ ( ω ) (resp. 3cω) ideals of any Lie algebra is an X(ω) (resp. 3cω) ideal

PROOF. Let H and K be ϊ ω ideals of a Lie algebra L. Then ϋP, Kω

and (H+K)ω are characteristic ideals of L. Hence H/Hω and K/Kω are
X ideals of L/Hω and L/Kω respectively. (H + (H + K)ω)/(H + K)ω and (K+
(H + K)ω)/(H + K)ω are £ ideals of L/(H + K)ω, since they are respectively
isomorphic to

(H/Hω)/((HΓΛ (H+ K)ω)/Hω\ (K/Kω)/((KίΛ (H+ K)ω)/Kω)

and X has the property (P). By our assumption, it follows that (H + K)/
(H+K)ω is an ϊ ideal of L/(H+K)ω. Hence H+K is an Xω ideal of L.

The statement on ϊ ( ω ) is similarly proved.

LEMMA 6.2. Let 3£ be any one of the classes

swm of two X ideals of any Lie algebra L is anϋ ideal of L.

PROOF. The statement is immediate for X=@, g, @Λg, 9ΐΛg, 5ft, ©. By
Lemmas 3.6 and 6.1, it holds for ϊ = g(ω), gω, (5Rπg)(ω),

 sJΪ(ω), 9?ω and therefore
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for @Γ\gω, yi(ω)r\% ΉωΠ®, ©n9?ωΛ®. It follows from Lemmas 3.6 and 6.1
that the statement holds for 3£=(©ngω) ( ω ) ? (SHωΓ\®\ωh (@n$RωΛ@)(ω), com-
pleting the proof.

THEOREM 6.3. (1) Let X be any one of the classes

Lei M be ίfeβ sum of all the X ideals of any Lie algebra L. Then every finite
subset of M lies in an X ideal of L. Especially, M belongs to LX.

(2) Let X be any one of the above classes except @. Let M be the subalgebra
generated by all the X subideals of any Lie algebra L. If Φ is of characteristic
0, every finite subset of M lies in an X subideal of L. Especially, M belongs to

LX.

PROOF. (1) Assume that χι,- ,χ» € M. Then each χ{ belongs to the sum
of a finite number of 36 ideals of L. Hence <χu ,xn> is contained in the
sum of a finite number of 3c ideals of L, which is an 36 ideal of L by Lemma
6.2.

(2) Assume that xu • • 5 xn e M. Then each x{ belongs to < xiu ..., χim. >
with Xij e Nih where all N{j are 36 subideals of L. Hence <χu , xn> c <N1U

• , Nnmn>. Since X is coalescent, <N1U •••, Nnmn> is an X subideal of Z.
Thus the theorem is proved.
To show that the ideals and subalgebras generated respectively by all

the X ideals and subideals of L in Theorem 6.3 are all characteristic ideals of
L, we first employ the method of constructing Lie algebras of formal power
series that B. Hartley used in [3].

Let L be a Lie algebra over a field Φ of characteristic 0. Let Φo be the

field of formal power series a= Σ avt\ av e Φ, and Lo be the set of all formal
oo

power series x = Σ %ut% χv € L. Lo is a Lie algebra over a field Φo as follows:

For y— Σ yj\ yv 6" L,

For any D e S)(i), the automorphism exp(ίD) of Zo is defined by

(Σχ,tΎxp{tD)=Σwj% wv= Σ χiDj/jl.

For M < L , we denote by M* the set of all elements x e Lo with xv e M for all
v. Then we have
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LEMMA 6.4. (1) If M<N<L, then M*<]N-<:L*=L0.
(2) If Mn = (0), then M*n = (0).
(3) // Mw = (0), then M*w = (ϋ).
(4) // M is finite-dimensional over Φ, then M* is finite-dimensional over

PROOF. We can show by induction on n that i l ί* w cM* ( w ) , (3) follows
from this. (1), (2) and (4) are proved in [3, Section 4.2].

For K0<,L0, we denote by K\> the set of all leading coefficients of ele-
ments of KOi) together with 0. Then

LEMMA 6.5. (1) // Ko<Mo<.Lo9 then K>0<\Mv

0^,Ll = L.
(2) IfK" = (0
(3) IfK{

0

n) = (

PROOF. We can show by induction on n that K^n) ^K{

o

nn. (3) follows
from this. (1) and (2) are proved in [3, Section 4.2].

LEMMA 6.6. Let Φ be of characteristic 0. Then every derivation of a Lie
algebra L maps any s Jing subideal (resp. ideal) of L into an s Jing subideal
(resp. ideal) of L.

PROOF. Let D be a derivation of L and put α=exp(ίZ)).
(1) Let H be an 3lr\% subideal of L. Then by Lemma 6.4 H* is an 9ΐn

g subideal of Lo and therefore so is H*a. Since 5JίΛg is coalescent by Theo-
rem 4.4, it follows that K0=<H*, H*a> is an 9 ΐ n g subideal of Lo. Putting
N=K^ we see by Lemma 6.5 that N is an 9ΐ subideal of L. For any x e H,
x c H* and therefore xa 6 Ko. Hence xa — x = txD-\— e Ko. It follows that
xD e TV. Therefore HD^N. As a finitely generated subalgebra of a nilpo-
tent algebra TV, <HD> is an sJiΠg subideal of iVand therefore of L.

(2) Let N be an 3 i n g ideal of L. By the first part (1), <iVD> is an
s Jing subideal of L. Since 9 ΐ π g is coalescent, M = N+<ND> is an
subideal of L. For any x e L,

Hence M is an ideal of L. Thus ND is contained in an S i n g ideal M of L.
This completes the proof.

LEMMA 6.7. Let Hbe a coalescent class of Lie algebras having the property
(P). Assume that every derivation of any Lie algebra maps any X subideal
(resp. ideal) into an X subideal (resp. ideal). Then every derivation of any
Lie algebra L maps any ϊ ( ω ) subideal (resp. ideal) and any ϊ ω subideal (resp.
ideal) of L into an X(ω) subideal (resp. ideal) and an ϊ ω subideal (resp. ideal)
of L respectively.

PROOF. Let H be an ϊ ( ω ) subideal (resp. ideal) of L. Then H(ω) is a char-



Radicals of Infinite Dimensional Lie Algebras 197

acteristic ideal of L by Lemma 1.6. Hence H/H(ω) is an X subideal (resp.
ideal) of L/H{ω) and a derivation D of L induces a derivation of L/H(ω).
Therefore by assumption (HD + H(ω))/H(ω) is contained in an X subideal (resp.
ideal) K/H(ω) of L/E^\ Put J=<H, K>. Then / / # ( ω ) is an X subideal
(resp. ideal) of L/H(ω) since X is coalescent. Therefore / is a subideal (resp.
an ideal) of L. Since

and 3c has the property (P), we see that /// ( ω ) e X, that is, / e X(ω). Thus HD
is contained in an X(ω) subideal (resp. ideal) of L.

The statement for Xω is similarly proved.

LEMMA 6.8. Let Hbe a class of Lie algebras such that He X if and only if
Hω, H/Hω e X. Assume that 9ΪΛX is coalescent and every derivation of any
Lie algebra maps any ϊίΛX subideal (resp. ideal) into an 3lΓ\H subideal (resp.
ideal). Then every derivation of any Lie algebra L maps any ϊϊωrλX subideal
(resp. ideal) of L into an3lωΓ\Tί subideal (resp. ideal) of L.

The statement holds with 31 replaced by3lΓ\% and also with Hω, 3lω replac-
ed by H^\ 5R(ω).

PROOF. Let H be an SSlωΓ\Tί subideal (resp. ideal) of L. Since Hω is a
characteristic ideal of L, H/Hω is an SftnX subideal (resp. ideal) of L/Hω and
every derivation D of L induces a derivation of L/Hω. Hence (HD + Hω)/Hω

is contained in an SftnX subideal (resp. ideal) K/Hω of L/Hω. Put J=<H,
K>. Then J/Hω is an 9?nX subideal (resp. ideal) of L/Hω since Ή n ϊ is
coalescent. Hence / is a subideal (resp. ideal) of L. Since Jn c Hω for some
n, it follows that Jω = Hω. Since /ω e ϊ , we have / e ϊ by our assumption on
X. Thus / is an 3 ί ω n ϊ subideal (resp. ideal) of L containing HD.

The other parts are similarly proved.

THEOREM 6.9. Let L be a Lie algebra over a field Φ of characteristic 0.
Let X be any one of the classes

every derivation of L maps any X subideal (resp. ideal) of L into an X
subideal (resp. ideal) of L. Furthermore, it maps any @ (resp. 31) ideal of L
into an @ (resp. 31) ideal of L.

PROOF. (1) The case X=9?ng is proved in Lemma 6.6. It is evident that
g, @ and @Λg satisfy the first assumption of Lemma 6.8. Since f$c$ftωJ

gc9? ω and 0f tng) ω =g ω by Lemmas 3.4 and 3.6, the cases X=g, @Λg,
and 9fyω)Πg of the theorem are immediate from Lemma 6.8.
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(2) 3t=@n^ωΛ@: Let H be an ®r\3lωΓ\® subideal (resp. ideal) of L.
Then H/Hω is an 3lΓ\% subideal (resp. ideal) of L/Hω and every derivation D
of L induces a derivation of L/Hω. Hence by (1) (HD + Hω)/Hω is contained
in an 9?ng subideal (resp. ideal) K/Hω of L/Hω. Put / = < # , K > . Then
J/Hω is an 5Kng subideal (resp. ideal) of L/Hω since 3lrλ% is coalescent.
Hence / is a subideal (resp. ideal) of L. It follows that Jω = Hω. Hence
/ e 3lω. Since He&,Hωe& and therefore / e @. Since He © and ϋΓ/#ω e g, #
= <tfi,••-,*,»> and K/Hω = (γ1 + Hω,. ., yn + Hω) with y, e 7C Then it follows
that J=<χu~-,χm γu •••,yn>- Thus/ i s an &r\3lωr\® subideal (resp. ideal)
of L containing HD.

The case JL = 3lωΓ\® is similarly proved.

(3) The statement for the cases X = g(ω), gβ, (9ϊng) (ω), (@ngω)(ω), (9?ωΠ
©)(ω), (©Λ9ίωΓ\©)(ω) now follows from (1) and (2) by Lemmas 3.6 and 6.7.

(4) Let D be a derivation of L and put α = exp(ίD). Let H be an ©
(resp. 31) ideal of L. By Lemma 6.4 H* is an @ (resp. 5R) ideal of Lo and there-
fore so is H*a. Put K0 = H* + H*a. Then iΓ0 is an @ (resp. 31) ideal of Lo.
Denote N=K>0. It follows from Lemma 6.5 that N is an @ (resp. Si) ideal of
L. As in the first part of the proof of Lemma 6.6, for any % e H we have
xD e TV. Therefore HD is contained in an @ (resp. 31) ideal iV of L.

Thus the theorem is completely proved.
As an immediate consequence of Theorem 6.9 we have the following

THEOREM 6.10. Let L be a Lie algebra over a field Φ of characteristic 0.
Let 36 be any class of Lie algebras stated in the preceding theorem. Then the
subalgebra generated by all the X subideals (resp. ideals) of L and the sum of
all the © (resp. 31) ideals of L are characteristic ideals of L.

We here note that the parts on 31 ideals, 3lΓ\$ subideals and g subideals
of Theorems 6.9 and 6.10 are Theorem 1, Theorem 3 and its corollary, and
Theorem 5 in [3].

§ 7. Locally nilpotent radicals

We know three locally nilpotent radicals Rad^-L), Rad^ns-wCt) and
RadL9ϊCO. For any class ϊ such that ^ n g c ϊ c i i f t , we have

(L) c RadL9?(£)

and therefore Rad^(L) is a locally nilpotent ideal of L. If Φ is of character-
istic 0, for any class 96 such that 3lΓλ?$^%Q3l we have

We shall here examine the properties of
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THEOREM 7.1. Let L be a Lie algebra over a field Φ.
(1) RacUnS(Z) is the union of all the -JίΠg ideals of L.
(2) Rad^π g(Z) is locally nilpotent.
(3) // Φ is of characteristic 0, Rad^n δ(Z) is a characteristic ideal of L.

PROOF. (1) and (2) are consequences of Theorem 6.3 and (3) follows from
Theorem 6.10.

THEOREM 7.2. Let L be a Lie algebra over a field Φ of characteristic 0.
Then Radg?nδ(jL) is generally different from Rad^(Zz), RadsjίΛδ_sί (Z) and

To see the theorem it suffices to show that Rad^nsC^) need not equal
Rad^(Z). We need the following

LEMMA 7.3. Let L be the Lie algebra in Example C in Section 3. Then
(1) Every non-zero ideal of L contains A.
(2) There exist no non-zero g ideals of L.
(3) Every g subideal of L is contained in A.

PROOF. (1) Let TV be a non-zero ideal of L. Then N contains a non-zero
n

element u = Y1aiei-\-bx + cyJr dz.
z' = 0

n

In the case Σα f e, =̂ =0, we may suppose anφ0. Since

we have e0 e N. It follows that ek = eo(ad^)fe e N. Therefore A c N.

In the case Σ Ofef = 0, if 6 ^ 0 , then [>, y] = 6*. If cφO, then [^? Λ;H =
« = o

— cz. If & = c = 05 then dφO and rf^ 6 iV. Thus in this case we have z e N.
It follows that ek = [>*, z] e N. Therefore A c TV.

(2) is an immediate consequence of (1).
(3) Let H be a non-zero g subideal of L. Then H m-sί L for some m.

n

Now assume that H^A. Then there exists a non-zero element M = Σαjef +

in # \ ^ . If

Σ / ί ef eίΓ, k = 0, 1, 2,
ί = 0

Hence i?> g. If 6 = 0 and dφO,

k£iei£H, A = 0, 1, 2, ....f



200 Shigeaki TOGO

Therefore HΏ A, whence H i g. If b = d=0 and c φ 0,

k = 0, 1, 2, ..

whence # 3 4̂ and therefore H $ %. Thus in any case we have a contradic-
tion. Therefore we conclude that H^ A.

Thus the proof of the lemma is completed.

PROOF OF THEOREM 7.2.

Let L be a Lie algebra in the above lemma. Then by the second part of
the lemma, RadS Λ δ(Ir) = (0). By the first part of the lemma, Rad^L) Ώ A.
As a matter of fact, it is immediate that Rad^(Z) = A. The theorem is prov-
ed.

§ 8. Locally solvable radicals

In this section we shall study several locally solvable radicals.

THEOREM 8.1. Let L be a Lie algebra over a field Φ. Then the radical
Radge(L) for each £ of @Πg, ©Λ$ftωΛ®, ©Λgω and © is the union of all the
X ideals of L. If Φ is of characteristic 0, the radical Radaε_sl (L) for each X of

and @Πgω is the union of all the X subideals of L.

PROOF. The statement follows from Theorem 6.3.
We have the following inclusion:

The relation follows from

LEMMA 8.2.

PROOF. If L e 9?ωn®, then L/Lω e %lr\® c g by Lemma 1.5. Hence I e
Therefore @Γ\3lω/Λ©c@πgω. The other parts are immediate.

When 0 is of characteristic 0, we have the following inclusion:

THEOREM 8.3. Let L be a Lie algebra over a field Φ.
(1) The radical Radz(Z) for each 1 of @ng, @n5TίωΠ@, @Γλgω αmί @ is

locally solvable. If Φ is of characteristic 0, the radical Radϊ- s l (Z) for each X
o/ @^S, @Λ?ϊωn© and ©Πgω ^ locally solvable.

(2) 7/ 0 is of characteristic 0, £&e se^en radicals of L stated in (1) are
characteristic ideals of L.

PROOF. (1) is a special case of Theorem 6.3 and (2) follows from Theo-
rem 6.10.
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COROLLARY 8.4. For any class X such that Θ n g c X c © Rad$(L) is a
locally solvable ideal of L. If Φ is of characteristic 0, for any class X such
that © n g ^ £ e © n g ω RadjE-s/CZr) is locally solvable.

We finally show the following

THEOREM 8.5. Let L be a Lie algebra over a field Φ of characteristic 0.
Then the radicals

are different from each other in general.

PROOF. (1) Let L be the Lie algebra in Example C in Section 3. By
Lemma 7.3 (2), only (0) is an © n g ideal of L. Hence Rad@ng(L) = (0). Since
the @Λg subideals of L are the finite-dimensional subspaces of A by Lem-
ma 7.3 (3), we have Rad@πg_sl (ίr) = -4. It is obvious that Z ( 3 ) = (0) and Lω = L3

= A. Hence L e @Λ?ίωΛ® and therefore R a d ^ ^ ^ L ) ^ . Thus we have

Rad@πS(L) φ

Rad<sΛS_sl (Z) Φ

(2) Let L be the Lie algebra in Example F in Section 3. Then the
3lωΓ\® subideals of L are the finite-dimensional subspaces of A. In fact, if
H is a finite-dimensional subspace of A, then H<\ A<\ L and therefore H sί L.
Conversely, let H be an @ΛsJίωΠ© subideal of L. If H£A, then (H+A)/A
is a non-zero solvable subideal of L/A, which contradicts the fact that L/A
is a three-dimensional simple algebra. Therefore H^A. Since He ©, H is
a finite-dimensional subspace of 4̂. Thus we have Rad©Λ9ία)n©_sί (L) = ^.

Next we see that only (0) is an © n 9 ί ω n ® ideal of L. In fact, if H is
such an ideal, then H is a finite-dimensional subspace of J . If Hφ (0), ff

contains u = Σicaei with α ^ O , and it follows that

; = 0

This shows that Hi g, which is a contradiction. Hence H=(0). Therefore
we have Rad{δΛ^ωΛ®(Z/) = (0). Thus

(3) Let L be the Lie algebra in Example D in Section 3. Then the
%lωΓΛ® subideals and the @Λ3iωΓ\® ideals of L are both the finite-dimensional
subspaces of A. In fact, it is immediate that any finite-dimensional subspace
of A is an @Λ9ΐωΛ© ideal of L. So conversely let H be an @Λ9ϊωΛ© sub-
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ideal of L. If H<£A, then there exists ^ = Σα,e ί + όz with bφO in H. H n
-sί L for some n. It follows that

e,(adu)w = ^ e , e # , i = 0, 1, 2, ...

and therefore HΏA, which contradicts He ®. Therefore H^ A. Since He®,
H is a finite-dimensional subspace of A. Thus

©_Sί(L) = A.

Furthermore, Lω = L2 = A and therefore l 6 @ Λ ^ ω . Hence we have
Rad@Λδβ(Z) = Z,. Thus we have

®(L) φ

(4) Let L be the subalgebra J + O) of the Lie algebra given in Example
C in Section 3. Then the &Γ\^ω subideals of L are the finite-dimensional sub-
spaces of A. In fact, it is immediate that a finite-dimensional subspace of A
is an @Πgω subideal of L. Conversely, let H be an @Λgω subideal of L.
H n-sί L for some n. If H^A, H contains u = Σa,iei + bx with bφO. It
follows that

ei(adu)n = bnen+i6H, ί = 0, 1, 2, ....

Hence HΏ(en, en+w. ) . Since Lω = (0), Hω = (0). It follows that Hi gω, which
is a contradiction. Therefore HQA. Since ϋΓ e gω, it follows that H is a
finite-dimensional subspace of 4̂. Thus Rad@Λδβ_Sί (L) = ^ .

It is immediate that only (0) is an gω ideal of Z. Therefore
= (0). Since Rad©(Z) = L, we have

Thus the theorem is completely proved.
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