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Introduction

In the theory of compactifications of hyperbolic Riemann surfaces, there
have been considered various conditions which require that ideal boundary
points are separated in some function-theoretic sense. In order to extend
Fatou's and Beurling's theorems to Riemann surfaces, Z. Kuramochi intro-
duced notions of H.B. separative and H.D. separative metrics (cf. [10]).
The present author [19] defined separative compactifications rather than
separative metrics and simplified Kuramochi's definitions: A compactification
R* of a hyperbolic Riemann surface R is called H.D. (resp. H.B.) separative
if any two closed sets in R which are separated in R* are also separated in
the Royden compactification up to a set of capacity zero (resp. in the Wiener
compactification up to a set of harmonic measure zero.) In [19], it was
shown that H.B. separative compactifications are nothing but resolutive ones,
i.e., the quotient spaces of the Wiener compactification and that the quotient
spaces of the Royden compactification are H. D. separative but the converse
is not true. Another notion of separativeness is the regularity introduced
by F-Y. Maeda [12]: A resolutive compactification Λ* of R is called
regular if continuous functions on A = R* — R whose Dirichlet solutions
belong to HD separate points of A.

In this paper, we shall introduce another notions of separativeness. The
first of them is of Kuramochi's type: H.M. separativeness, which is defined
in the same fashion as H.D. separativeness using the harmonic measure on
the Royden compactification instead of capacity (§4). The other notions
will be defined in terms of curves (§ 6): A metrizable compactifiation R* of R
is said to satisfy condition (E) (resp. (G)) if almost every curve in R (resp.
Green lines) tending to the ideal boundary A terminates at one point on A.
Here, "almost every" is in the sense of extremal length (resp. Green mea-
sure). The main purpose of this paper is to investigate relations among
these various separative conditions. In § 1 and § 2, we prepare basic defini-
tions and results which are necessary for the subsequent theories. In § 3,
we focus our attention to singular points on the Kuramochi boundary and to
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poles of such points defined on the Royden boundary and on the Wiener
boundary. Some of the results in this section will be used to supply ex-
amples in §4; while the other results (especially Theorem 3) concerning a
characterization of singular points in terms of poles may be interesting in
its own right.

Relations among H. D. separativeness, H. M. separativeness and regulari-
ty are studied in § 4. The results in this section are summarized at the end
of the section. Then, in § 5, we consider the Martin compactification of a
Riemann surface belonging to 0HD—0HB. We shall show that such a com-
pactification is neither H.D. separative nor H.M. separative nor regular.
Furthermore, we shall remark that, on its boundary, a normal derivative in
the sense of F-Y. Maeda [12] is not uniquely determined. Finally, in § 6,
we introduce conditions (E) and (G) and investigate relations among H. D. or
H.M. separativeness and these conditions. Our results in this last section
improve those given F-Y. by Maeda ([11; Theorem 2]) and M. Ohtsuka ([16;
Theorem 1]).

Notation and terminology

Let R be a hyperbolic Riemann surface. For a subset A of R, we denote
by dA and A1 the (relative) boundary and the interior of A respectively. We
call a closed or open subset A of R regular if dA is non-empty and consists
of at most a countable number of analytic arcs clustering nowhere in R. An
exhaustion will mean an increasing sequence {Rn}~=1 of relatively compact

domains on R such that \J Rn = R and each dRn consists of a finite number

of closed analytic Jordan curves. We fix a closed disk Ko in R once for all
and let RQ = R-K0.

We denote by BC=BC(R) the space of all bounded continuous (real-valu-
ed) functions on R and by C0 = C0(R) the subspace of BC whose functions
have compact supports in R. Let HB = HB(R) be the space of all bounded
harmonic functions on R and HD — HD{R) be the space of all harmonic func-
tions on R with finite Dirichlet integral (or finite Dirichlet norm). We de-
note HBD = HDΓ\BC.

§ 1 Preliminaries

1.1 Wiener functions ([3])

For a finite continuous function / on R, we shall denote by #7 (resp. if f)
the family of all superharmonic (resp. subharmonic) functions on R such that
s^>f on R — Ks (resp. s<,f on R—Ks) for some compact set Ks in R. If #7
and iff are non-empty, then we set Λ/(α) = inf{s(α); s e #7} and Λ/(α) = sup
{s(a); s e iTf} (a€ R). It is known that A/, hf are harmonic and hf<,hf. If
hf=hh then/ is said to be harmonizable. We write hf = hf = hf if / is har-
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monizable. A finite continuous function / on R is called a Wiener function
if I / I has a superharmonic majorant and / is harmonizable. If a Wiener
function / satisfies hf = 0, then / is called a Wiener potential. We denote
by W (resp. ΪF0) the family of all finite continuous Wiener functions (resp.
Wiener potentials) on R and set BCW= WΓ\BC (resp. BCJF0 = Wor\BC). It
is known that both BCW and BCW0 are vector lattices with respect to the
maximum and minimum operations and also contain Co

1.2 Dirichlet functions and Dirichlet principle

We follow C. Constantinescu and A. Cornea [3] for the definition and
properties of Dirichlet functions. Let / be a Dirichlet function on R and F
be a non-polar1} closed set in R. Then there exists a uniquely determined
Dirichlet function fF which minimizes the Dirichlet norm \\g\\ among Dirich-
let functions g such that g = f q.p. (quasi uberall)υ on F and which is equal
to / on F and is harmonic in R — F.

Properties of /F([3]):

(A, 1) | | / Ί | ^ 11/11 and (g-fF,fF)V = 0 for any Dirichlet function g such
that g = f q.p. on F.

(A, 2) If /:>0 on F, then fF^0.
(A, 3) If F1CF2, then fF^ = (fF^ = (fF^Fκ
(A, 4) (aifi + a2f2)F = aιfF

1 + a2f
F(au a2: constant).

(A, 5) If G is a component of R-F, then fF = f*F = f™ o n G

We denote by BCD (resp. BCD0) the family of all bounded continuous
Dirichlet functions (resp. Dirichlet potentials) on R. It is known that both
BCD and BCD0 are vector lattices with respect to the maximum and mini-
mum operations. Furthermore, BCD is decomposed into the direct sum of
two parts HBD and BCD0 (Royden decomposition). It is known ([3]) that
BCDC BCW and BCD,QBCWQ.

1.3 Compactifications

If R* a compact Hausdorff space and if there is a homeomorphism of
R into R* such that the image of R is open and dense in /?*, then we may
identify the image of R with R and call Λ* a compactification of R. Δ = R*
— R is called an ideal boundary of R. We shall say that a subfamily Q of
BC separates points of Δ if, for any two distinct points ξλ and ξ2 of J, there
exists a function / in Q such that lim/(α)<lim/(α) or lim/(α)>ίίm/(α).

Given a compactification i?*, let C(J) (resp. C(R*)) be the space of all finite

1) See p. 30 in [3].

2) (g-fF, fF) is the mixed Dirichlet integral of g-fF and fF.
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continuous functions on A (resp. J?*).
Let Q be a non-empty subfamily of BC. If a compactification Λ* of i?

satisfies the following:
1) every / e Q can be continuously extended over i?*,
2) (? separates points of J,

then Λ* is called a Q-compactification of i?. It is known ([3]) that a ()-com-
pactifiation always exists and is unique up to a homeomorphism. Thus it
will be denoted by R% and its ideal boundary byΔQ.

Properties of Q-compactifications:

(a) Let Λ* be a compactification. If QCBCίλC(R*) separates points of
Δ, then R* = R%.

(b) If 12* is metrizable, then there exists a countable subfamily ζ) of
BC such that R* = R%.

(c) Let <? be a vector sublattice of BC containing Co and constants. If
A and B are closed subsets of R such that J * n S * = 0 in i?§, then there
exists a function / in () such that / = 0 on 4̂ and = l on B.

We refer to [β~] for the definitions and properties of the Martin com-
pactification Rfj, the Kuramochi compactification R%, the Royden compactifia-
tion R% and the Wiener compactification R$. For a subset A of i?5 we shall
denote by A* (resp. ^ M , AN, AD, Aw) the closure of A in 7?* (resp. R^ R%,

Rl R%).

Let Rf and i? | be two compactifications of R. If there is a continuous
mapping 7r of R% onto i?f whose restriction to R is the identity mapping and
n~1(R) = R, then we shall say that π is a canonical mapping of i?f onto i ^
and that R\ is a quotient space of R$ It is known ([3]) that if Q1CQ2,
then R%1 is a quotient space of i?§2. We note that R%, R% and i?£ are quoti-
ent spaces of R$. Furthermore R% is a quotient space of R%.

We shall frequently use the following fact: Let Λ* be a compactification
of R and ^ b e a closed set in Δ = R* — R. For any neighborhood U oϊ Am
i?*? there exists a regular closed set F in R such that F * is a neighborhood
of

1.4 Harmonic measures and harmonic boundaries

Let 7?* be a compactification of R and let Δ = R* — R. Given a function
/• (extended real-valued) on J, we consider the following classes :

[ s superharmonic, bounded below on R, ]
&f = pR*=\ \\j{oo}

{ lims(α):>/(?) for ξe Δ J

and
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Let Ίtf(ά) = HR%ά) = mf{s(a); s€&f} and Hf(a)
(σ e R). It is known (Perron-Brelot) that Hf (resp. Hf) is either harmonic,
Ξ + O O O Γ Ξ - co. If Hf = Hf and are harmonic, then we say that / is resolu-
tive (with respect to Λ*) and Hf=Hf = Hf is called the Dirichlet solution of/
(with respect to R*). If any function in C(J) is resolutive, then we say that
R* is resolutive. It is known ([3]) that R^, R%, R% and R$ are resolutive.
Wedenote by ωQ = ωQ

a(a e R) the harmonic measure on JQ(Q=M, TV, D, W). Let
G be a domain on R. Then GQ(Q=M, N, D, W) is a resolutive compactifica-
tion of G (cf. Hilfssatz 8.2 in [3]). We denote by ωQ'G = ωQ'G(a)(a e G) the
harmonic measure on GQ — G.

Let Λ* be a compactifίcation of R. For a (Green) potential p on i?, we
set Γp={b e J ; limp(α) = 0} and Γ = f\Γp. Then Γ is a non-empty compact

subset of J and is called the harmonic boundary of i?*. We denote by Γw

(resp. ΓD) the harmonic boundary of R$ (resp.

Properties of harmonic boundaries (cf .Q 3]):

(i) The support of ωQ is equal to ΓQ(Q= W, D).
(ii) If 7Γ is the canonical mapping of R% onto R% then π(Γw) = ΓD.

(iii) A Riemann surface 2? belongs to OHB — OG (resp. OHD—OG) if and
only if Γw (resp. ΓD) consists of a single point.

1.5. Capacity in the sense of G. Choquet

Let X be a compact Hausdorff space and X be the family of all compact
sets in X. A finite-valued function ¥ on X is said to be a capacity (on X)
in the sense of G. Choquet [_2~] if it has the following properties:

(a) If Kλ C K2, then ψ(Kλ) ^ Ψ(K2).
(b) F(K±\JK2) + ¥(K±nK2) ^ Ψ(Kύ + Ψ{K2).
(c) Given Ke X and ε>0, there is an open set G in X such that KCK!

CG (Kf e jf) implies Ψ(Kf)<Ψ(K) + ε.

By definition, any positive (Radon) measure on I is a capacity. For a
set J in X, we define y f (Λ) = sup{y(ί:); KeX and ϋΓC^} and sr#(^) = inf
{Ψi(G); G is open and AQG}. A set 4̂ in X is said to be (Ψ-) capacitable if
Ψβ(A) = Φi(A). G. Choquet [2] proved that any analytic set is capacitable,
and hence any Borel set is capacitable. By definition, we see that if A is
capacitable, then Ψβ(A) = awp{Ψ(K); KeX and

§ 2 Harmonic measures and capacities

2.1 Reduced functions

We follow [3] (see p. 21) for the definition of the Dirichlet problem on
an open set in R and use the same notation as there. Let G be a domain on
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R. Let F be a relatively closed set in G and s be a non-negative superharmo-
nic function on G. We introduce the following function:

sf = inί{v; superharmonic 2^0 on G, v^>s q.p. on F}.

Then s$ is superharmonic on G and 0<[s£ <,s. When G = i£, we write s$=sF

for simplicity.

Properties of sF (cf.

(B, 1) sF = Hf~F on R — F and SF = S on F except at irregular boundary
points of R — F.

(B5 2) If Fλ C F2 and Sl ̂  s2 ? . p . on F l 5 then ( S l ) F l ̂  0>2)F2.

(B, 3) If Fx C F2i then sFl = (sFl)F2 = (sFi)Fl.
(B, 4) (aιSι + a2S2)F = a1(sι)F + a2(s2)F (au a2: constants ^ 0 ) .
(B, 5) sFlKJp2 + sFlKjFz ^ sFl

PROPOSITION 1. Let G be a regular domain on R. Let {Fn}n=ι be a sequ-
oo

ence of regular closed subsets of R such that FnZ)Fn+ι (n = l, 2, ) and f\Fn =
n = l

0. Let u (resp. u0) be the limit function of {ljpn}^>

=1(resp. {l^nπG}»=i) Then
we have

(a) u — uo = UR_G on G.
(b) Assume R-GwΓ\FY = 0. Then u = 0 if and only if u0 = 0.

PROOF (a) If we set gn = 0 on dG and = l on dFnΓ\G, then l £ n Λ G : = # ^ »
on G-F M . Since (lFn)(R_G)κjFn = lFn by (B, 3) it follows from (B, 1) that

1 1 G ττG-Fn
LFn~

 LFnΓ\G—-tllFn-gn

Since lim HG

Fn{a)>XFn{b)-gn(b) for b e dG\j(dFnΓ\G), we obtain that

on G-Fn.

By letting rc—•oo, we have u — uQ<,HG

u on G. On the other hand, since u — u0

is a non-negative superharmonic function on G and

lim (u(a) — uo(a)) = u(ό) for ό 6 dG,

we have u — uQ^HG

u. Thus u~uo = HG on G. Since HG = uR-G on G by (B,
1), we have (α).

(b) Since uo<,u, u = 0 implies uo = O. Conversely, suppose uo = O.
Then, by (α), we have u = uR_G on R. On the other hand, it follows from Pro-
position 1 in [19] that uFl = u on R. Thus u = (uR_G)Fl^(lR-G)Fl^min(lR^G,
lFl). Since R^Gwr\Ff = 0, it follows from Lemma 4 in [19] that (lR-G)Fl

= 0 on /V. Hence (lR_G)Fl is a potential. Therefore we have u = 0.
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PROPOSITION 2. Let {Fn}~=1 be a sequence of regular closed subsets of RQ

such that

(a) R=Fiwr\F?+1 = 0 (resp. i ^ F f n f £+1 = 0) (Λ = l, 2, ...),

(b) f\Fn = 0,
n + l

(c) I F ^ - ^ 0 as n->oo.
Then we can find a sequence {φn\n=i of functions in BCW (resp. BCD) such
that

(a) 0<=φn<,l on R, ψn = 0 on (R-Fi

2n_ι)\jF2n+1 and =1 on dF2n,
(β) φn is harmonic in F2

i

n_1 — F2n+1 — dF2n.
n

Furthermore, if we set fn=Σ Φk, then fn is a function in BCW (resp. BCD)
k = l

and converges to a function f in BCW as n-^^.

PROOF. First we consider the case of Wiener functions. Let n be fixed.
By (α), we can find gn in BCW such that 0<,gn<,l, gn = 0 on R-Fl

n and = 1
on Fn+ι. We set

f gn on R-(Fi-Fn+ι)
gn=\

{ HF

g\-Fn+. on Fi-FH+1.

By Hilfssatz 6.5 in [3], we see that g'n is a function in BCW. If we set φn =

min(^2W-i, 1— gίn)> ̂ hen we see that φn satisfies (a) and (β). We set /» =

Σ φk. Then /„ tends to a bounded continuous function / on R. Since /„ ^

f^fn + lF2n+1 on R (Λ = 1, 2,...), we have 0<,hf-hf<,lF2n+1 on R(n = l, 2,...).

By letting n-+&=>, we obtain that hf = hf. Since \f\ is bounded, / is a func-
tion in BCW.

Secondly we consider the case of Dirichlet functions. Since we can
choose gn in BCD in this case, we obtain φn in BCD satisfying (a) and (β) in
the same way as above by considering gή = gn~(Fln~Fn+l)> The rest of the
proof is the same as above.

COROLLARY. In the above proposition, if each fn is a function in BCW0,
then so is f.

P R O O F . S ince hfn<,hf^hfn + lF2n+1 a n d hfn = 0 (n = l,2, •••), by l e t t i n g
ra->oo? we obtain that hf = 0.

2.2 Harmonic measures on the ideal boundary-

Let Λ* be a resolutive compactification and ω be the harmonic measure

on Δ. For a closed subset A of J, we consider the following class:

1 5; super harmonic |>0 on R, s^>l on UίλR for

some neighborhood U of A in R*
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Then the function lA(a) = inί {s(a); s e S?A,R*} (aeR) is harmonic on R and

LEMMA 1. Let A be a closed subset of A and let xA be the characteristic
function of A. Then lA = HXA=ω(A).

PROOF. By an elementary discussion, we can show that 1A=HXA. On
the other hand, it follows from Hilfssatz 8.3 in [3] that RXA = ω(A).

LEMMA 2. Let A be a closed subset of A and {Un}~=1 be a sequence of
neighborhoods of A in R*. Then there exists a sequence {Fn}~=1 of regular
closed sets in R such that

(a) The closure F* of each Fn is a neighborhood of A in R*,

(b) UnΓ\R^Fn (* = 1, 2, ...) and

(c) i ? -
(d) lFn->cύ(A) as

PROOF. Let a0 be a fixed point in R. Then we can find a sequence
{sn}~=1 in S?AtR* such that sn(a0)^ωaQ(A) as n-+°°. By assumption, s ^ l o n
VnΓ\R for some neighborhood Vn of A. Hence we may assume that UHZ> Vn,

oo

Vn ^ Vn+ι (rc = l, 2, .) and Γ\ (VnΓ\R) = 0. Then there exists a sequence
n = l

{FΛ}*=1 of regular closed sets in R such that VnΓλRZ)Fn, F* is a neighborhood

of A, i ? - F j * Λ ί V i = 0 This sequence satisfies (a), (b) and (c). Since it
oo

is a decreasing sequence and f\ Fn = 0,1F tends to a harmonic function u on
R as n-+°°. Since sn^>lFn^1 A, by letting n-+°oy we have l ^ ( α o ) ^ ^ ( α o ) ^
lA(a0). Since u7>lAy it follows from the maximum principle that u = lA.
By Lemma 1, we obtain (d). This completes the proof.

As for a resolutive compactification R* of i?, we have

LEMMA 3. Let G be a domain on R. Then G* is a resolutive compactifi-
cation of G. For a closed subset B of A, we denote by u(a) (a e G) the harmo-
nic measure of Br\G* with respect to G. Theu we have

(a) ω(B)-u = (ω(B))R-G = H2{B) on G.
(b) Assume R-G*ίλB = 0. Then ω(B) = 0 if and only if u = 0.

PROOF, (a) First setting Λ = G, A = Br\G*, Un=G* (n = l, 2,...) in Lem-

ma 2, we obtain a sequence {δn}^1 of regular closed sets in G such that

f\δn = 0, G-δj^rλδ*n+1 = 0 (Λ = 1, 2, .) and lfn-+u as n^oo. Since each 5* is
n = \

a neighborhood of BΓ\G* in £*, there is a neighborhood Vn of B in Λ* such
that VnΓ\G*Cδ* (τι = l, 2, ..) Secondly setting Λ = Λ, 4̂ = B, C/W=ΓW (τι = l,
2, . ) in Lemma 2, we have a sequence {Fn}^1 of regular closed sets in R such
that f\Fn = 0, R-Ft

n*ίλF*n+1 = 0 (Λ = 1,2,.. ) and l^-^ωCfi) as tt—oo. Since
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FnΓ\GCUnΓ\GCδn and FnΓ\G* is a neighborhood of BίλG* (n = l, 2,...), we see
that l£n Λ G-»u as rc-»oo. It follows from (a) in Proposition 1 that

G = HS{B) on G.

(b) Since R — G*Γ\B = 0, we can take {^}«=i in (a) in such way that

* = 0. Then R^GwΓΛFξ = 0. Thus it follows from (b) in Pro-
position 1 that ω(B) = \im 1FU = 0 if and only if u = \im l£ n = 0.

COROLLARY (cf. [19; Lemma 6]). For a closed subset B of JQ(Q = D, W),
ωQ(B) = 0 if and only if ωQ'R°(B) = 0.

2.3 Full-superharmonic functions3)

Let s be a non-negative full-superharmonic function on Ro and F be a
closed set in R. We refer to [3] for the definition of full-superharmonic
functions and the (full-) reduced function sp.

Properties of sp ([3]):

(C, 1) If 5 is a Dirichlet function on i?, 5 = 0 on Ko and 5 is a non-nega-
tive full-superharmonic function on Ro, then

(C, 2) If Fλ C F2 and Sl <;s2 q.p. on Fu then (Sl)p ^ (s2)p2.
( C , 3 ) I f F 1 C F 2 , t h e n s p ^ j φ
(C, 4) (αi5i + α252)ί(

(C, 5) 5^^)/2 + s^y/2 ^ : ^
(C, 6) If sn f 5 as rc t °°5 then (sw)j? t 5# as n | °°.

LEMMA 4 (cf. [19]). Let {Fn}~=1 be a sequence of regular closed subsets of

Ro such that Fn^)Fn+ι (^ = 1, 2, ) and f\ Fn — 0, Then lp converges locally
n = \

uniformly on Ro and in Dirichlet norm as n-+oo. Furthermore, setting u =
lim lpn, we have

(a) If F is a regular closed subset of Ro such that F^)FnQ for some n0,
then uρ = u on Ro.

(/?) // u is positive, then sup u = l for each n.
Fn

p
Fn

LEMMA 5. Let s be a non-uegative full-superharmonic function on Ro and
Fbe a closed subset of Ro. If G is a component of Ro — F, then Sp=SBy = SB^ on
G.

3) This is called supεrharmonic by Z. Kuramochi [6] and "positive vollsuperharmonisch" in [3].
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PROOF. Let D be a relatively compact open disk in R such that K0CD
and (D\jdD)Γ\F=0. For each integer π,>0, we set sn = mm(s£^D, n). Since
sn is bounded and the total mass of the measure associated with sn is finite,
it follows from Satz 17.3 in [3] that sn is a Dirichlet function. Hence it fol-
lows from (A, 5) that (sn)p = (sn)dF = (sn)dg on G. Since s^D = s on Ro —
(D\JdD), by letting ra->oo5 we complete the proof by (C, 6).

2.4 Relative full-reduced functions

Let G be a regular open subset of R. Let F be a non-polar closed sub-

sets of G such that R-GDΓ\FD = 0. Then there exists a function / i n BCD
such t h a t / = 0 on R-G and =1 on F. Since f(R~G)κjF does not depend on the
choice of such an /, we shall denote it by 1£. If F is a regular closed set,
then 1£ is continuous. We note that if F is a regular closed subset of Ro,
then lf° = lp on Ro. Let {Fn}~=1 be a decreasing sequence of regular closed

subsets of G such that Γ\Fn = 0. Suppose R-GDΓλF? = 0. Then lfn is

defined for each n. By an argument similar to the proof of Lemma 4 (see
[19; Proposition 2]), we can show that l^n tends to a function, say u, on G
locally uniformly and in Dirichlet norm as Λ-*OO. Furthermore u is harmo-
nic in G.

The following Lemma is known ([6], [10]).

LEMMA 6. Let u be the function defined above. Suppose u^O and Ct —
{z e G; u(z) = t}(0<t<l). Then

:\\u\\2 for almost all ί,
ctdv " "

LEMMA 7 ([9; Theorem 5]). Let G be a regular open subset of Ro. Let
oo

{Fn}ζ=ι be a decreasing sequence of regular closed subsets of G such that f\Fn =
n = l

0. Suppose R — GDΓΛFζ = 0. Then lim 1^ = 0 if and only if lim l?n = 0.

PROOF. By (A, 2), (A, 3) and (A, 4), we see that

On the other hand, it follows from the Dirichlet principle (A, 1) that

lliί.ll^lliί.ll 0ι=i,2,.. .).

These two inequalities imply our assertion.

2.5 Full-reduced functions on the ideal boundary

Let Λ* be a compactification of R. Let u be a non-negative full-super-
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harmonic function on RQ. For a closed subsets A of J, we consider the fol-
lowing class:

( 5; full-superharmonic I>0 on Ro, s^> u on UΓ\R0 ]
CPU J I

*A,R* — ) f

{ for some neighborhood U of A in i?*. J

Then the function

M/(α) = inf {5(α); 5 e- ̂ l#*}(α 6 Λo)
is harmonic, full-superharmonic on Ro and 0<Luj;<,u. We denote l j by

REMARK: For the Kuramochi compactification, the above function un-
does not necessarily equal the one defined in [3] (p. 197). However, for u = l,
we can prove that they are identical.

By a discussion similar to that in the proof of Lemma 2, we can prove

LEMMA 8 (cf. Q19; Lemma 6]). Let u and A be as above. Let {Un}ζ=1

be any sequence of neighborhoods of A in i?*. Then there exists a sequence
{Fn}~=1 of regular closed subsets of Ro such that

(a) F* is a neighbohood of A,

(b) UnΓ\R^Fn (n = l, 2, .) andf\FH = 0,

(c) R=Fi*ί
(d) upn decreases to uz as ft—•oo.

LEMMA 9. Let u be a Dirichlet function on R such that u is a non-nega-
tive full-superharmonic function on Ro. Let {Fn}~=ι be a sequence of regular
closed sets in R which satisfies (a)-(d) in Lemma 8. Then uj is a Dirichlet
function and we have

(i) \\upn— UA\\~>0 as ra—•oo and \\upn\\ decreases to \\uj\\ as rc->oo. In
particular, \\lpn — ώ(A)\\-+0 and | |1/J| decreases to | |ώ(^)| | as rc->co.

(ii) If F is a regular closed subset of Ro such that F* is a neighborhood
of A in Λ*, then {up — uj, UA) = 0 and \\uj;\\^\\up\\.

PROOF, (i) By (C, 1) and (A, 1), we see that

(upn-upm, UfJ = 0 if m>n.

It follows that \\upn\\ is decreasing and {upn}~=1 is a Cauchy sequence in
Dirichlet norm. Since upn tends to uj on Ro as TI->OO? we see that uj is a
Dirichlet function and \\upn — UJW^O as n->oo. It also follows that \\upj\
decreases to \\uχ\\ as n^»°o.

(ii) We may assume that FZ>Fχ. Then we have
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for each n. By letting n^>°°, we obtain that {up—uj^ u£) = Q. Hence \\uj\

<λ\up\\.

By the aid of (C, 2)-(C, 5) and Lemma 8, we can show the following:
(D5 1) If AλQA2 and u1^u2, then
(D, 2) If A,CA2, then ujr^uφ

(D, 3) (βιUι-\-a2u2)A=aι(uι)A + a2(u2)A («i, «2; constant Ξ>
(D, 4) u£$£2 + u£^A2 <J uAι + ẑ ~2

Since i?£ is a quotient space of R% and a full-superharmonic function is
superharmonic, we have the following

LEMMA 10. ωw>R°(FY ΓΛFf Γ\Jw)^ωDΉF? Γ\F$ r\ ΔD)

for any regular closed sets Fx and F2 in R.

We can easily see

LEMMA 11. Let R* be an arbitrary compactification of R and let {Fn}~=1

be a sequence of regular closed subsets of Ro such that Fn^)Fn+1 0 = 1, 2, )
oo oo

and f\Fn = 0. We set Λ=f\F*. If u is a non-negative full-superharmonic
n=l n=l

function on Ro, then uj^>\imupn.

2.6 Full-reduced functions on the Royden boundary

LEMMA 12. Let u be a bounded continuous, non-negative, full-superhar-
monic function on Ro. If u is a Dirichlet function on Ro and F is a regular
closed subset of Ro, then

PROOF. Since u and up are bounded continuous Dirichlet functions on
i?o5 v — u — up can be continuously extended over R0\jJD. We denote by v*
the continuous extension of v. For each ε>0, we set Uε = { 6 R0\JJD; v*(z)<
ε}. Since v* = 0 on FD, U£ is an open neighborhood of FDΓ\AD and up + ε>u
on U£Γ\Ro. Hence up + ε^>ufϊ^D. Since ε is arbitrary, we have up^uf^/D.

By the above lemma and Lemma 11, we obtain

COROLLARY 1. Let {Fn}™=1 be a sequence of regular closed subsets of Ro
OO OO

such that FnZ)Fn+1 (n = l, 2, ) and f\Fn = 0 and let A = f\FD

n. Then up con-
1 ln=l

verges to UJ: locally uniformly and in Dirichlet norm as n

COROLLARY 2. Let {Rn}n=Φe a n exhaustion of R and let F be a regular
closed subset of Ro. Then uf^n converges to uf^fD locally uniformly and in
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Dirichlet norm as n-+oo. In particular, lf^Rn converges to ώ(FDΓ\ΔD) locally
uniformly and in Dirichlet norm as ra—•oo.

2.7 Capacity on the Royden boundary (C19])

Let A be a closed subset of ΔD. Then, by (i) in Lemma 9, we see that
\\ω(A)\\<oo. We define

dώ(A) j

and call C(A) the capacity of A (with respect to Ko). By (γ) of Lemma 4, we
can show that C(A) = (l/2π)\\ ώ(A)\\2. It follows from (D, 1), (D, 4) and
Lemma 9 that A-+C(A) is a capacity in the sense of G. Choquet [2].

We can show that if π is the canonical mapping of R% onto R%, then
C(π~1(A)) = C(A) for any closed set A in ΔN, where C is the Kuramochi ca-
pacity (see

PROPOSITION 3. C(ΛD) = 0 where ΛD = ΔD — ΓD.

PROOF. Since ΛD is an open set, it is sufficient to show that an arbitrary
compact subset K of ΛD is of capacity zero. By Hilf ssatz 9.1 in [3], we see
that there exists a finite continuous Green potential p with finite energy such
that \\mp(a) = oo. Since p is a continuous Dirichlet function, so is p0 =p—pκ

a-*K _ °

For any ε>0, there exists a regular closed subset F of Ro such that FD is a
neighborhood of K and p0 Ξ> 1/ε on F. Since min (εp0, 1) = 0 on Ko and = 1 on
F, it follows from (C, 1) and (A, 1) that

Hence, by (ii) of Lemma 9, we have

Since ε is arbitrary, we have ώ(K) = 0. Hence C(K) = 0. This completes the
proof.

COROLLARY. If ξ is a point in ΔΌ with C({f}) >0, then it is contained in

§ 3 Singular points on the Kuramochi boundary

3.1 Singular points and thin sets

For b e ΔN, let gb be the Kuramochi kernel (with respect to Ro) ([3J).
Let C be the Kuramochi capacity on RQ\jΔN. We denote by Δγ the set of all
minimal points in ΔN. Let b be a point in ΔN. If C({6})>0, then b is called
singular. Furthermore if ωN({b})>0, then b is called strictly singular. We



46 Hiroshi TANAKA

denote by Δs (resp. ΔSs) the set of all singular (resp. strictly singular) po-
ints^. Then ΔSsCΔsCΔi. A point b in Δλ belongs to Δs if and only if gb is
bounded. It is known that if R belongs to OHD—OG, then ΔSs consists of
only one point. Z. Kuramochi \Jf] constructed a Riemann surface with Δs —

The following lemma is known (cf. [3; Folgesatz 17.22]).

LEMMA 13. Let b be a point in R0\jΔN and Fa — {z e Ro; gb(z)l>:u} (0<α
<sup gb). Then we have

(a) (gb)pa=mm(gh, a) = gb on R0-Fa,

(c) If b is a point in Js, then gb = (supgb)ώ({b}) and \\gb\\< +°°.

A closed set F in R is said to be thin at b e Aλ if (gb)p^ gb.

Properties of thinness (cf. [3]):

(E5 1) If FχCF2 and F2 is thin at ό, then so is Flt

(E, 2) If both F1 and F2 are thin at b, then so is Fλ\jF2.
(E, 3) If b ί FN, then F is thin at b.
(E, 4) If & 6 Δs, then F is thin at b if and only if (ώ({b}))P^ώ({b}).

The following proposition is essentially due to Z. Kuramochi ([17; Theo-
rem 8]).

PROPOSITION 4. Let b be a point in Δs> Let Fu F2 be regular closed sub-
sets of Ro such that F^ΓλFξ = 0 . If Fx is not thin at b, then F2 is thin at b.

PROOF. Let {Vn}™=1 be a sequence of regular closed subsets of Ro such

that VN

n is a neighborhood of ό, Vn~^ Vn+ι (π, = l, 2 , . ) and f\ Vξ = {b}. We
n = l

set tt = ώ({6}) = l iml^. Let/W = l^ where G=R0 — F2 and F=VnΌFι (n = l,

2,.. ) and let ι; = lim/n. Since b i Fι-Vi

n

N, F1-Vί

n is thin at b by (E, 3).

Since Fχ = (FιΓ\ Vn)\j(Fι — VI) and Fx is not thin at ό, FχΓ\ Vn is not thin at b.
Hence uf^yn = u (zι = l, 2, •••) by (E, 4) Since ^ ^ ^ ^ l i ^ ^ ^ l ^ - ^ u as
7i-^oo? we obtain that l i m l ^ ^ = w. Since | | lίv^ϊ<n | |^ | |/»| |, | | l ίv^ n ll- l̂l u \\
and ||/w | |->|kll (cf. Lemma 4), we have 0 < | | M | | ^ | | I ; | | . Hence v^O. We set
Ct = {z 6 R0 — F2, v(z) = t} ( 0 < ί < l ) . It follows from Lemma 6 that there ex-
ists a subset E of (0, 1) everywhere dense in (0, 1) such that

By Lemma 3 in [10], we see that

4) A point in Δs — Δss is called a singular point of first kind and a point in Δss is called a singular
point of second kind by Z. Kuramochi [7].
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dυ ,
ct

 2 dv

is a constant for all t c E. Let ίx be an arbitrary number in E. Since 0< ι^2

< J u < l on R0 — F2:> we can find δ>0 such that

up as <^ \\v\

Hence we have

Let ί2 be any number in £ such that t2>tι. Since iί^i;,we obtain that

df\ u
)ct2

dv J \
d

d s > \ v ^ d s = t2\ ^
dv Jc ί 2 dv Jct2ov

= H\\v\\\t.Fι.

Thus we have

lim ds^\\v\\l^>δ + \im \ up2^ds.
° - — t^i,teEJct

 2 dv

This shows that u^up2. Hence F2 is thin at b by (E, 4).

3.2 Poles of Kuramochi boundary point

Let Λ* be a compactification of R. Let b be a point in JI(
(gb)iR==:gb for f e J, we say that ? is a (full-) pole of b on J. We denote by
0(6) (resp. Φw(b))the set of all poles of b on J D (resp. Δw). By definition, we
see that the set of all poles of & on J is closed, and hence both Φ(b) and Φw(b)
are closed. The following lemma shows that both Φ(b) and Φw(b) are non-
empty.

LEMMA 14. Let R* be a compactification of R and b be a point in Δλ.
Then we have

(a) If a closed set F in R is not thin at b, then there exists at least one
pole of b on J which is contained in F*Γ\A.

(b) // (gb)i= gb for a closed subset A of J, then there exists at least one
pole of b on Δ which is contained in A.

PROOF. Suppose every ξ e F*Γ\Δ is not a pole of b. Since (gb){ξy^gb,
we can find a regular closed set Fξ in R such that Ff is a neighborhood of ξ
and Fξ is thin at b. Since F*Γ\Δ is compact, there exists a finite family

n _

{Fξk}
n

k=1 of regular closed sets in R such that \jFfk is a neighborhood of
_ n _ n

F*Γ\Δ. Since \jFfk=\JFfk, we can find a relatively compact open set D
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in R such that

F-DC\jFξk.
k = l

Since \jFξjb is thin at b by (E, 2), F — D is thin at b by (E, 1). Hence we see

that F is thin at b. This a contradiction. Thus we obtain (α). Similarly
we can show (ό).

LEMMA 15. Let π (resp. 7Γw) δe the canonical mapping of R% (resp. R%)
onto R%. If b is a point in J l 5 then Φ{b) C π~ι(b) and Φw(b) C πwι(!>).

PROOF. Let b0 be a point in AN. If bQφb, then by (E, 3) (gb){^y^gb-
By continuity of τr? ( g θ * / ^ ) = (#&){7ί} Hence, for ξ e π~\b0), (gb){&<s(gb){ίZ}
φgb, so that (gb)io^gb. Thus, π-\bo)r\Φ(b) = 0, and hence Φ(Jb)Cπ'\b).
Similarly we have Φ

3.3 Poles on the Royden boundary

PROPOSITION 5. Let b be a point in Δs and F be a regular closed set in R.
Then F is thin at b if and only if FDΓλΦ(b) = 0.

PROOF. The "if" part follows from (a) in Lemma 14. To prove "only
if" part, suppose FDΓ\Φ(b)Φ0. Since gb is a Dirichlet function by (c) in
Lemma 13, (gb)f^/D^(gb)p by Lemma 12. For any ξ e FDr\Φ(b\ gb = (gb)^f}

^(gb)f^ϊD^(gb)F^gb Therefore, (gb)p = gb, i.e., F is not thin at b. Thus
the "only if" part is proved.

COROLLARY 1. Let b e As and let <gb = {GCR\ R — G is a regular closed
set in R and is thin at b). Then {GD\ G e &b} is a fundamental system of
neighborhoods of Φ{b) in R%.

COROLLARY 2. If b is a point in Js, then Φ(b) consists of only one point.

PROOF. Suppose Φ(b) contains two distinct points ξλ and ξ2. Then we
can find two regular closed sets Fλ and F2 in R such that Fξ is a neighbor-
hood of ξk in R%(lc = l, 2) and Fξ r\Fξ = 0. It follows from the Proposition
that neither Fλ nor F2 is thin at b. This is a contradiction by Proposition 4.

THEOREM 1. For b e Δu €({b}) = C(Φ(b)) and ωN({b}) = ωD(Φ(b)).

PROOF. Let π be the canonical mapping of R% onto R%. By virtue of
Lemma 15, we have C({b}) = C(π-\b))^C(φ(b)) and ωN({b}) = ωD(π-\b))^
ωD(Φ(b)). Since C({b}) = 0 and ωN({b}) = 0 for be Ax-As, it is sufficient to
prove the theorem for b e As. Again by Lemma 15, it is enough to show
that C(τr- 1(δ)-*(δ)) = O and ωD(π-\b)-Φ(b)) = 0. Let K be an arbitrary
compact subet of π^ib) — Φ(b). Since K and Φ(b) are compact and Kr\Φ(b) =
0, we can find two regular closed sets Fλ and F2 in R such that F?Γ\Fξ = 0,
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Fζ is a neighborhood of K and Fξ is a neighborhood of Φ(b). Since Φ(b)Γ\
pξφ0^ F2 is not thin at b by Proposition 5. Hence it follows from Proposi-
tion 4 that Fι is thin at b. Let {Vn}~=1 be a sequence of regular closed sub-
sets of Ro such that Vξ is a neighborhood of ό, F O F w + i (ra = l, 2, ) and

Γ\^n={b}' Since KCπ~ι(b), V% is a neighborhood of ^ i n i ? ^ . Hence #„ =
»=i

VζίΛFζ is a neighborhood of i£ in i?J. Therefore, applying Lemma 8 with

u = l9 A = K and the above Un, we obtain a sequence {δn}~=1 of regular closed

sets in R such that S£ is a neighborhood of i£, δnCFιr\Vm /\tfn = 0, R-δiDr\

δ%+1 = 0 and lgn decreases to l £ = ώ(iQ. Since ί Ί is thin at ό, ίn is also thin
at b by (E, 1). Suppose ώ(K)>0. Since the measure associated with l j n is

oo

supported by 5^, the measure associated with ώ(iQ is supported by f\δ% =
n = l

{b}. Hence we see that ώ(K) = cogb for some co>O. It follows from (c) in
Lemma 13 that ώ(K) = cώ({b}) for some c>0. Since supώ(iQ = supώ({ό})==l
by (β) in Lemma 4, we have c = l. Hence ώ(K) = ώ({b}). Since (d}(Jf))5n =
ώ(K) by (a) in Lemma 4, (ώ({i}))8n = ω({i}). This shows that δn is not thin
at b by (E, 4). This is a contradiction. Thus ώ(K) = 0 and C(K) = 0. It fol-
lows that C(n-\b)-0(b)) = O. Since 0<.ωD-R°(K)^ti(K) = 0, ωD'R°(K) = O for
the above K. Hence, by the Corollary to Lemma 3, ωD(K) = 0, and hence

PROPOSITION 6. Let π be the canonical mapping of R% onto R% and set
JD

s = {ζtJD; C({?})>0} (CΓD). Then
(a) Φ induces a one-to-one mapping of Δs onto J%.
(b) π restricted on J% is a one-to-one mapping of J% onto Js

Furthermore, π°Φ is the identity on As and Φoπ is the identity on Jf.

PROOF. By Corollary 2 to Proposition 5, we see that Φ induces a map-
ping of As into JD. By Theorem 1, Φ(b) e Jg for any b 6 Δs. Let ξ e Jf.
Since l ^ ^ l φ X ) , π{ξ) e Δs. On the other hand, 0(τr(£)) t ΔD

sίλ{π'\π{ξ))
by the above and Lemma 15. As shown in the proof of Theorem 1,
C(π-\π(ξ))-Φ(π(ξ)) = Q. Since C({f})>0, it follows that ζ = Φ(π(ξ)). There-
fore, Φ is an onto mapping, φoπ is an identity on Jg, and hence π is one-to-
one.

Next, let b e Δs. Again by Lemma 15, π{Φ(b))Cττ(π-\b)) = {b}. Thus,
π(Φ(b)) = b, so that π is an onto mapping, πoφ is an identity on Δs and $ is
one-to-one on Δs-

3.4 Characterizations of singular points by poles

THEOREM 2. For each b e Δu either Φ(b) consists of only one point or con-
tains an uncountable number of points accordingly as b is singular or not.

PROOF. If b is singular, then, by Corollary 2 to Proposition 5, Φ(b) con-
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sists of only one point. Next suppose b is a point in Δλ — Js. Let {Fn}~=1

be a sequence of regular closed subsets of RQ such that F*f is a neighborhood

of δ, R-FiNrΛF^+1 = 0 (Λ = 1, 2,.. ) and f\P? = {b}. Then l/ n-*0 as τ*-»oo.

For each m? rc (m>n), let /«,,» = 1£ where F = F W and G = F*n. By Lemma 7,
l^-^O implies /i,»->0 as 7i->oo. It follows that ||/i>Λ | |->0 as n^oo. Thus,
there is τ*i such that | | / i > n i | |< l/2. By induction, we can find a subsequence
{Fnk}^ι of {Fn\:=i such t h a t H / ^ J K l / 2 * + 1 ( i = l, 2,.. ). Thus we may as-
sume that \\fntn+ί\\<l/2n+1 (τι = l, 2,. ) from the beginning.

We set

φn = 0 on (R-Fί

2n_1)\jF2n+u=f2n_1>2n on F ^ - i ^ ,

= l-/2»,2fi+i on F | w - F 2 w + 1 and = l on 9F 2 w

(π, = l, 2,•• •). Then 0W is a function in £CD and | |0 W | |<1/2 W . Then, it is easy
OO

to see that / = ΣΦn belongs to BCD. For each <z(0<α<l), we set

and

Ca = {z<-R;f(z)=a}.

Then Ωa,n and Cα are regular closed and dΩa>n C Ca. Since (gb)βa,n = gb on i?0,
(gb)$Sa,n = gb on R0 — Ωa,n by Lemma 5. This shows that (gb)ca = gb on i?0 for
each α. We set Aa = Cξr\JD. For an arbitrary a(0<a<l\ let {i^}^=1 be
an exhaustion of R such that Ca — Rn is regular closed in R. Since Ca = (Ca

-Rn)yj(Carλ(RnVJdRn)) and CΛπ(i?wW9i?w) is thin at δ by (E, 3), we have
(gb)c^Ίtn = (gb)ca — gb on Ro for each n. Hence it follows from Lemma 11
that

gb ^ (gb)ia ;> l im{gb)^i n = gb on £ 0 .

Hence (gb)ia = gb on i?0 for each a. By (b) in Lemma 14, there exists at least
one pole z(a) of b on Aa for each α. If aφa\ then ^ α n ^ 4 α ' = 0 since fe
BCD. Hence Φ(b) is uncountable. This completes the proof.

As for Φw(b\ we have

THEOREM 3. For a point b in di — JSs, @w(b) contains an uncountable
number of points. For a point b in JSs, Φw(b) does not necessarily consist of
a single point.

PROOF. First let b be a point in Δx — JSs> Let {Fn}~=1 be a sequence of

regular closed sets in R such that F% is a neighborhood of b in R%, R — Fι

n

N

= 0 O = l, 2 , . ) and f\F^ = {b}. Then, by assumption, we see that
l
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1 F -*0 as rc->°o. Since R-Ft

n

wΓ\Fj+1 = 0 (n = l, 2,. ) and /r\Fn = 0, we can
n n=l

apply Proposition 2 to this case and obtain a function / in BCW such that
f=l on dF2n and / = 0 on dF2n-i(n = l9 2, •)• For each ( 0 < α < l ) , we set

Ca = {ze R;f(z)=a} and Aa = C%Γ\Jw.

By a discussion similar to the proof of Theorem 2, we obtain that (gb)ia = gb
on Ro for each α and that Φw(b) is uncountable.

Secondly suppose R belongs to OHD — OHB. Then JSs consists of a single
point b. Furthermore ΓD consists of a single point Φ(b) and Γw contains at
least two distinct points ξι and ξ2. Then we can find two regular closed sets
Fλ and F2 in R such that Ff is a neighborhood of ξk (Jfc = l, 2) and F^r\F^ =
0. Since both ξλ and f 2 are mapped to Φ(b) by the canonical mapping of R$
onto i?g, we see that Φ(b) € FΌ

k (& = 1, 2). Hence (gb)Fk = gb on Ro by Proposi-
tion 5, and hence (gb)f*^ΔW = gb on Ro (λ = l, 2) by Lemma 11. This shows
that both ξx and ?2 belong to Φw(b). This completes the proof.

3.5 A property of Riemann surfaces belonging to OHD—O
HB

PROPOSITION 7 (cf. [3 ; Satz 9.10]). If ξ is a point in ΔΌ with C({f })> 0,
then there exists a fundamental system of open connected neighborhoods of ξ
in RD>

PROOF. Let π be the canonical mapping of R% onto R%. By Proposition
6, we have φ(π(ξ)) = ξ. By Theorem 1, we see that ω({£}) = 1 ^ = 1 ^ = (sup
gπ(ξ)Tιgπ(ξy We set u = ώ({ξ}). Let U be an arbitrary neighborhood of ξ in
R% such that Ur\R is a regular open set in R and K0Γλ((Ur\R)\Jd(Ur\R)) =
0. Then F=R—Ur\R is a regular closed set in R. Since ξ t FD, it follows
from Proposition 5 that F is thin at π(ξ), and hence up^u. Hence there
exists a connected component G of R0 — F=UίΛR such that U J ? < ^ on G.
Since u^^ = u^^up on G by Lemma 5, we see that u^^^u. Hence ξ i

R-GD by Proposition 5. Thus ξ 6 CD. Since GD-ΰGD is open in #g (cf., [3 ;
Satz 9.9]) and ξ t R%~ U(CdGDX GD-dGD is an open connected neighdorhood
of ξ in R%. This completes the proof.

COROLLARY 1. Let π be the canonical mapping of R§? onto R% If ξ is a
point in AD with C({f})>05 then 7t~λ{ξ) is connected.

PROOF. Let {Ua}aeA be a fundamental system of open connected neigh-

borhoods of ξ in R% where A is an index set. Since Uar\Rw is connected and

{UaΓ\Rw; ae A} is a lower directed family, we see that π~1(ξ)=f\Uar\Rw

is connected.

COROLLARY 2 ([3; Satz 9. 10]). If ξ is a point in ΔD with ωD({ξ})>0,
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then there exists a fundamental system of open connected neighborhoods of ξ
in R$.

THEOREM 4. // R belongs to OHD~OHB, then there exists a bounded con-
tinous Green potental p on R such that ωD(A%nJD)>0 for some a>0 where

PROOF. If Re 0HD — 0HB, then ΓD consists of a single point ξ with

o)D({ξ})>0. Let π be the cannonical mapping of Rw onto R%. Since π(ΓD) =

Γwy we have Γw Cτt~\Γ D) = π~\ξ). Since Γw contains at least two distinct

points and is totally disconnected (cf. [3; Satz 9.6]), the connectedness of

7t~\ξ) (the above Corollary 1) implies the existence of a point z e ΛW = AW —

Γw such that π(z) = ξ. It follows from Hilfssatz 8.4 in [βj that there exists a

bounded continuous Green potential p on R such that lim jo(α)>0. Let a be a

real numder such that 0<α<limp(a). Since π(z) = ξ9 we see that ξ e Aξr\JD.

This completes the proof.

COROLLARY. If R belongs to OHD~OHB, then there exists a bounded con-
tinuous Green potentialp on R such that C(AξίΛJD)>0 for some α>0.

§ 4 Function-theoretic separative conditions

In this section, for a given compactification Λ* of R and a closed subset
A of J, we set -f~(A) = {F; F is regular closed in R and F* is a neighborhood
of A in Λ*}.

4.1 General notion of separative compactification

Let R\jΓ be a compactification of R and 3F be a capacity on 7" in the
sense of Choquet. For a subset E of R, we denote by £'α the closure of E in
R\JΓ.

DEFINITION 1. Let Λ* be a compactification of i?. Then Λ* is said to be
Ψ-separative if ?Γ(ίτfΛί'f) = 0 for any regular closed sets i\ and F2 in i? such
that j P ί n ί t = 0 in Λ*.

The following lemma follows immediately from the definition.

LEMMA 16. Let Rf and R$ be two compactifications of R. If R$ is a
quotient space of Rf and Λ* is Ψ-separative^ then R$ is also Ψ-separative.

PROPOSITION 8. Let R* be a compactification of R. Suppose, for any two
distinct points ξ i and $2 in J, there exist Aei^{{ξλ}) and 5ef*({f2}) such
that

(a)
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(b) Ψ(AaΓ\Ba) = 0.

Then R* is Ψ-separative.

PROOF. Let F1 and F2 be two regular closed sets in R such that F
= 0. We shall show that ¥(Fa

1ίλFa

2) = 0. Let ak=Ff ΓλΔ (fc = l, 2). We may
assume that akφ0 (A = l, 2). For any ξ e ax and TJ e α2, we can find AξfT} e
^({f }) and Bξ>η e ̂ ({97}) which satisfy (a) and (b). First, fix ξ. Since a2 is
compact, there exists a finite number of points {^}S=i in α2 such that #£ =
0 Sff7fc e -r(u2). We may assume that Aξ = Γ\Aξ>Vk belongs to y({f}). Since

^ 1 Λ l

Atr\B1C\J{Al,kr\BlVk), we see that
k=l k=l

Next, varying ?y, we can similarly show that there exist U e ^(αO and V e
y^(α2) such that f/*nP* = 0 in Λ* and f ( ί / f l π Π = O . Since F\r\ΓQUar\Γ
and Fir\ΓQVaΓ\Γ, we odtain that JΓ(FίΛFi) = 0. Hence Λ* is ^-separa-
tive.

COROLLARY. Let f be any non-constant function in BC. Suppose there
isadense subset F o/[inf/, sup/] such that ¥({f^r1}

aΓ\{f^r2}
a) = 0 for

any ru r2e E with ri<r2. Then R*fy is Ψ-separative.

PROOF. Let ξλ and £2 be two distinct points of J = R^f} — R. We may
assume that ίi = lim/(z)<lim/(2:) = ί2. Let rλ and r2 be numbers in E such

that ί i<r i<r 2 <ί 2 . ι Then Wean find A e rT({ξλ}) and B e i^{{ξ2}) such that
/ < r i on A and/>r 2 on B. We see that

Thus

Hence it follows from the proposition that Rξf} is ^-separative.

THEOREM 5. There is always a maximum Ψ-separative compactification
of R up to a homeomorphism, i.e., there exists a Ψ-separative compactification
R% of R such that any other Ψ-separative compactification of R is a quotient
space of Rψ.

PROOF. We set Q0 = {f e BC; Rff} is F-separative}. Let i?* be any
^-separative compactification of R. If we set Q=BCr\C(R*\ then R* = R%.
Let / be any function in Q. Then it follows from Lemma 16 that Rffy is
SF-seprarative. Hence / belongs to Qo and QCQo- This shows that R% is a
quotient space of R%0. Now, we shall show that R%0 itself is 5Γ-separative.
If Qo consists of only constant functions, then R%0 is the one-point compacti-
fication, and is trivially ^-separative. Suppose Qo contains non-constant
functions and let ξ 1 and ξ2 be two distinct points in JQ . Then there exists



54 Hiroshi TANAKA

a function / i n Qo such that \im f(z)<\im f(z). Choose a, β such that \im f(z)

<a<β<\\mf{z). Then we can find A e y({f i}) and B e y({f2}) such that

f<a on A and f>β on 5. Then J * n 5 * = 0 in Λfo. Since Rff} is F-separa-
tive, we have Ψ(AaΓ\Ba) = 0. Hence it follows from Proposition 8 that R%Q

is 5F-separative.

4.2 /£ Zλ separativeness, H. M. separativeness and regularity-

Let Λ* be a resolutive compactification of R. We introduce the follow-

ing class :

DEFINITION 2. A resolutive compactification Λ* of i? is said to be regular
if CD(Δ) is dense in C(Δ) with respect to the uniform convergence topology.

DEFINITION 3. A compactification R* of R is said to be H.D. separative
if C(Fξr\Fξ) = 0 for any regular closed sets Fλ and F2 in # such that Ffr\F$
= 0 in Λ*.

DEFINITION 4. A compactification Λ* of i? is said to be #. M. separative
if ωD(Fξr\F$) = 0 for any regular closed sets /Ί and F2 in i? such that
F% = 0 in Λ*.

REMARK: (i) Definition 2 is due to F—Y. Maeda
(ii) Definition 3 is equivalent to the original one defined by Z. Kura-

mochi [10] in case Λ* is metrizable (see Theorem 2 in [19]).
(iii) H.D. separativeness is the F-separativeness with Γ = ΔD and Ψ = C.
(iv) H.M. separativeness is the 2F-separativeness with Γ — άΌ and Ψ —

< ( α 0 6 R).

(v) Resolutivity is the F-separativeness with Γ = JW and ¥ = ω^Q(a0 e R)
(see Corollary 2 to Theorem 1 in [19]).

PROPOSITION 9. A compactification JR* o/ i? is regular if and only if
there exists a non-empty subfamily Q of the vector sum HBD + BCW0 such that

PROOF. Suppose i?* is regular. For / e C(R*) we denote its restrictions
to Δ and R by fΔ and fR respectively. We set CD(R*) = {fe C(R*) Hf* e HD}
and Q= {fRife CD(R*)}. Since CD(J) = {f,;fe CD(R*)} is dense in COO, (?
separates points of Δ. Hence R* = R%. Let / be any function in Q. By Hil-
fssatz 8.2 in [3], we see that f-Hf* is contained in BCWQ. Thus QCHBD
+ BCWQ. Conversely suppose, for a given 1?*, there exists a non-empty sub-
family Q of HBD-\-BCWQ such that R* = R%. It is easy to see that Cz>(J©)
is a vector sublattice of C(ΔQ) with respect to the maximum and minimum
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operations and contains constants. Let bλ and b2 be two distinct points of
ΔQ. Then we can find a function / in Q such that l im/(α)^l im/(α). Let

φ(b) = \imf(a) for be ΔQ. Then ψ(bι)φψ(b2). Since' # £ * = hf z HBD, φe
a-+b

CD(ΔQ). Thus CD(ΔQ) separates points of ΔQ. Hence CD(ΔQ) is dense in C(ΔQ)
with respect to the uniform convergence topology by the Stone-Weierstrass
theorem. Therefore R% is regular.

We introduce the following notation on types of compactifications:
(D) R* = R% for some Q C BCD.
(HD) # * is H.D. separative.
(HM) # * is H.M. separative.
(R) R* is regular.

(W) JR* is resolutive.

Now we have the following two theorems.

THEOREM 6. '(£)=»(#)=»( W).

PROOF. Since BCD = HBD + BCDOCHBD + BCΪFO, Proposition 9 implies
that (D)=>(R). The implication (R)^(JF) is a part of the definition of
regularity.

THEOREM 7. (D)=¥(HD)=^(HM)=^(Wr).

PROOF. The implication (D)=$(HD) is obvious by the definition of H.D.
separativeness (cf. Lemma 16). The last two implications follows from
Lemma 10.

4.3 Exmaples

EXMAPLE 1. We set R= {\ z | <1}. Let ωa(a e R) be the harmonic mea-
sure of the arc {eiθ; \θ\ <π/2} with respect to R. We set Q={ωa} and consi-
der R%. Then we have

(a) R% is H.D. separative.
(b) R% is not regular.

PROOF, (a) It is known ([19]) that R% is H.D. separative.
(b) We set ξo = {ξeΔQ\ ωξ = 0} and ξι = {ξeΔQ; ωξ = l}. For each

ε(0<ε<7r/2), we denote by u£(a) (resp. υε(a)) the harmonic measure of the
arc {eiθ; \θ + π/2\<e} (resp. {eiθ \θ-π/2\<ε}) with respect to R. Given
/ e C(ΔQ), let Tkf=max | f(ζ) |. Then we can easily show that

ξ£ Δq

and
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Since u£->0 and v6-+0 as ε->0, it follows that

flf(«)=/(fo) + (/(fi)-/(fo)K ( α e ί ) .

Since ωa is not a function in BCD, we see that CD(JQ)={f e C(J 0);/(fi) =
/(fo)} Thus,/0(?) = ̂  cannot belong to the closure of CD{ΔQ). Hence i?§ is
not regular

EXAMPLE 2. Let 7? be a Riemann surface in 0HD — 0HB Then it follows
from Theorem 4 that there exists a bounded continuous Green potential p on
R such that α)D(^2nJz))>0 for some α>0, where Aa = {z e i?;/K»;>α}. We
set ρ={jp} and consider i?^. Then we have

(a) R% is regular.
(b) R% is not #.M. separative.

PROOF, (a) Since p e BCW0, we see that R% is regular by Proposition 9.
(b) We shall use the same notation as in the proof of Theorem 4. For

each OL\ and a2 (0<αi<α2<lim^(α)), we set A = {z e R; p(z)<,ctι} and B =

{z e R; p(z)^>a2}. Since lim^(α) = 0 by the definition of ΓD, we see that

$ e ADΓΛBD, so that ωD(ADΓ\BD)>0. Obviously, J * Λ 5 * = 0 in R%. Hence
R% is not H.M. separative.

EXAMPLE 3. Let R be a Riemann surface with Δs — JSsΦ0 Let b be
a point in J 5 — JSs and f be the unique pole of b on JD. Then it follows from
Theorem 1 that C({f})>0 and ft)

z?({f}) = 0. Let {^}^! be a sequence of
regular colosed sets in R such that F% is a neighdorhood of ό in R%, R —

A * = i ^ = W . Since <»"({&}) = 0, lF n->0 as ^ -

Since R-Fi

n

DΓλF^+1 = 0 (n = l, 2, ..), we obtain functions /n is 5CD and / in
BCIF &s in Proposition 2. We set (?={/} and consider 7?g. Then we have

(a) R% is H.M. separative.
(d) R% is not H.D. separative.

PROOF, (a) Let ru r2 be real numbers such that 0 <r1<r2<l. We set
A = {zeR;f(z)<:r1} and B = {z e R; f(z)7>r2}. Since / = /„ on R-F*2n+U

A-F'2H+1C{z e R;Mz)^π} and B-F'2H+1C{z e ;fn(z)>r2}. Since /„ is a
function in BCD, we see that A-F^+1ΓΛB-F^+1 = 0. Thus ADίΛBDC
(A^iζ+1nFξH+1)n(B^tf+1\jFξH+1)=^^ This shows that F, e ̂ U D Π
5D) for each n. Hence ωD(ADr\BD)<,lFn for each n. By letting rc-»°o5 we
obtain that / ( i ^ n S ^ ^ O . Therefore R% is /ί.M. separative by the Corolla-
ry to Proposition 8.

(d) We set A = {f <,l/3} and £ = {/:>2/3}. For each a (0<α<l), let
Cα = {̂  e1 R;f(z) = a} and Aa = C%Γ\ΔD. By a discussion similar to that in
the proof of Theorem 2, we have (gb)ia = gb on i?0 for each a. Since 0(6)
consists of only one point ξ9 we see that ξ belongs to Aa for each a by Lemma



On Function-theoretic Separative Condition 57

14, (b). Since CaC A for α<Ξ 1/3 and CaQB for α ^ 2 / 3 , we see that ξ e AD

Γ\BD. Hence 0<C({i})<:C(ADrλBD). Therefore R% is not H.D. separa-
tive.

Combining Theorem 6 and Theorem 7 with the above three examples, we
have the following relations:

Diagram 1.

In the above diagram, (A)^(B) (reap. (A)-^(B)) means that (A) implies
(B) (resp. (A) does not imply (B)).

§ 5 Martin compactifications of Riemann surfaces belonging

In this section, let ω — ωw ad β — ωM (the harmonic measures on J ^ and
JM respectively). Let Δλ be the set of all minimal Martin boundary points
of ΔM in this section. It is known (cf. [βj) that Δι is a Borel set and β(ΔM —

5.1 Properties of Martin compactification of R 6 OHD — OHB

The following lemma is due to J.L. Doob [4] (cf.

LEMMA 17. (a) Let f be a resolutive function on ΔM- Then the fine
limit5) of Hf exists and epuals f β-almost everywhere on Δλ.

(b) Let u be a bounded harmonic function on R. Then the fine limit f
of u exists β-almost everywhere on Δλ and u equals Hf* on R, where f* is any
extension of f over ΔM-

PROPOSITION 10. A hyperbolic Riemann surface R does not belong to OHB

if and only if there exist two mutually disjoint compact subsets Aι and A2 of
ΔM such that β(Aι)>0 and^β(A2)>0.

PROOF. Suppose R does not belong to OHB> Let u be a non-constant

bounded harmonic function on R. Then, by (ό) in Lemma 17, we see that

u(a)= \ ύdβa, where ύ is the fine limit of u on Δx. Hence we can find two

mutually disjoint compact subsets Aλ and A2 of ΔM such that β(Aι)>0 and
β(A2)>0. Conversely suppose there exist two mutually disjoint compact

5) See [4]jmd [13].
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subsets Λι and A2 of AM such that μ(Aι)>§ and μ(A2)>0. Since the grea-
test harmonic minorant of βa{Aλ) and βa(A2) is equal to μa(AιΓ\A2) = 0, either
jua(Aι) or βa(A2) is a non-constant bounded harmonic function on R. Hence
R does not belong to OHB

THEOREM 8. The Martin compactifications of Riemann surfaces which
belong to OHD — OHB are not regular.

PROOF. Let R be a Riemann surface which belongs to OHD — OHB> By
Proposition 10, we can find two mutually disjoint compact subsets Aλ and A2

of AM such that μ(A{)>0 and β(A2)>0. Suppose RM is regular. Then we
can find f e CD(AM) such that /^>1 on Aλ and /<^0 on A2. Since R e OHD,
Hf= constant. Hence, by (α) in Lemma 17,/= constant ^-almost everywhere
on Ji, which is a contradiction.

THEOREM 9. The Martin compactifications of Riemann surfaces which
belong to OHD — OHB are not H.M. separative, and hence not H.D. separative.

PROOF. Let R be a Riemann surface belonging to OHD — OHB. By Propo-
sition 10, there exist two mutually disjoint compact subsets Aλ and A2 of AM

such that β(Aι)>0 and μ(A2)>0. Then there exist two regular closed sets
Fι and F2 in R such that Ff is a neighborhood of Ak in R%(k = l> 2) and
pMnpM = 0 W e s e t ak = Ffr\Jw(k = l, 2). Since ω(jc"\A)) = μ{A) for each
compact subset A of AM and akZ)π~ι(Ak) (A = l, 2), we obtain that 0 < / * ( ^ ) =
ω(7Γ" 1(^^))^^(^) (A = lj 2), where π is the canonical mapping of R§? onto i?£.
Since the support of ω is equal to the harmonic boundary Γw of R^, we see
that akΓ\Γwφ0 (k = l, 2). On the other hand, it is known that ΓD consists
of a single point b. Since R% is a quotient space of R$ and
1, 2), it follows from Satz 8.6 in [3] that b e F?Γ\Fξ. Hence
ωD({b})>0. Therefore R% is not H.M. separative, and hence is not H.D.
separative.

5.2 Normal derivative on the Martin boundary-

Let Λ* be a resolutive compactification of R and Λα(α 6 R) be the harmo-

nic measure on A. We fix a0 € R once for all and let λ = λθQ9 μ=βao We set

RD(A)={f; resolutive on A and Hf* e HD}.

DEFINTION 5 ([12]). Let u be a function in HD. We say that u has a
normal derivative φ on A (relative to α0), or 0 is a normal derivative of u on
J (relative to α0), if 0 / 6 Z,^A) and

(u, Hf^^-^ψfdλ for any f e RD(A).

F-M. Maeda ([12; Theorem 2]) proved that if the compactification Λ* is
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regular, than ths normal derivative of a function u in HD, if it exists, is uni-
quely determined Λ-almost everywhere. We shall show that this result is
not valid without regularity.

THEOREM 10. For the Martin compactification of a Riemann surface
which belong to OHD — OHB, a normal derivative of a function u in HD, if it
exists, is not necessarily uniquely determined μ-almost everywhere.

PROOF. Let Aλ and A2 be as in the proof of Theorem 8. We set ΨI = %A2

— (/ι(Λ2)//ί(Λι))χAl and 02 = 0, where xA is the characteristic function of a
subset A of ΔM. Let / be any function in RD(ΔM)- Since R e OHD, Hf is
reduced to a constant. Hence it follows from (α) in Lemma 17 that / equals
a constant A-almost everywhere on ΔM Thus for any constant ^, (u, Hf) = 0
= — \ψifdju= — \φ2fdju. This shows that both φx and φ2 are normal deriva-
tives of u on ΔM. However φλ is not equal to φ2 on a set of positive /̂ -mea-
sure.

§ 6 Έxtremal length and Green lines

In this section we assume that all compactifications are metrizable.

6.1 Family of curves and extremal length

In the following we consider only locally rectifiable curves and call them
curves for simplicity. Let c be a curve on R. Then there exists a parame-
terization z = z(t) (0<£<l) of c such that z = z(t) is non-constant on any sub-
interval of (0, 1). We always consider such a parameterization of c and call
it a parameterization of c for simplicity. We shall say that a curve c on
R meets a subset A of R infinitely many times if there are a parameteriza-
tion z = z(t) (0<ί<l) of c and a sequence {tn}~=1 of real numbers such that
0<ί n <ί n + i (rc = l, 2,.. ), l im^ = l and z(tn) € A(n = l, 2,. ).

We shall say that a curve c on R starts at a point in R and tends to the
ideal boundary of R if there is a parameterization z = z(t) (0<£<l) of c
satisfying the following:

(i) f\{z(t); 0<ί<e} is a single point in R.

(ii) f\{z(t); l - ε < ί < l } is empty.

Let {Fn}ζ=1 be a sequence of regular closed sets in R such that Fn^)Fn+1
oo

(n = l, 2, ..) and f\Fn = 0. Let c be a. curve on R which starts at a point in
R and tends to the ideal boundary of R. We shall say that c tends to the
ideal boundary of R along {Fn}~=1 if there is a parameterization z = z(t)(0<
ί < l ) satisfying (i) and (ii) and a sequence {tn}~=1 of real numbers such that
0<ί«<ί»+i, lim ίn = l and z(t) e Fn for t^tn.
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The extremal length (or module) of a family C of curves on R is defined

as follows (cf. [17]). A non-negative Borel measurable linear density

p(z) \dz\ is called admissible in association with C if \ p(z) \dz\^>l for each

c e C, and the module M(C) of C is defined by inf \ \p2dχdy, where inf is taken

over all admissible p(z)\dz\ and z = x + iy is a local parameter. The extre-

mal length λ(C) of C is defined by 1/Λf(C). We say that almost every curve

on R has a property if the module of the family of exceptional curves vani-

shes.
Properties of modules:
(a) If d C C2, then Λf(d) <; M(C2).

n=l

LEMMA 18. Let Fλ and F2 be regular colsed sets in R and C be the family
of all curves on R each of which meets both Fx and F2 infinitely many times.
If F?ΓΛFξ = 0, then Λf ( 0 = 0.

PROOF. We can find a function / in BCD such that / = 0 on Fι and = 1
on F2. We set u — fFιKjFκ Then it can be seen that ε |grad u(z)\ \dz\ is
admissible in association with C for any ε>0. Thus we have

M(C)^e2\\\gYSidu\2dxdy=ε2\\u\\2.

Since 11 u \ | <Ξ 11 f\ \ < oo and ε is arbitrary, we obtain that M(C) = 0.

The following lemma is due to A. Pfluger [18].

LEMMA 19. Let K be a closed set on | z \ = 1 . Then the extremal length of
the family of all curves in 1/2 < | z | < 1 which connect the points of K to the
points of \z\= 1/2 is infinite if and only if the logarithmic capacity of K is
zero.

PROPOSITION 11. Let Ko be a closed disk in R. Let Fλ and F2 be regular
closed subsets of R0 = R — K0 such that FιΓ\F2 = 0. Let C be a family of curves
on R starting at points ofK0 and tending to the ideal boundary of R. If each
member c in C meets both Fx and F2 infinitely many times, then M(C)<.

PROOF. Applying Lemma 8 with u = l, A=F?Γ\Fξ and Un = R% — K0, we
obtain a sequence {£«}«= i of regular closed sets in Ro such that each dξ is a

neighborhood of F?Γ\Fξ in R$, f\δn = 09 R-δι

n

Dr\d%+1 = 0 and l j n decreases

to ώ(F?Γ\Fξ). For each n, we set Cn = {ce C; cΓ\δn = 0} and CQ=\jCn.
l

Since F1-δi

n

Dr\F2-δt

n

D = 0, it follows from Lemma 18 that M(Cn) = 0. Hence

= 0. Since each member of C-Co meets all tfn,
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\dz\ is admissible in association with C—Co. Hence we have M(C—C0)<Ξ
| | lδ j | 2 (Λ = 1, 2, ...) Thus we obtain.

Co)^\\l~sn\\2 (n = l, 2, ...).

By letting π,—>c>o5 we obtain that

M(C)<: \\ώ(F?Γ\Fξ)\\2 = 2πC(F?Γ\Fξ).

COROLLARY. If C(F?r\Fξ) = 0, then Λf(C) = 0.

6.2 Green lines and Dirichlet problems

For the following notation and definitions, we refer to M. Brelot-G.
Choquet [1]. We denote by ga(z) = g(a, z) the Green function of R with pole
at a £ R. Let a0 be a fixed point in R and let go(z) = gaQ(z). We consider
Green lines in R determined by g0. Then the set L of all Green lines admits
the Green measure g. By definition, g is a complete measure. A Green line
/ for which inf go(a) = O is called a regular Green line. Any regular Green

ael

line tends to the ideal boundary of R as go—*0. The set of all regular Green
lines will be denoted by Lr. It is known (cf. [1]) that Lr is a Gδ-set in L and
g(L — Lr) = 0. We shall say that almost every I e Lr has a property if the
Green measure of the family of exceptional Green lines vanishes.

Given a real-valued function f on R and I e Lr, let l im/(resp. Km/)
/ ~r

denote the upper limit lim f(a) (resp. the lower limit lim /(«))• If
lim/=lim/, then we say t h a t / has a limit along Z. Let ψ be an extended

/ i

real-valued function on Lr. We define

1 5; superharmonic, bounded below on R, ]
fw{oo}

lims;>0(Z) for almost every I e Lr J

and

Let f ψ(α) = inf {s(α); s 6 # φ } and 0ψ(α) = sup{s(α); 5 6 ^φ} (a e R). Then it is
known ([1]) that #φ(resp. &φ) is either harmonic, = + O O O Γ Ξ - O O , Iί§ψ = ψφ

and are harmonic, then we write &ψ=@ψ:=&φ. It is known ({ΊLJ) that

LEMMA 20. Let f be a function in BC such that it has a limit ψ(ΐ) along
almost every I 6" Lr. Then we have
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(a) If f is a function in BCW, then &ψ=hf and

(b) If f is a function in BCJF0, then ψ(l) = 0 for almost every I e Lr.

PROOF, (a) Since iff C #> and iΓs C ^ψ, we obtain that hf <J Φφ<^&ψ<:hf.
Hence we have (α). Then, (ό) is obvious.

Let ί0 be a real number such that K0 = {z; go(z)7>to} is compact in R and
|grad go I Φ® on K0 — {a0}. We shall call such a compact set Ko a Green disk
with center at αo For a subset Λ of Lr, we denote by A(K0) the family of
curves consisting of the restrictions of I e A to R — Ko.

The following lemma is due to M. Ohtsuka

LEMMA 21. Let Abe a subset of Lr. Then g(Λ) = 0 if and only if M(A(KQ))
= 0.

Let Ko be a compact Green disk with center at a0 and let R0 = R — K0.
Although the following proposition follows from a result by M. Nakai ([14;
Proposition 4.1]), we shall give an alternative proof.

PROPOSITION 12. Let F\ and F2 be regular closed subsets of Ro such that
FιΓΛF2 = 0. Let Abe a subfamily of Lr whose member meets both i<\ and F2

infinitely many times. Then we have

where g means the outer measure induced by g.

PROOF. Let {<?„}»=i be as in the proof of Proposition 11. We set An =

{ZcΛ; lr\δn=0}, A0=\JAn, An = {l e A — Ao; I meets Ro — Sj, infinitely many
n=l

times} and A0 = \jAn. As in the proof of Proposition 11, Lemma 18 implies
i

M(Λ0(K)) = 0. Since Ro-δt

n

Drλδζ+1 = 0 and ΛnίλΛn+1 = 0, we have M(An(K0))

= 0, τι = l, 2, , again by Lemma 18. Hence M(A0(K0)) = 0, and hence M(AO(KO)

w i o ( W ) = O . Since every I e Λ — (Λ0\jΛ0) tends to the ideal boundary of R

along {tf,}^!, hn e ^XΛ_{A0U~Λ0) (Λ = 1, 2,...). Thus we have

(τι = l, 2, ..). By letting rc-»oo5 we obtain that

COROLLARY. // ωD(F?ΓΛFξ) = 09 then g(Λ) = 0.
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6.3 Separative conditions (E) and (G).

DEFINITION 6. We shall say that a resolutive compactification R* of R
satisfies condition (E) if almost every curve on R which starts at a point in
R and tends to the ideal boundary of R, has exactly one limit point in Δ.

Definition 7. We shall say that a resolutive compactification j?* of R
satisfies condition (G) if, for every α0, almost every Green line tends to one
point in Δ.

REMARK : (i) By Lemma 21, condition (E) implies condition (G).
(ii) The condition (G) is said to be Green-compatible in [15].

The following results are known

LEMMA 22 ([11; Theorem 1] and [16; Theorem 1]).
(a) If Q is a countable subfamily of BC such that each f eQ has a limit

almost along every I e Lr, then R% satisfies condition (G).
(b) If Q is a countable subfamily of BC such that each f e Q has a limit

along almost every curve which starts at a point in R and tends to the ideal
boundary of R, then R% satisfies condition (E).

THEOREM 11. The H.D. separatίveness implies condition (E).

PROOF. Since 7?* is assumed to be metrizable, we can find a countable
subfamily Q of BC such that R* = R%. Let Ko be a closed disk in R. We
denote by C the family of all curves on R which starts at a point in Ko and
tends to the ideal boundary of R. Since R is covered by a countable family
of closed disks, by (b) in Lemma 22, it is sufficient to prove that each / e Q
has a limit along almost every curve in C. Let / be any non-constant func-
tion in Q. We may assume that inf / = 0 and s u p / = l . Let r and r be two
rational numbers such that 0 < r < r / < l . We set Cr>r> = {c e C; c meets both

S>} and {f^>r'} infinitely many times}. Since { / ^ } * n { / ^ r } * = 0 in
R%, it follows from the Corollary to Proposition 11 and H.D. separativeness
that Jlf(Cr>r/) = O. Hence M(\jCr,r')^ΣM(Cr,r,) = 0. Since / has a limit

r>r' r,r'

along every curve c e C—\JCr>r<, we see that / has a limit along almost every
r,r'

curve in C.
By virtue of Theorem 3 in [19], this theorem implies the following re-

sults by M. Ohtsuka [16; Theorem 1 and Theorem 2 ] :

COROLLARY 1. If Q is a countable subfamily of BCD and Q separates
points of J, then almost every curve on R which starts at a point in R and
tends to the ideal boundary , converges to a point in Δ.

COROLLARY 2. Every function in BCD has a limit along almost every
curve which has the property in Corollary 1.
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Using the Corollary to Proposition 12 and (a) in Lemma 22, we can prove
the following theorem by the same method as Theorem 11:

THEOREM 12. The H.M. separativeness implies condition (G).

COROLLARY 1 (C11H). Almost every Green line converges to a point of the
Kuramochi boundary.

COROLLARY 2 (Q5] and [14]). Every function in BCD has a limit along
almost every Green line.

REMARK : We do not use the result by M. Godefroid ([5]) to obtain the
above Corollary 1 (cf. [11U).

THEOREM 13. (a) The H.M. separativeness does not imply condition (E).

(b) Regularity does not imply condition (E).

PROOF, (a) Let Λ = { | * |<1} . Let K be a closed set on | z | = l such
that the logarithmic capacity of K is positive and the harmonic measure of K
with respect to R is zero. Since K is compact in D={\z\<2}, there exists
a sequence {Kn}ζ=1 of regular compact sets in D such that dKnr\{\z\=l}

oo

consists of a finite number of points, I j ) I n + i (n = l, 2, ) and f\ Kn~K.
»=i

We set Fn — KnΓ\R for each n. Then l^-^O as n-^oo by the assumption on
K. Since R-FiDΓ\F%+1 = 0 (π, = l, 2,...), we obtain functions /„ in BCD and
/ in BCW as in Proposition 2. We set Q={f} and consider R%. By the
same method as the proof of Example 3, (α), we see that R% is H.M. separa-
tive. Next we shall prove that R% does not satisfy condition (£). Let Ko =
{\z\ <^l/2} and C be the family of all curves in R — Ko which connect the
points of dK0 to the points of K. Then, by Lemma 19, we have λ(C)<oo.
Let c be any curve in C. Then c meets all dFn. Since f(z) = l for z e dF2k
and = 0 for z e dF2k-ι (k = l, 2, ), c does not converge to a point of ΔQ.
Therefore, R% does not satisfy condition (E).

(b) Since R-Fι

n

wrλF%+1 = 0 (1, 2,. )5 we now take functions fn and /
in BCW constructed in the proof of Proposition 2 for this {Fn}~=1. We set
Q={f} and consider R%. By a discussion similar to the above, we see that
R% does not satisfy condision (E). We shall prove that R% is regular. Since
dKnΓ\{\z\ =1} consists of a finite number of points, by the definition of /„
we see that lim /,(*) = 0 i f £ e { | z | = l } - 0 dK2k - K. It follows that lim/w

= 0 for almost all I e Lr. Hence &fn = 0 for each n, and hence hfn = 0 by
Lemma 20 for each n. Thus, by the Corollary to Proposition 2, we see that
fe BCWQ. Therefore, R% is regular by Proposition 9.

COROLLARY. Condition (G) does not imply condition (E).

Finally, summarizing the above results, we have the following implica-
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tion diagram for metrizable compactiίications: Diagram 2.

\
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