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Introduction

In the theory of compactifications of hyperbolic Riemann surfaces, there
have been considered various conditions which require that ideal boundary
points are separated in some function-theoretic sense. In order to extend
Fatou’s and Beurling’s theorems to Riemann surfaces, Z. Kuramochi intro-
duced notions of H.B. separative and H.D. separative metrics (cf. [107]).
The present author [19] defined separative compactifications rather than
separative metrics and simplified Kuramochi’s definitions: A compactification
R* of a hyperbolic Riemann surface R is called H.D. (resp. H. B.) separative
if any two closed sets in R which are separated in R* are also separated in
the Royden compactification up to a set of capacity zero (resp. in the Wiener
compactification up to a set of harmonic measure zero.) In[197, it was
shown that H.B. separative compactifications are nothing but resolutive ones,
i.e., the quotient spaces of the Wiener compactification and that the quotient
spaces of the Royden compactification are H.D. separative but the converse
is not true. Another notion of separativeness is the regularity introduced
by F-Y. Maeda [12]: A resolutive compactification R* of R is called
regular if continuous functions on 4=R*—R whose Dirichlet solutions
belong to HD separate points of 4.

In this paper, we shall introduce another notions of separativeness. The
first of them is of Kuramochi’s type: H. M. separativeness, which is defined
in the same fashion as H.D. separativeness using the harmonic measure on
the Royden compactification instead of capacity (§4). The other notions
will be defined in terms of curves (§6): A metrizable compactifiation R* of R
is said to satisfy condition (E) (resp. (G)) if almost every curve in R (resp.
Green lines) tending to the ideal boundary 4 terminates at one point on 4.
Here, “almost every” is in the sense of extremal length (resp. Green mea-
sure). The main purpose of this paper is to investigate relations among
these various separative conditions. In §1 and §2, we prepare basic defini-
tions and results which are necessary for the subsequent theories. In §3,
we focus our attention to singular points on the Kuramochi boundary and to
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poles of such points defined on the Royden boundary and on the Wiener
boundary. Some of the results in this section will be used to supply ex-
amples in §4; while the other results (especially Theorem 3) concerning a
characterization of singular points in terms of poles may be interesting in
its own right.

Relations among H. D. separativeness, H.M. separativeness and regulari-
ty are studied in §4. The results in this section are summarized at the end
of the section. Then, in §5, we consider the Martin compactification of a
Riemann surface belonging to Oyp—O0ys.  We shall show that such a com-
pactification is neither H.D. separative nor H.M. separative nor regular.
Furthermore, we shall remark that, on its boundary, a normal derivative in
the sense of F-Y. Maeda [12] is not uniquely determined. Finally, in §6,
we introduce conditions (E) and (G) and investigate relations among H.D. or
H.M. separativeness and these conditions. Our results in this last section
improve those given F-Y. by Maeda ([11; Theorem 27) and M. Ohtsuka ([16;
Theorem 17]).

Notation and terminology

Let R be a hyperbolic Riemann surface. For a subset 4 of R, we denote
by 04 and 4' the (relative) boundary and the interior of 4 respectively. We
call a closed or open subset 4 of R regular if 04 is non-empty and consists
of at most a countable number of analytic arcs clustering nowherein R. An
exhaustion will mean an increasing sequence {R,};_; of relatively compact

domains on R such that O R,=R and each 0R, consists of a finite number
n=1

of closed analytic Jordan curves. We fix a closed disk K, in R once for all
and let R,=R—K,.

We denote by BC= BC(R) the space of all bounded continuous (real-valu-
ed) functions on R and by C,=C,(R) the subspace of BC whose functions
have compact supports in R. Let HB=HB(R) be the space of all bounded
harmonic functions on R and HD=HD(R) be the space of all harmonic func-
tions on R with finite Dirichlet integral (or finite Dirichlet norm). We de-
note HBD=HDN BC.

§1 Preliminaries
1.1 Wiener functions (3 7))

For a finite continuous function f on R, we shall denote by #; (resp. ¥,)
the family of all superharmonic (resp. subharmonic) functions on R such that
s=fon R—K; (resp. s= f on R—K,) for some compact set K; in R. If %,
and ¥ ; are non-empty, then we set i;(a)=inf{s(a); s € #} and hs;(a)=sup
{s(a); s€ #} (a€ R). Itis known that A, h; are harmonic and a; <h;. If
hy=hy, then f is said to be harmonizable. ~We write hy=h;=h, if f is har-
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monizable. A finite continuous function f on R is called a Wiener function
if | £| has a superharmonic majorant and f is harmonizable. If a Wiener
function f satisfies h;=0, then f is called a Wiener potential. We denote
by W (resp. W,) the family of all finite continuous Wiener functions (resp.
Wiener potentials) on R and set BCW =W N\BC (resp. BCW,=W,N\BC). It
is known that both BCW and BCW, are vector lattices with respect to the
maximum and minimum operations and also contain C,

1.2 Dirichlet functions and Dirichlet principle

We follow C. Constantinescu and A. Cornea [3] for the definition and
properties of Dirichlet functions. Let f be a Dirichlet function on R and F
be a non-polar? closed set in R. Then there exists a uniquely determined
Dirichlet function f* which minimizes the Dirichlet norm ||g|| among Dirich-
let functions g such that g=f ¢.p. (quasi tiberall)” on F and which is equal
to f on F and is harmonic in R—F.

Properties of fF((3]):

(A, D) I I<I£]l and (g—f7, fF)P=0 for any Dirichlet function g such
that g=f ¢.p. on F.

(A, 2) If f=0on F, then f©>0.

(A, 3) If F,C Fy, then fFi=( fFi)Fe=( fFi)P,

(A, 4) (arfitasfo)" =aifi+asf5(ai, as: constant).

(A, 5) If G is a component of R—F, then f"= f°F= f°¢ on G,

We denote by BCD (resp. BCD,) the family of all bounded continuous
Dirichlet functions (resp. Dirichlet potentials) on R. It is known that both
BCD and BCD, are vector lattices with respect to the maximum and mini-
mum operations. Furthermore, BCD is decomposed into the direct sum of
two parts HBD and BCD, (Royden decomposition). It is known ([37]) that
BCDC BCW and BCD,C BCW,.

1.3 Compactifications

If R* a compact Hausdorff space and if there is a homeomorphism of
R into R* such that the image of R is open and dense in R*, then we may
identify the image of R with R and call R* a compactification of R. 4=R*
—R is called an ideal boundary of R. We shall say that a subfamily Q of
BC separates points of 4 if, for any two distinct points ¢, and &, of 4, there
exists a function f in Q such that lim f(a)<lim f(a) or lim f(a) >Iim f (a).

a—§y a—§; a—§ a—§;

Given a compactification R*, let C(4) (resp. C(R*)) be the space of all finite

1) See p. 30 in [3].
2) (g—f7F, fT) is the mixed Dirichlet integral of g—f* and f*.
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continuous functions on 4 (resp. R*).

Let Q be a non-empty subfamily of BC. If a compactification R* of R
satisfies the following:

1) every f € Q can be continuously extended over R*,

2) Q separates points of 4,
then R* is called a Q-compactification of R. It is known ([37]) that a Q-com-
pactifiation always exists and is unique up to a homeomorphism. Thus it
will be denoted by R} and its ideal boundary by 4.

Properties of Q-compactifications:

(a) Let R* be a compactification. If Q C BCNC(R*) separates points of
4, then R*=R}.

(b) If R* is metrizable, then there exists a countable subfamily Q of
BC such that R*=R}.

(¢) Let Q be a vector sublattice of BC containing C, and constants. If
A and B are closed subsets of R such that A*N\B*=0 in R}, then there
exists a function f in Q such that f=0on 4 and=1 on B.

We refer to [3] for the definitions and properties of the Martin com-
pactification R}, the Kuramochi compactification R¥, the Royden compactifia-
tion R¥ and the Wiener compactification R};. For a subset 4 of R, we shall
denote by A* (resp. AM, A", A, A”) the closure of 4 in R* (resp. R¥, R¥%,
R%, R}).

Let R¥ and R*% be two compactifications of R. If there is a continuous
mapping 7= of R% cnto R¥ whose restriction to R is the identity mapping and
7 '(R)=R, then we shall say that = is a canonical mapping of R} onto R%
and that R% is a quotient space of Rf It is known ([3]) that if Q,CQ,,
then R, i3 a quotient space of R¥,. We note that R}, RY and R} are quoti-
ent spaces of R}. Furthermore R} is a quotient space of R}.

We shall frequently use the following fact: Let R* be a compactification
of R and 4 be a closed set in 4=R*—R. For any neighborhood U of 4 in
R*, there exists a regular closed set F in R such that F* is a neighborhood
of Aand F*CU.

1.4 Harmonic measures and harmonic boundaries

Let R* be a compactification of R and let 4=R*—R. Given a function
f (extended real-valued) on 4, we consider the following classes:

s; superharmonic, bounded below on R,
Py=7pr= oo}

lim s (a) =1 (&) for é€ 4

a—§

and

Sr=F={s; —se X%}
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Let Hy(a)=HA(@)=inf{s(@); s€ #,} and H(a)=H*(a)=sup{s(@); s€ £/}
(e € R). It is known (Perron-Brelot) that H; (resp. H,) is either harmonic,
=4 ocoor=—oo. If H;=H; and are harmonic, then we say that f is resolu-
tive (with respect to R*) and H;=H;= H; is called the Dirichlet solution of f
(with respect to R*). If any function in C(4) is resolutive, then we say that
R* is resolutive. It is known ([37]) that R¥, R%, R} and R; are resolutive.
Wedenote by w®=w9(a € R) the harmonic measure on 4,(Q=M, N, D, W). Let
G be a domain on R. Then G%(Q=M, N, D, W) is a resolutive compactifica-
tion of G (cf. Hilfssatz 8.2 in [37]). We denote by w?¢=0w%)(a € G) the
harmonic measure on G°—G.

Let R* be a compactification of R. For a (Green) potential p on R, we
set I'y={b € 4;lim p(a)=0} and I"=/\I",. Then I" is a non-empty compact

»

a—b

subset of 4 and is called the harmonic boundary of R*. We denote by I'w
(resp. I'p) the harmonic boundary of R}, (resp. R}).

Properties of harmonic boundaries (cf. 37]):
(i) The support of w® is equal to I'¢(Q= W, D).
(ii) If z is the canonical mapping of R}, onto R}, then #(/"'w)=1p.
(iii) A Riemann surface R belongs to Oyz—O¢ (resp. Oyp—O0¢) if and
only if I'y (resp. I'p) consists of a single point.

1.5. Capacity in the sense of G. Choquet

Let X be a compact Hausdorff space and ¢ be the family of all compact
sets in X. A finite-valued function ¥ on ¢ is said to be a capacity (on X)
in the sense of G. Choquet [ 2] if it has the following properties:

(a) If K,CK;, then (K, <¥(K),).

(b) T(K,\JKy)+TEKNK) <TK)+T(K>).

(¢) Given K € o and ¢>0, there is an open set G in X such that KCK’
CG (K" € x) implies ¥ (K)<¥(K)+e.

By definition, any positive (Radon) measure on X is a capacity. For a
set 4 in X, we define ¥;(4)=sup{¥(K); Ke " and KC 4} and ¥,(4)=inf
{¥':(G); G is open and ACG}. A set 4in X is said to be (¥ —) capacitable if
¥, (A)=%,(4). G.Choquet [2] proved that any analytic set is capacitable,
and hence any Borel set is capacitable. By definition, we see that if 4 is
capacitable, then ¥,(4)=sup{¥(K); K€ and K A4}.

§2 Harmonic measures and capacities

2.1 Reduced functions

We follow [3] (see p. 21) for the definition of the Dirichlet problem on
an open set in R and use the same notation as there. Let G be a domain on
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R. Let F be a relatively closed set in G and s be a non-negative superharmo-
nic function on G. We introduce the following funection:

s¢=inf{v; superharmonic =0 on G, v =s ¢.p. on F}.

Then s§ is superharmonic on G and 0<s¢<"s. When G=R, we write s§=sp
for simplicity.

Properties of sp (cf. [3]):

(B,1) sp=HEZFon R—F and sp=s on F except at irregular boundary
points of R—F.

B,2) If F,CF;and s;<s, g.p. on Fy, then (s1)r, = (s2)r,.

(B, 8) If FyCF,, then sp,=(sp,)r,=(sp,)r,

(B,4) (aisi+aszs;)r=ai(s1)r+az(sz)r (a1, az: constants =0).

B, 5) srur,+spur, <sp+sp,

ProrosiTioN 1.  Let G be a regular domain on R.  Let {F,},-1 be a sequ-

ence of regular closed subsets of R such that F,DOF,.; (n=1,2,...) and ﬁ F,=
n=1
Q. Let u (resp. u,) be the limit function of {1p,};_ (xesp. {1¢ ~cti1). Then
we have
(@) uvw—uo=ug_¢ on G.
(b) Assume R—G"NF¥=@. Then u=0 if and only if u,=0.

Proor (a) If we set g,=0 on #G and=1 on 0F,NG, then 1§ ~;=HS F»
on G—F,. Since (15 )z-cyur,=1r, by (B, 3) it follows from (B, 1) that

G — G—-F
1p,—1% nc=HS. ",

Since lim H, (a) =15, (b)— g.(b) for b € 0G\U(0F,NG), we obtain that

a=b

1p,—1§ ¢ <HS,  on G—F,

By letting n—>co, we have u —uy < HS¢ on G. On the other hand, since u—u,
is a non-negative superharmonic function on G and

lim (u(a) —uo(a)) =u(b) for b € 0G,

a—b
we have u—uo=>HS. Thus u—u,=HS on G. Since H=ur ¢ on G by (B,
1), we have (a).

(b) Since uo<u, u=0 implies u,=0. Conversely, suppose u,=0.
Then, by (a), we have u=uz_c on R. On the other hand, it follows from Pro-
position 1 in [197] that up,=u on R. Thus u=(ur_¢)r,={1r-¢)r,=min(lz_g,
1r). Since R—G"NFY=@, it follows from Lemma 4 in [197 that (1z_¢)r,
=0 on I'y. Hence (1z_¢)r, is a potential. Therefore we have u=0.
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ProrosiTioN 2. Let {F,};_, be a sequence of regular closed subsets of R,
such that

(@ R—FI"NFY, =0 (resp. R—F"NF2,,=0) (n=1,2, ...),

n+l

(¢) 1p,—0as n—co.
Then we can find a sequence {¢,};_, of functions in BCW (resp. BCD) such
that

(@ 0<¢,<1lon R, ¢$,=00n (R—F},_1)\IFs,.1 and =1 on 0F,,,

(B) ¢ s harmonic in Fi,_— F, 1 —0F,,.

Furthermore, ©f we set f,= i} Pr, then f, 18 a function in BCW (resp. BCD)
k=1

and converges to a function f in BCW as n—>oco.

Proor. First we consider the case of Wiener functions. Let n be fixed.
By (a), we can find g, in BCW such that 0= g,=<1, g,=00on R—F} and =1
on F,,.;.. We set

8n on R_(F;’z_FnJrl)
&= ; .

HEWwFun on Fi—F,,;.
By Hilfssatz 6.5 in [3], we see that g, is a function in BCW. If we set ¢,=
min (g5,-1, 1— g3,), then we see that ¢, satisfies (o) and (B). We set f,=
> ¢ Then f» tends to a bounded continuous function f on R. Since f, =
k=1
f=fatlp, ,onR(n=1,2,...), we have 0=h;—h;<1p,  on R(n=1,2,...).
By letting n—oo, we obtain that A;=h;. Since | f| is bounded, f is a func-
tion in BCW.

Secondly we consider the case of Dirichlet functions. Since we can
choose g, in BCD in this case, we obtain ¢, in BCD satisfying («) and (B) in
the same way as above by considering g, = gR (Fi-Fus), The rest of the
proof is the same as above.

CoroLLARY. In the above proposition, if each f, is a function in BCW,,
then so 1s f.

Proor. Since h;, <h;<h; +1p,, and h; =0 (n=1,2, ...), by letting
n—oco, we obtain that A;=0.
2.2 Harmonic measures on the ideal boundary

Let R* be a resolutive compactification and o be the harmonic measure
on 4. For a closed subset 4 of 4, we consider the following class:

s; superharmonic >0 on R, s==1 on UNR for
L=
some neighborhood U of 4 in R*
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Then the function 1,(a)=inf{s(a); s € ¥4z} (a € R) is harmonic on R and
0<1,<1.

Lemma 1. Let A be a closed subset of 4 and let x4 be the characteristic
Sunction of A. Then 1,=H, =w(A).

Proor. By an elementary discussion, we can show that 1,=H,,. On
the other hand, it follows from Hilfssatz 8.3 in [3] that A, ,=w(4).

LemMmaA 2. Let A be a closed subset of 4 and {U,};., be a sequence of
neighborhoods of A im R*. Then there exists a sequence {F,};_, of regular
closed sets in R such that

(@) The closure F¥ of each F, is a neighborhood of A in R*,

(b) U,NRDF, (n=1,2, . )and/\F =0,

(¢) R—Fi*NF*, =0 (n=1,2,. ),
(@) 1p,—w(A) as n—oo.

Proor. Leta, be a fixed point in R. Then we can find a sequence
{sn}n-1In &4 g+ such that s,(ag)—>w,(4) as n—>co. By assumption, s,—>1 on
V.N\R for some neighborhood V,of A. Hence we may assume that U,DV,,
Ve D Vyrer (n=1,2,...) and [\ (VanR)=@. Then there exists a sequence

{F,}z_, of regular closed sets 1n R such that V,N\RDF,, F¥ is a neighborhood
of A4, R—Fi*N\F*,,=0. This sequence satisfies (a), (b) and (¢). Since it

is a decreasing sequence and [\ F,=0, 15 tends to a harmonic function » on
R as n—>co. Since s,=>1p, >1A, by letting n—>c0, we have 1,(ap) = u(ag) =

1,4(ap). Since u=>1,, it follows from the maximum principle that u=1,.
By Lemma 1, we obtain (d). This completes the proof.

As for a resolutive compactification R* of R, we have

Lemma 8. Let G be a domain on R. Then G* is a resolutive compactifi-
cation of G. For a closed subset B of 4, we denote by u(a) (a € G) the harmo-
nic measure of BNG* with respect to G.  Theu we have

(@) oB)—u=((B)r-c=HSz on G.

(b) Assume R—G*N\B=@. Then o(B)=0 ¢f and only if u=0.

Proor. (a) First setting R=G, A=BNG*, U,=G* (n=1, 2,...) in Lem-
ma 2, we obtain a sequence {0,};_; of regular closed sets in G such that
[\6 =0, G—6i*N0*,,1=0 (n=1,2,...) and 1§ —u as n—>co. Since each &} is
a nelghborhood of BNG* in G*, there is a neighborhood 7, of B in R* such

that V,N\G*C 0¥ (n=1, 2,...). Secondly setting R=R, A=B, U,=V, (n=1,
2,...) in Lemma 2, we have a sequence {F,};_, of regular closed sets in R such

that F\F,,z@, R—Fi*NF*,.,1=0 (n=1,2,...) and 15 —>w(B) as n—oo. Since
n=1
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F.NGCCU,NGCd, and F,NG* is a neighborhood of BNG* (n=1, 2,...), we see
that 1§ ;—u as n—oo. It follows from (a) in Proposition 1 that

o(B)—u=(0(B)r-¢c=HSgp, on G.

(b) Since R—G*N\B=@, we can take {F,};_; in (a) in such way that
R—G*NF*=@. Then R—G"NF7=@. Thus it follows from (b) in Pro-
position 1 that w(B)=lim 15 =0 if and only if u=lim 1§ =0.

CoroLLaRry (cf. [19; Lemma 67]). For a closed subset B of 4o(Q=D, W),
w?(B)=0 if and only if v % (B)=0.

2.3 Full-superharmonic functions®

Let s be a non-negative full-superharmonic function on R, and F be a
closed set in R. We refer to [37] for the definition of full-superharmonic
functions and the (full-) reduced function sgz.

Properties of s¢ ((37]):
(C,1) If sis a Dirichlet function on R, s=0 on K, and s is a non-nega-
tive full-superharmonic function on R,, then

sp=sKoF on Ry,—F.

(G, 2) If FiCF,and s;<s; ¢q.p. on Fy, then (s1)7 = (s2)7,
(C,8) If FiCF,, then sg =(sp)r,=sr)F,

(G, 4) (a1s1tass2)r=ai(s1)r+az(s2)rlar, ay =0).

(C,5) s7OF, +5FOF, = SF,+5F,

(C,6) Ifs,tsasn?too,then (s,)f? sFasn? oo,

Lemma 4 (cf. [197]). Let {F,};_; be a sequence of regular closed subsets of
Ry such that F,DF,., (n=1,2,...) and ﬁ F,=0. Then 15, converges locally
uniformly on Ry and in Dirichlet norwzzls n—oo. Furthermore, setting u=
lim1z,, we have
o () If F is a regular closed subset of R, such that F DF, for some n,

then urp=u on R,.
(B) If u is positive, then supu=1 for each n.
Fa

= 9 1. 2 =S Ou
@) WelP=| Se)ds and lulP={  TLas.
LemMmA 5. Let s be a non-uegative full-superharmonic function on R, and
F be a closed subset of Ry. If Gis a component of Ry—F, then sp=s5x =s55 on
G.

3) This is called superharmonic by Z. Kuramochi [6] and “positive vollsuperharmonisch” in [3].
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Proor. Let D be a relatively compact open disk in R such that K,CD
and (D\UOD)NF=@. For each integer n >0, we set s,=min(sz>p, n). Since
s, is bounded and the total mass of the measure associated with s, is finite,
it follows from Satz 17.3 in [37] that s, is a Dirichlet function. Hence it fol-
lows from (A, 5) that (s,)s=(s.)57=(s»)55 on G. Since sz~p=s on Ry—
(D\UBD), by letting n—oo, we complete the proof by (C, 6).

2.4 Relative full-reduced functions

Let G be a regular open subset of R. Let F be a non-polar closed sub-

sets of G such that R—G°NF’=@. Then there exists a function f in BCD
such that f=0 on R—G and =1 on F. Since f*-9YF does not depend on the
choice of such an f, we shall denote it by 1¢. If F is a regular closed set,
then 1¢ is continuous. We note that if F is a regular closed subset of R,,
then 12=1z0on R,. Let {F,};_, be a decreasing sequence of regular closed

subsets of G such that /”\F,,:Q). Suppose R—G°NF?=@. Then 1%, is
n=1

defined for each n. By an argument similar to the proof of Lemma 4 (see
[19; Proposition 27), we can show that 1§ﬂ tends to a function, say u, on G
locally uniformly and in Dirichlet norm as n—>co. Furthermore » is harmo-
nic in G.

The following Lemma is known ([67], [107]).

LemMA 6. Let u be the function defined above. Suppose u==0 and C;=
{z€G; u(z)=t}(0<t<1). Then

Sc gu ds=||ul|? for almost all t, 0<t<1.

Lemma 7 ((9; Theorem 57]). Let G be a regular open subset of R,. Let
{F,}>-, be a decreasing sequence of regular closed subsets of G such that [\F =

@. Suppose R—G°NFP?=@. Thenlim 1z =0 if and only if lim 1§ —O

n—ro0 n—ro0

Proor. By (A, 2), (A, 3) and (A, 4), we see that
1§ <1z ~ onR (n=1,2,..).
On the other hand, it follows from the Dirichlet principle (A, 1) that
el G (r=1,2,.).
These two inequalities imply our assertion.
2.5 Full-reduced functions on the ideal boundary

Let R* be a compactification of R. Let u be a non-negative full-super-
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harmonic function on R,. For a closed subsets 4 of 4, we consider the fol-
lowing class:

s; full-superharmonic =0 on Ry, s—=u on UNR,
yf‘l,R*=
for some neighborhood U of 4 in R*.

Then the function
u i(a)=inf{s(a); s € %, p}(a € Ry)

is harmonie, full-superharmonic on R, and 0<u;<u. We denote 1; by
3(A)=a,(A4).

Remark: For the Kuramochi compactification, the above function uz
does not necessarily equal the one defined in [37] (p. 197). However, for u=1,
we can prove that they are identical.

By a discussion similar to that in the proof of Lemma 2, we can prove

Lemma 8 (cf. [19; Lemma 67]). Let u and 4 bz as above. Let {U,};_;
be any sequence of meighborhoods of A in R*. Then there exists a sequence
{F,}p_1 of regular closed subsets of R, such that

(a) F¥ is a neighbohood of A,

®) U,NRyDF, (n=1,2,..) and N\F,=0,

n=1

© R=F'NF¥,=0 (n=1,2,.),
(d) wup, decreases to uzas n—>co.

Lemma 9. Let u be a Dirichlet function on R such that u is a mon-nega-
tive full-superharmonic function on R,. Let {F,};_, be a sequence of regular
closed sets in R which satisfies (a)-(d) in Lemma 8. Then u; is a Dirichlet
Sunction and we have

@) |lup,—uill>0as n—>co and ||up || decreases to ||uz|l as n—oo. In
particular, |1z, —a(A4)||—0 and ||1z || decreases to ||a(A)|| as n—oo.

(i) If F s a regular closed subset of R, such that F* is a meighborhood

of Aim R* then (up—uyz, ug)=0and ||uzl| Z||lugl.

Proor. (i) By (C, 1) and (A, 1), we see that
(up,—up,up, )=0 if m>n.

It follows that [|up | is decreasing and {ur },_, is a Cauchy sequence in
Dirichlet norm. Since uz tends to u; on R, as n—>co, we see that u; is a
Dirichlet function and |juz, —u;|[->0 as n—oco. It also follows that ||uz||
decreases to ||u || as n—oco.

(ii) We may assume that FO F;. Then we have

(up—up, up,)=0
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for each n. By letting n—oo, we obtain that (uz—u4 vs)=0. Hence ||u;l|
=llugl.

By the aid of (C, 2)-(C, 5) and Lemma 8, we can show the following:
D, 1) If 4,C A4, and ui =< u,, then (u1) 5, < (u2) s,

(D, 2) If A,C A,, then u11=(u11)12=(u12),4~1.

D, 3) (ar1ur+asuz)i=a1(u1)s1+az(uz) s (a1, az; constant =0).

D, 4) um-l-umguil—l—ujz.

Since R} is a quotient space of R¥ and a full-superharmonic function is
superharmonic, we have the following

Lemma 10, o R(FVNFY N dw)< 0P R(FPNFP N dp)
< &(FPNFYN4p)
for any regular closed sets F, and F, in R.
We can easily see

Lemma 11.  Let R* be an arbitrary compactification of R and let {F,};_;
be a sequence of regular closed subsets of R, such that F,DOF,. ; (n=1,2,..)

and [\F =0. We set A= [\F* If u is a non-negative full-superharmonic

functwn on Ry, then uz >11m ug,.

n—0

2.6 Full-reduced functions on the Royden boundary

Lemma 12. Let u bz a bounded continuous, non-negative, full-superhar-
monic function on Ry. If u is a Dirichlet function on R, and F is a regular
closed subset of R,, then

. N
ug 2 uFD/'\AD'

Proor. Since v and uz are bounded continuous Dirichlet functions on
Ry, v=u—uyz can be continuously extended over R,\U4p. We denote by v*
the continuous extension of ». For each ¢>0, we set U.={ € R,\Udp; v*(2)<
e}. Since v*=0 on FP, U, is an open neighborhood of F°N\4p and uz+e>u
on U:NR,. Hence up+e=uzong,. Since e is arbitrary, we have uz=>uzony;.

By the above lemma and Lemma 11, we obtain

CororrarY 1. Let {F,};_, be a _sequence of 'regular closed subsets of R,
such that F,DOF,.; (n=1,2,...) and [\F =0 and let A= /\FD Then uz, con-

verges to u g locally uniformly and 'm wahlet norm as n—)oo

CoroLLARY 2. Let {R,};_.be an exhaustion of R and let F be a regular
closed subset of R,. Then up %, converges to ugoNy, locally uniformly and in
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Dirichlet norm as n—co. In particular, 1 %, converges to & (FPN 4p) locally
untformly and in Dirichlet norm as n— oco.

2.7 Capacity on the Royden boundary ([197)

Let 4 be a closed subset of 4p. Then, by (i) in Lemma 9, we see that
la(A)||<eo. We define

_ 1 0a(4)
C(A)_‘Zn gaK0 oy ds

and call C(4) the capacity of 4 (with respect to K;). By () of Lemma 4, we
can show that C(4)= (1/2n)||&(4)|*. It follows from (D, 1), (D, 4) and
Lemma 9 that 4—C(A) is a capacity in the sense of G. Choquet [27].

We can show that if 7 is the canonical mapping of R} onto R¥, then
C(n~'(A4))=C(A) for any closed set 4 in 4y, where C is the Kuramochi ca-
pacity (see [37)).

ProrposiTion 3. C(A4p)=0 where Ap=4p—1I p.

Proor. Since 4p is an open set, it is sufficient to show that an arbitrary
compact subset K of Ap is of capacity zero. By Hilfssatz 9.1 in [37], we see
that there exists a finite continuous Green potential p with finite energy such
that lirg pla)=oo. Since p is a continuous Dirichlet function, so is po=p—px,.

For aar;y >0, there exists a regular closed subset F of R, such that F? is a
neighborhood of K and po—=1/¢ on F. Since min(epy, 1)=0 on K, and =1 on
F, it follows from (C, 1) and (A, 1) that

117l = |lmin (e po, 1)]|.
Hence, by (ii) of Lemma 9, we have
la(K)I = [[14]| = [ min (epo, || Ze¢l| po |-

Since ¢ is arbitrary, we have &(K)=0. Hence C(K)=0. This completes the
proof.

COROLLARY. If & is a point in 4dp with C({&})>0, then it is contained in
I'p.

§3 Singular points on the Kuramochi boundary

3.1 Singular points and thin sets

For b € 4y, let g, be the Kuramochi kernel (with respect to R,) ([37]).
Let C be the Kuramochi capacity on R,\U4dy. We denote by 4; the set of all
minimal points in 4y. Let b be a point in 4y. If C({b})>0, then b is called
singular. Furthermore if w™({b})>0, then b is called strictly singular. We
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denote by 4s (resp. 4ss) the set of all singular (resp. strictly singular) po-
ints®. Then 4ssC45C4,. A point b in 4, belongs to 45 if and only if g, is
bounded. It is known that if R belongs to Oyp—Og, then 455 consists of
only one point. Z. Kuramochi [ 8] constructed a Riemann surface with 45—

ASS 7& 0~
The following lemma is known (cf. [ 3; Folgesatz 17.227]).

Lemma 13. Let b be a point in Ry\Udy and F,={z ¢ Ry; §,(z)=a} (0<«
<sup &;). Then we have

@) (&r,=min(g,, a)=§g, on Ry—

®)  [18sl%,-r, = |lmin(g,, )| =27,

(¢) If bisa pointin ds, then g =(supg,)a({b}) and ||| < + oo.

A closed set F in R is said to be thin at b € 4, if (&,) 5= .

Properties of thinness (cf. [37]):

(E,1) If FiCF; and F, is thin at b, then so is F;.

(E, 2) If both F; and F, are thin at b, then so is F;\UF..

(E,8) If b¢ FM, then Fis thin at &.

(E,4) If b€ ds, then F is thin at b if and only if (&({b}))z=a({b}).

The following proposition is essentially due to Z. Kuramochi ((17; Theo-
rem 8]).

ProrosiTion 4. Let b be a point in 4s. Let F,, F; be regular closed sub-
sets of R, such that FANFD =@. If F, is not thin at b, then F; is thin at b.

Proor. Let {V,};_; be a sequence of regular closed subsets of R, such
that 72 is a neighborhood of &, V,DV,,, (n=1, 2,...) and /\ VN=Ap). We
set u=a({b} )—-llHllV Let f,=1% where G=R,—F, and F Vo UF, (n=1,

...) and let v—llmf,, Since b ¢ F,— V", F,—Vi is thin at & by (E, 3).

n—>oc0

Smce Fi=(F NV, )\J(F,—V}i)and F; is not thin at b, F,\V, is not thin at b.
Hence ujv.,=u (n=1,2,...) by (E, 4) Since up v, =17 V. =1y —u as
n—oo, we obtain that hm 17, =u. Since [|[17237. 1| = full, 177 N—= ] 2|
and || full—|lv]| (ef. Lemma 4), we have 0 <||u||<||v||. Hence »v£0. We set
Ci={z€ Ry—F,, v(z)=1t} (0<t<1). It follows from Lemma 6 that there ex-
ists a subset E of (0, 1) everywhere dense in (0, 1) such that

9
Sc, 9 ds=lloll%,r,  forick.

By Lemma 3 in [10], we see that

4) A point in 45— dgg is called a singular point of first kind and a point in 4gg is called a singular
point of second kind by Z. Kuramochi [7].
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is a constant for all z ¢ E. Let ¢, be an arbitrary number in E. Since 0<up,
<u<1lon R,—F,, we can find 6 >0 such that

v
Jo, urgr ds=llolf-r,—0.

Hence we have

v ; oV 4
2 —

v]|%,- 6>_-S ugp,—-ds=lim u S.
llv]|%y-F, e,y r—nrer Je, B

Let ¢; be any number in E such that ¢, >¢;,. Since u>v, we obtain that

@v . S av 0v
=Y ds> — = —
S “u oy ds=> “v oy ds tzS o ds

=tal[vl|Ry-r,-

Thus we have

lim (w0 g ollg, rz0+lim (g 004
“ “ C, oy

t~1,t€E oy t—1,t€E

This shows that us=uz,, Hence F; is thin at 4 by (E, 4).

3.2 Poles of Kuramochi boundary point

Let R* be a compactification of R. Let & be a point in 4,(Cdy). If
(&) =& for £ € 4, we say that ¢ is a (full-) pole of 4 on 4. We denote by
O(b) (resp. Ow(b))the set of all poles of b on 4y (resp. dw). By definition, we
see that the set of all poles of b on 4 is closed, and hence both @(b) and 0w (b)
are closed. The following lemma shows that both @(b) and @ (b) are non-
empty.

LemMma 14. Let R* be a compactification of R and b be a point in 4.
Then we have

(@) If a closed set F in R is mot thin at b, then there exists at least one
pole of b on 4 which is contained in F*N 4.

(b) If (&)= &, for a closed subset A of 4, then there exists at least one
pole of b on 4 which is contained in A.

Proor. Suppose every & € F*N4 is not a pole of b. Since (§)33 % &,
we can find a regular closed set F; in R such that F¥ is a neighborhood of &
and F; is thin at . Since F*N\4 is compact, there exists a finite family

{F¢,}3-, of regular closed sets in R such that kQF?" is a neighborhood of

F*N4. Since (/F‘;“k: \n/Fg"k, we can find a relatively compact open set D
k=1 k=1
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in R such that
F—DC\JF:,.
k=1

Since \”jFEk is thin at & by (B, 2), F—D is thin at b by (E, 1). Hence we see
k=1

that F is thin at 5. This a contradiction. Thus we obtain (e¢). Similarly
we can show (b).

Lemma 15. Let 7w (resp. nw) be the canonical mapping of R} (resp. R¥)
onto R%. If bis a point in 4,, then 0(b) Cx(b) and Op(b) C wyt(b).

Proor. Let b, be a point in 4y. If bo=~b, then by (E, 3) (&) = &-
By continuity of 7, (&) Yy ="_(g&:) & Hence, for & € 77X(bo), (&) =(&)im
= &, so that (§,)33% &. Thus, 77'(b))N0(b)=0, and hence @(b) Cx '(b).
Similarly we have @w(b) Cwy*(d).

3.3 Poles on the Royden boundary

ProvrosiTioN 5. Let b be a point in 4s and F be a regular closed set in R.
Then F is thin at b if and only if FPNo(b)=0.

Proor. The “if” part follows from () in Lemma 14. To prove “only
if” part, suppose FPN0(b)+@. Since &, is a Dirichlet function by (c) in
Lemma 13, (,)5o37, = (&:)r by Lemma 12. For any & € F°N0(b), g,=(&)35
< (g)iong, = (&) F = &. Therefore, (§;)r= g, i.€., F' is not thin at 6. Thus
the “only if” part is proved.

CoroLLARY 1. Let be ds and let 9,={GCR; R—G 1is a regular closed
set in R and is thin at b}. Then {G?;G e %,} is a fundamental system of
neighborhoods of @(b) in R}.

CoroLLARY 2. If b is a point in 4ds, then @(b) consists of only one point.

Proor. Suppose O{b) contains two distinct points &; and &,. Then we
can find two regular closed sets F, and F, in R such that F? is a neighbor-
hood of &, in R¥(k=1, 2) and FP N F?=@. It follows from the Proposition
that neither F; nor F, is thin at 5. This is a contradiction by Proposition 4.

TureoreM 1. For b € 4, C({b})=C(@(b)) and o™({b}) =P (0 (d)).

Proor. Let 7 be the canonical mapping of R} onto R%. By virtue of
Lemma 15, we have C({6})=C(z"'()) = C(9(d)) and o™ ({b})=wP(z (b)) >
oP(@(b)). Since C({b})=0 and w"({b})=0 for b€ 4,— 45, it is sufficient to
prove the theorem for b€ 4s. Again by Lemma 15, it is enough to show
that C(z '(6)—0(6))=0 and o”(z~*(6)—@())=0. Let K be an arbitrary
compact subet of 77'(6)—@(b). Since K and @(b) are compact and KN\&(b) =
0, we can find two regular closed sets F; and F, in R such that FPNF?=0,
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F? is a neighborhood of K and F? is a neighborhood of #(4). Since @(b)N
F2=£Q, F, is not thin at b by Proposition 5. Hence it follows from Proposi-
tion 4 that F, is thin at 5. Let {V,};_; be a sequence of regular closed sub-
sets of R, such that 7Y is a neighborhocd of &, V,DV,.: (n=1,2,...) and
N\VY¥={b}. Since KCn~'(d), VD is a neighborhood of K in R}. Hence U,=
n=1

VDPAF? is a neighborhood of K in R%. Therefore, applying Lemma 8 with
u=1, A=K and the above U,, we obtain a sequence {0,};_, of regular closed

sets in R such that 02 is a neighborhood of K, 6, CF1N\V,, F\ﬁnzﬂ, R—0:"N
n=1

02,,=0 and 15, decreases to 1z=a&(K). Since F; is thin at b, ¢, is also thin
at b by (E, 1). Suppose &(K)>0. Since the measure associated with 15 is

supported by 62, the measure associated with &(K) is supported by f\é,{v =
n=1

{b}. Hence we see that &(K)=cyg, for some ¢,>0. It follows from (c) in
Lemma, 13 that 3(K)=c&({b}) for some ¢>0. Since sup &(K)=sup a({b})=1
by (8) in Lemma 4, we have ¢c=1. Hence &(K)=a({b}). Since (a(K));5,=
&(K) by («) in Lemma 4, (a({0}))5,=&({b}). This shows that J, is not thin
at b by (B, 4). This is a contradiction. Thus &(K)=0 and C(K)=0. It fol-
lows that C(z~'(6)—@(b))=0. Since 0<<w?*(K)<a(K)=0, 0?*(K)=0 for
the above K. Hence, by the Corollary to Lemma 3, »w”?(K)=0, and hence
oP(m~1(b)—@(b))=0.

Prorosition 6. Let 7w be the canonical mapping of R% onto RE and set
48=1{¢ € dp; C({€})>0} (CI'p). Then

(a) O induces a one-to-one mapping of 4s onto 4%.

(b) 7 restricted on 4% is a one-to-one mapping of 42 onto 4.

Furthermore, mo® 1is the identity on 4s and Oon is the identity on 42.

Proor. By Corollary 2 to Proposition 5, we see that @ induces a map-
ping of 4s into 4p. By Theorem 1, @(b) € 42 for any b€ 45. Let &€ 42.
Since 175 =13 >0, 7(¢) € 4s.  On the other hand, 0(n(£)) € 43N (z~'(n(£))
by the above and Lemma 15. As shown in the proof of Theorem 1,
C(r~ Y m(&)—0(n(g))=0. Since C({&})>0, it follows that §=0(x(&)). There-
fore, @ is an onto mapping, @ox is an identity on 42, and hence = is one-to-
one.

Next, let b € 45.  Again by Lemma 15, 7(0(b)) Cn(z~*(b))={b}. Thus,
7(0(b))=0b, so that = is an onto mapping, 7o®@ is an identity on 45 and @ is
one-to-one on 4.

3.4 Characterizations of singular points by poles

TueOREM 2. For each b € 4y, either @(b) consists of only one point or con-
tains an uncountable number of points accordingly as b is singular or not.

Proor. If b is singular, then, by Corollary 2 to Proposition 5, @(b) con-
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sists of only one point. Next suppose b is a point in 4,—4s. Let {F,};_;
be a sequence of regular closed subsets of RO such that F2 is a neighborhood
of b, R—FiNNF}.,=0 (n=1,2,...) and [\FN—Jb‘ Then 17,—0 as n—oo.
For each m, n (m>n), let f, ,=1% Where F F, and G=F}. By Lemma 7,
1, —0 implies f1,—>0 as n—>co. It follows that || f1,/|—>0as n—>co. Thus,
there is n; such that || /1, [/<1/2. By induction, we can find a subsequence
{F,}7-1 of {F,}y-1 such that|| f,, », . [|<1/2*' (k=1,2,...). Thus we may as-
sume that || f»..-1ll<1/2"*! (n=1, 2,...) from the beginning.
We set

¢,,=0 on (R—Fé'”_l)UFZn-rl,=f2n—1,2n on Fé.n—l_FZ"s
=1—f2n,2n+1 on Fé"—F2n+1 and=1 on an,,

(n=1,2,...). Then ¢, is a function in BCD and ||¢,||<1/2". Then, it is easy
to see that f= qus,, belongs to BCD. For each a(0<a<1), we set
n=1

-Qa,n:{z ¢ F2n—1;f(z)£a}UF2n
and
Co={z€R; f(z)=a}.

Then £, , and C, are regular closed and 02,,CC,. Since ()3, ,= &, on R,
(&)5%,.,= & on Ry— 2, , by Lemma 5. This shows that (£,)z,= & on R, for
each . Weset 4,=C2N4p. For an arbitrary a(0<a<1), let {R,};-; be
an exhaustion of R such that C,— R, is regular closed in R. Since C,=(C,
—RH)U(C,N(R,\JOR,)) and C,N(R,\JOR,) is thin at & by (E, 3), we have
(8)EF,=(8v)e, =& on Ry for each n. Hence it follows from Lemma 11
that

& =81, =lim(g,)c %, = &» on R,.

Hence (§:)1,= &, on R, for each a. By (b) in Lemma 14, there exists at least
one pole z(a) of b on 4, for eacha. If aa’, then 4,N A4, =0 since fe¢
BCD. Hence @(b) is uncountable. This completes the proof.

As for Ow(b), we have

Tueorem 3. For a point b in 4,—dss, Ow(b) contains an uncountable
number of points. For a point b in dss, Ow(b) does not necessarily consist of
a single point.

Proor. First let b be a point in 4,—4ss. Let {F,};-, be a sequence of
regular closed sets in R such that 7Y is a neighborhood of 4 in R}, R—Fi¥

NFY, =0 (n=1,2,..) and f”\F,’,"z{b}. Then, by assumption, we see that
n=1
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1p,—0as n—oo. Since R—FI"NFY.,=0 (n=1,2,...) and /:\an:Q, we can

apply Proposition 2 to this case and obtain a function f in BCW such that
f=1on 0F;, and f=0on 0F;, ;(n=1,2,...). For each (0<a<1), we set

C.={z€R; f(z)=a} and 4,=CIN4dy.

By a discussion similar to the proof of Theorem 2, we obtain that (g,); =g,
on R, for each « and that @w(b) is uncountable.

Secondly suppose R belongs to Ozp—Oxs. Then 455 consists of a single
point . Furthermore /', consists of a single point @#(b) and I'w contains at
least two distinct points &, and £;. Then we can find two regular closed sets
F; and F, in R such that F'} is a neighborhood of &, (k=1, 2) and FYNFY¥ =
@. Since both &; and &, are mapped to &(b) by the canonical mapping of R}
onto R}, we see that @(b) € F? (k=1, 2). Hence (&,)r,= &, on R, by Proposi-
tion 5, and hence (gy)rpra, =& on R, (k=1,2) by Lemma 11. This shows
that both &, and &, belong to @w(b). This completes the proof.

3.5 A property of Riemann surfaces belonging to Opp—Opyp

ProrosiTioN 7 (cf. [3; Satz 9.101]). If ¢ is a point in dp with C({&})> 0,
then there exists a fundamental system of open conmnected meighborhoods of &
in R}.

Proor. Let 7 be the canonical mapping of R¥ onto R¥. By Proposition
6, we have @(n(§))=¢. By Theorem 1, we see that & ({£})=1z=173;,=(sup
Zoe) 'Eee Weset u=a({¢}). Let U be an arbitrary neighborhood of £ in
R% such that UNR is a regular open set in R and KoN((UNR)\U(UNR))=
@. Then F=R—UNR is a regular closed set in R. Since £ ¢ F?, it follows
from Proposition 5 that F is thin at #(¢), and hence ug==u. Hence there
exists a connected component G of Ry,—F=UNR such that ur<u on G.
Since uz¢=usy <ur on G by Lemma 5, we see that uz>¢==u. Hence &¢
R—GP” by Proposition 5. Thus ¢ € G°. Since G°—06” is open in R} (cf., [3;
Satz 9.97) and ¢ ¢ RE— U(C0GP), G°P—aGP is an open connected neighdorhood
of ¢ in R¥. This completes the proof.

CoroLLARY 1. Let 7 be the canonical mapping of R} onto RY. If £isa
point im dp with C({&})>0, then n~(¢) is connected.

Proor. Let {U,}.ea be a fundamental system of open connected neigh-
borhoods of & in R% where 4 is an index set. Since U,N\R" is connected and
{U.NR"; a € A} is a lower directed family, we see that n‘l(S)Zf\UaﬂRW
is connected. “

CoroLLARY 2 ([3; Satz 9. 107)). If & is a point in 4p with wP({£})>0,
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then there exists a fundamental system of opem connected meighborhoods of &
wn R}.

Tueorem 4. If R belongs to Ouyp—Opys, then there exists a bounded con-
tinous Green potental p on R such that o®(ARNd4p)>0 for some a>0 where
A.={z € R; p(=) = a}.

Proor. If R€O0up—Opys, then I'p consists of a single point & with
wP({&})>0. Let 7 be the cannonical mapping of R} onto R%. Since n(I'p)=
I'w, we have I'y Cn Y (I'p)=n"1(&). Since I'y contains at least two distinct
points and is totally disconnected (cf. [3; Satz 9.67]), the connectedness of
n~1(¢) (the above Corollary 1) implies the existence of a point z € Ay=dw—
I'w such that n(z)=¢. It follows from Hilfssatz 8.4 in [ 3] that there exists a

bounded continuous Green potential p on R such that lim p(a)>0. Let « be a
real numder such that 0 <a<lim p(a). Since n(z)=¢, we see that g€ AN 4p.

a-z

This completes the proof.

CoroLLARY. If R belongs to Oyp—Opyp, then there exists a bounded con-
tinuous Green potential p on R such that C(ARN4p)>0 for some a>0.

§4 Function-theoretic separative conditions

In this section, for a given compactification R* of R and a closed subset
A of 4, we set ¥ (A)={F; F is regular closed in R and F* is a neighborhood
of 4 in R*}.

4.1 General notion of separative compactification

Let RUI" be a compactification of R and ¥ be a capacity on I” in the
sense of Choquet. For a subset E of R, we denote by E“ the closure of E in
RUT.

DeriniTION 1. Let R* be a compactification of R. Then R* is said to be
¥-separative if ¥(F¢NF$)=0 for any regular closed sets F, and F; in R such
that F¥NF¥=0 in R*.

The following lemma follows immediately from the definition.

Lemma 16. Let RT and R¥ be two compactifications of R. If R¥ is a
quotient space of R¥ and R¥ is ¥-separative, then R¥ is also ¥-separative.

ProrosiTioN 8. Let R* be a compactification of R. Suppose, for any two
distinct points &1 and &, in 4, there exist A€ v ({&:}) and B e v ({&}) such
that

(a) A*NB*=0 in R*,
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(b) #(4°NB*)=0.
Then R* is ¥-separative.

Proor. Let F; and F, be two regular closed sets in R such that FfN\F¥
=@. We shall show that Z(F¢iNF§)=0. Leta,=FFn4(k=1,2). We may
assume that a,==0 (k=1,2). For any & € o; and 7 € oy, we can find 4, , €
v ({€}) and B;,, € v ({7}) which satisfy (a) and (b). First, fix &. Since a; is
compact, there exists a finite number of points {7,}%-, in «, such that B:=

\nj B, € ¥ (az). Wemay assume that 4, = ;\AE,,,,C belongs to v'({£}). Since
k=1

AZNBiC \J(Af ,.N\BL,), we see that ¥(42N\ BY) < z" ¥(A2, NBL, NT)=0.
Next, varymg », we can similarly show that there ex1st Uev(a,) and V€
v (a,) such that U*N\V*=@ in R* and Z(U*"\V*)=0. Since F¢N['CU*NT"
and FinNI'CVeNI', we odtain that ¥(FiNF%=0. Hence R* is ¥-separa-
tive.

CoroLLARY. Let f be any mon-constant function in BC. Suppose there
18 a dense subset E of [inf f, sup f] such that ¥({f=r}*N{f=r:}*)=0 for
any ri, 12 € E with r1<r,. Then R¥; is ¥-separative.

Proor. Let &; and &, be two distinct points of 4=R¥;—R. We may
assume that t1=11m f(z)<11m f(z)=t;. Let r; and r, be numbers in E such
that t1<r1<rz<tz ' Then we can find 4 € v ({&,}) and B e v({&;}) such that
f<rion 4and f>r; on B. We see that

ANB CH{f=r}'N{f=r}"
Thus
P NBYSTE Sy N f =} =0.
Hence it follows from the proposition that R¥;, is ¥-separative.

Turorem 5. There is always a maximum ¥-separative compactification
of R up to a homeomorphism, i.e., there exists a ¥-separative compactification
R} of R such that any other ¥-separative compactification of R is a quotient
space of Rj.

Proor. We set Qo={f€ BC; R} is ¥-separative}. Let R* be any
¥-separative compactification of R. If we set Q=BCNC(R*), then R*=R}.
Let f be any function in Q. Then it follows from Lemma 16 that R¥, is
¥-seprarative. Hence f belongs to Qo and QCQ,. This shows that R} is a
quotient space of RY,. Now, we shall show that R}, itself is Z-separative.
If Qo consists of only constant functions, then R}, is the one-point compacti-
fication, and is trivially Z-separative. Suppose Q, contains non-constant
functions and let &, and &; be two distinct points in 4o, Then there exists
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a function fin Q, such that linél f(z)<li15n f(2). Choose «, 8 such that lim f(z)

2=
<a<ﬁ<1in51f(z). Then we can find 4 € v ({£:}) and B € ¥v({&,}) such that
f<aon Aand f>Bon B. Then A*N\B*=@ in R};,. Since R¥; is ¥-separa-
tive, we have ¥(4°"\B*)=0. Hence it follows from Proposition 8 that R,
is ¥-separative.

4.2 H.D. separativeness, H. M. separativeness and regularity

Let R* be a resolutive compactification of R. We introduce the follow-
ing class:

Co(4)={f € C(4); HE* € HD}.

DeFiniTION 2. A resolutive compactification R* of R is said to be regular
if Cp(4) is dense in C(4) with respect to the uniform convergence topology.

DeFiniTION 3. A compactification R* of R is said to be H.D. separative
if C(FPNF®)=0 for any regular closed sets F; and F; in R such that F¥N\F¥
=0 in R*.

DeFiniTION 4. A compactification R* of R is said to be H.M. separative
if wP(FPNFP)=0 for any regular closed sets F; and F, in R such that F¥
F¥=0 in R*.

Remark: (i) Definition 2 is due to F—Y. Maeda [12].

(ii) Definition 3 is equivalent to the original one defined by Z. Kura-
mochi [10] in case R* is metrizable (see Theorem 2 in [197).

(iii) H.D. separativeness is the ¥-separativeness with /'=4p and =C.

(iv) H.M. separativeness is the ¥-separativeness with I'=4p and =
wZ(ao € R).

(v) Resolutivity is the ¥-separativeness with I'=4w and ¥ =0} (ao € R)
(see Corollary 2 to Theorem 1 in [197]).

ProrosiTion 9. A compactification R* of R is regular if and only if
there exists a non-empty subfamily Q of the vector sum HBD+ BCW, such that
R*=R}.

Proor. Suppose R* is regular. For f € C(R*) we denote its restrictions
to 4 and R by f,and fr respectively. We set Cp(R*)={f € C(R*); H¥* € HD}
and Q={fr; f € Cp(R*)}. Since Cp(4)={f,; f € Cpo(R*)} is dense in C(4), Q
separates points of 4. Hence R*=R}. Let f be any function in Q. By Hil-
fssatz 8.2 in [3], we see that f— H¥* is contained in BCW,. Thus QCHBD
+ BCW,. Conversely suppose, for a given R*, there exists a non-empty sub-
family Q of HBD+ BCW, such that R*=R}. It is easy to see that Cp(4q)
is a vector sublattice of C(dy) with respect to the maximum and minimum
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operations and contains constants. Let 4; and b, be two distinet points of
dq. Then we can find a function f in Q such that lim f(a)1lim f(a). Let
a—b2 a—by

¢(b)=1im f(a) for b€ 4. Then ¢(b1)7¢(bs). Since HE*=h;€ HBD, ¢ €
a—b
Cp(4y). Thus Cp(4y) separates points of 4. Hence Cp(4y) is dense in C(4yg)

with respect to the uniform convergence topology by the Stone-Weierstrass
theorem. Therefore R} is regular.

We introduce the following notation on types of compactifications:
(D)  R*=R} for some Q CBCD.

(HD) R*is H.D. separative.

(HM) R*is H.M. separative.

(R) R* is regular.

(W)  R*is resolutive.

Now we have the following two theorems.
TureoreM 6. (D)=(R)=(W).

Proor. Since BCD=HBD+ BCD,C HBD+ BCW,, Proposition 9 implies
that (D)=(R). The implication (R)=(W) is a part of the definition of
regularity.

TaeorEM 7. (D)=(HD)=(HM)=(W).

Proor. The implication (D)=(HD) is obvious by the definition of H.D.
separativeness (cf. Lemma 16). The last two implications follows from
Lemma 10.

4.3 Exmaples

ExmaprLe 1. We set R={|z|<1}. Let w,(a€ R) be the harmonic mea-
sure of the arc {e'’; |6| <x/2} with respect to R. We set Q={w,} and consi-
der R}. Then we have

(a) R} is H.D. separative.

(b) R¥ is not regular.

Proor. (a) It is known ([19]) that R} is H.D. separative.

(b) We set ¢y={f€dy; w:=0} and & ={f¢€ dy; w,=1}. For each
e(0<e<n/2), we denote by u.(a) (resp. v.(a)) the harmonic measure of the
arc {e’’; |0+n/2| <e} (resp. {e’; |0—n/2| <e}) with respect to R. Given
feC(dy),let M =I?Ga;§| f(&)]. Then we can easily show that

BM(ue+ve)+ f(E0)+(f(61)— f(£0))w, € F5
and

_3M(ue+vs)+f(50)+(f(51)—f($0))wa €y,
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Since u.—0 and v,—0 as ¢— 0, it follows that

Hi(a)= f(&0)+(f()— f(E0))wa  (a€R).

Since o, is not a function in BCD, we see that Cp(do)={f € C(4q); f(£1)=
f(€0)}. Thus, fo(¢)=w, cannot belong to the closure of Cp(4q). Hence RY is
not regular

ExampLE 2. Let R be a Riemann surface in Oxzp—Oyp. Then it follows
from Theorem 4 that there exists a bounded continuous Green potential p on
R such that v?(42N 4p)>0 for some a>0, where 4,={z € R; p(z) =a}. We
set Q={p} and consider R§. Then we have

(a) R} is regular.

(b) R¥ is not H.M. separative.

Proor. (a) Since p € BCW,, we see that R} is regular by Proposition 9.
(b) We shall use the same notation as in the proof of Theorem 4. For
each a; and «, (0<a1<az<mp(a)), we set A={z € R; p(z)<a,} and B=

{z € R; p(z) =a,}. Since hmp(a) 0 by the definition of I'p, we see that

¢ € A°NBP, so that »w?(4°N BD)>0 Obviously, 4*N\B*=@ in R§. Hence
RY% is not H.M. separative.

ExampLe 8. Let R be a Riemann surface with 45— 45s+9. Let b be
a point in 45— 455 and € be the unique pole of b on 4p. Then it follows from
Theorem 1 that C({&})>0 and w”({&})=0. Let {F,};-, be a sequence of
regular colosed sets in R such that #2 is a neighdorhood of & in R}, R—Fi¥
NFY.,=0(n=1,2,..)and N\;-,FY={b}. Since o"({b})=0,15, —>Oas n— oo,
Since R—Fi’NF2,,=@ (n=1, 2,...), we obtain functions f, is BCD and f in
BCW as in Proposition 2. We set Q={f} and consider R}. Then we have

(a) R} is H.M. separative.

(d) R} is not H.D. separative.

Proor. (a) Let ry, ry be real numbers such that 0 <r,<r,<1. We set
A={z€R; f(z)<r,} and B={z€R; f(z)=r;}. Since f=f, on R—Fi,,,,
A—Fj,.1C{z€R; fu(z)<r} and B—F}, ,C{z€; fu(z)=r;}. Since f,is a
function in BCD, we see that A—FiP, ,NB—FiP,=@. Thus A°"BPC
(A—FiP  NFD DN(B—Fi2, \UFP )=FP ... This shows that F, € ¥ (4°N
BP) for each n. Hence w?(4°NB?)<1r for each n. By letting n—>co, we
obtain that w?(A°N\BP)=0. Therefore R% is H.M. separative by the Corolla-
ry to Proposition 8.

(d) Weset A={f<1/3} and B={f=2/3}. For each a (0<a<1), let
C.={z€R; f(z)=a} and 4,=CENdp. By a discussion similar to that in
the proof of Theorem 2, we have (&,)s,=§&, on R, for each a. Since @(b)
consists of only one point &, we see that £ belongs to 4, for each « by Lemma
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14, (b). Since €, A for a<1/3 and C,C B for « =>2/3, we see that & ¢ A4”
NBP. Hence 0<C({€})<<C(A°NBP). Therefore R% is not H.D. separa-
tive.

Combining Theorem 6 and Theorem 7 with the above three examples, we
have the following relations:

In the above diagram, (4)— (B) (reap. (4)-» (B)) means that (4) implies
(B) (resp. (A) does not imply (B)).

§5 Martin compactifications of Riemann surfaces belonging
to Oup—Ouyp

In this section, let w=0" ad #=0" (the harmonic measures on 4y and
4y respectively). Let 4, be the set of all minimal Martin boundary points
of 4y in this section. It is known (cf. [37]) that 4, is a Borel set and u(4y—
Al):().

5.1 Properties of Martin compactification of R € Oyp—Oyp
The following lemma is due to J.L. Doob [4] (cf. [3]).

Lemma 17. (a) Let f be a resolutive function on dy. Then the fine
limit> of Hy exists and epuals f u-almost everywhere on 4.

(b) Let u be a bounded harmonic function on R. Then the fine limit f
of u exists u-almost everywhere on 4, and u equals Hyy on R, where f* is any
extension of f over dy.

Prorosition 10. A hyperbolic Riemann surface R does not belong to Oyg
if and only if there exist two mutually disjoint compact subsets A, and A, of
Ay such that u(A1)>0 and u(A5)>0.

Proor. Suppose R does not belong to Oyp. Let u be a non-constant

bounded harmonic function on R. Then, by () in Lemma 17, we see that
u(a)= S idu, where it is the fine limit of u on 4;. Hence we can find two

mutually disjoint compact subsets A4, and 4. of 43 such that x(A4:;)>0 and
u(A4;)>0. Conversely suppose there exist two mutually disjoint compact

5) See [4] and [13].
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subsets 4, and 4, of 4, such that #(4,)>0 and #(4,)>0. Since the grea-
test harmonic minorant of x,(4,)and x,(4,) is equal to x,(4,"\ A4;)=0, either
1s(Ay) or u,(A;) is a non-constant bounded harmonic function on R. Hence
R does not belong to Oyp.

Tueorem 8. The Martin compactifications of Riemann surfaces which
belong to Oup— Oxp are not regular.

Proor. Let R be a Riemann surface which belongs to Oyp—Ons. By
Proposition 10, we can find two mutually disjoint compact subsets 4, and A,
of 4y such that x(4,)>0 and x#(A4,)>0. Suppose R}, is regular. Then we
can find f € Cp(4y) such that f=1 on 4; and f=0 on 4,. Since R € Opyp,
H;= constant. Hence. by (¢) in Lemma 17, f= constant x-almost everywhere
on 4,, which is a contradiction.

Tureorem 9. The Martin compactifications of Riemann surfaces which
belong to Oyp—Ogp are not H.M. separative, and hence not H.D. separative.

Proor. Let R be a Riemann surface belonging to Oxzp—0Ogzs. By Propo-
sition 10, there exist two mutually disjoint compact subsets 4, and 4, of 4y
such that x(4,)>0 and x#(4,)>0. Then there exist two regular closed sets
F, and F; in R such that F¥ is a neighborhood of A4, in R¥(k=1, 2) and
FYNFY=@. Weset a,=FFNdw(k=1,2). Since w(n*(A))=pu(A) for each
compact subset 4 of 4y and «, D n~(4,) (k=1, 2), we obtain that 0< x#(4,)=
o(r HA4)) < ow(a,) (k=1, 2), where 7 is the canonical mapping of R} onto RF;.
Since the support of w is equal to the harmonic boundary I'w of Rj;, we see
that o, \I'w==0 (k=1, 2). On the other hand, it is known that /" consists
of a single point 4. Since R} is a quotient space of R} and a,\I'w =+ 0 (k=
1, 2), it follows from Satz 8.6 in [87] that b € FPNF2. Hence o®(FPNFP)=>
wP({b})>0. Therefore R} is not H.M. separative, and hence is not H.D.
separative.

5.2 Normal derivative on the Martin boundary

Let R* be a resolutive compactification of R and 1,(a € R) be the harmo-
nic measure on 4. We fix a, € R once for all and let 2=1,, #=u,. We set
Rp(4)={f; resolutive on 4 and H¥* € HD}.

DerinTiON 5 ([12]). Let u be a function in HD. We say that u has a
normal derivative ¢ on 4 (relative to ay), or ¢ is a normal derivative of z on
4 (relative to ay), if ¢ f€ L'(4) and

(u, H¥*)= ——ggbfdl for any f € Rp(4).

F-M. Maeda ([12; Theorem 27]) proved that if the compactification R* is
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regular, then th2 normal darivative of a function u in AD, if it exists, is uni-
quely determined 1-almost everywhere. We shall show that this result is
not valid without regularity.

Tueorem 10. For the Martin compactification of a Riemann surface
whaich belong to Oxp—Oxp, a normal derivative of a function u wn HD, 1f it
ex1sts, 1s not mecessarily uniquely determined u-almost everywhere.

Proor. Let A4; and 4, be as in the proof of Theorem 8. We set ¢, =24,
—(u(A42)/1(A1))xa, and ¢,=0, where x, is the characteristic function of a
subset 4 of 4. Let f be any function in Rp(4y). Since R € Oup, Hy is
reduced to a constant. Hence it follows from (a) in Lemma 17 that f equals
a constant x-almost everywhere on 4. Thus for any constant u, (u, H;)=0

= — S(blfd,él: — Sg[)zfdﬂ. This shows that both ¢, and ¢, are normal deriva-

tives of u on 4. However ¢, is not equal to ¢, on a set of positive x#-mea-
sure.

§6 Extremal length and Green lines

In this section we assume that all compactifications are metrizable.

6.1 Family of curves and extremal length

In the following we consider only locally rectifiable curves and call them
curves for simplicity. Let ¢ be a curve on R. Then there exists a parame-
terization z=2(¢) (0<¢t<1) of ¢ such that z=2z(¢) is non-constant on any sub-
interval of (0,1). We always consider such a parameterization of ¢ and call
it a parameterization of ¢ for simplicity. We shall say that a curve ¢ on
R meets a subset 4 of R infinitely many times if there are a parameteriza-
tion z=2(¢) (0<t<1) of ¢ and a sequence {¢,};-, of real numbers such that
0<t,<tyy1 (n=1,2,...), lim¢,=1and z(¢,) € A(n=1,2,...).

We shall say that a curve ¢ on R starts at a point in R and tends to the
ideal boundary of R if there is a parameterization z=2z(t) (0<t<1) of ¢
satisfying the following:

(1) N4z(); 0<t<e} is a single point in R.

£>0

(i) N{z(t); 1—e<t<1} is empty.

£>0

Let {F,};-; be a sequence of regular closed sets in R such that F,DF,.;
(n=1,2,...) and [\F =@. Let ¢ be a curve on R which starts at a point in

R and tends to the ideal boundary of R. We shall say that ¢ tends to the
ideal boundary of R along {F,};_, if there is a parameterization z=z(t) (0<
t<1) satisfying (i) and (ii) and a sequence {t,};-, of real numbers such that
0<t,<tns1, lime¢,=1 and z(¢) € F, for t >t,.

n—roo
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The extremal length (or module) of a family C of curves on R is defined
as follows (cf. [17]). A non-negative Borel measurable linear density

o(z)| dz| is called admissible in association with C if S 0(z)|dz| =1 for each

c € C, and the module M(C) of C is defined by infSSpgdxd y, where inf is taken
over all admissible p(z)|dz| and z=x+iy is a local parameter. The extre-
mal length 2(C) of C is defined by 1/M(C). We say that almost every curve
on R has a property if the module of the family of exceptional curves vani-
shes.

Properties of modules:
(a,) If C.C Cz, then M(Cl)gM(Cz>

(b) M(\JC)= T MCy).

LemmA 18. Let F, and F, be regular colsed sets in R and C be the family
of all curves on R each of which meets both F, and F, infinitely many times.
If FOINFP=0, then M(C)=0.

Proor. We can find a function fin BCD such that f=0 on F, and =1
on F,. We set u=jf""Y":. Then it can be seen that ¢|grad u(z)||dz| is
admissible in association with C for any ¢>0. Thus we have

M(C)gezgglgrad w|Pdxdy=eull.

Since [lu||=<||f||<oc and ¢ is arbitrary, we obtain that M(C)=0.
The following lemma is due to A. Pfluger [18].

Lemma 19. Let K be a closed set on |z| =1. Then the extremal length of
the family of all curves in 1/2<|z| <1 which connect the points of K to the
points of |z| =1/2 is infinite 1.f and only if the logarithmic capacity of K is
zero.

Prorosition 11.  Let K, be a closed disk in R. Let F, and F, be regular
closed subsets of Ry=R— K, such that F1N\F;=@. Let C be a family of curves
on R starting at points of K, and tending to the ideal boundary of R. If each
member ¢ in C meets both F, and F, infinitely many times, then M(C)<
2nC(FPNFD).

Proor. Applying Lemma 8 with u=1, A=F?NF? and U,=R}—K,, we
obtain a sequence {0,};-, of regular closed sets in R, such that each 62 is a
neighborhood of F?NFZ in R}, N\6,=9, R—06.PN62.,=0 and 15, decreases

— _ n=1 o
to a(FPNFY). For each n, we set C,={ceC; cNd,=0} and C,=\JC,.
n=1
Since F,—0:PNF,—0iP=0, it follows from Lemma 18 that M(C,)=0. Hence

M(CH< f} M(C,)=0. Since each member of C—C, meets all ¢,, |grad 15 |
n=1
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| dz| is admissible in association with C—C,. Hence we have M(C—C,) <
II15,]1> (n=1,2,...) Thus we obtain.

M) Z=M(C—Co)+M(C)H)=M(C—Co)<|15]* (n=1,2,..).
By letting n—co, we obtain that
M) = |la(FPNF))|P=2rC(FPNFY).

CoroLrary. If C(FPNFD)=0, then M(C)=0.

6.2 Green lines and Dirichlet problems

For the following notation and definitions, we refer to M. Brelot-G.
Choquet [1]. We denote by g.(z)= g(a, z) the Green function of R with pole
at a € R. Let ao be a fixed point in R and let go(z)=g,(2). We consider
Green lines in R determined by g,. Then the set L of all Green lines admits
the Green measure g. By definition, g is a complete measure. A Green line
1 for which 1nf go(a)=0 1is called a regular Green line. Any regular Green

line tends to the ideal boundary of R as gy—0. The set of all regular Green
lines will be denoted by L,. It is known (cf. [17]) that L, is a Gs-set in L and
g(L—L,)=0. We shall say that almost every [ € L, has a property if the
Green measure of the family of exceptional Green lines vanishes.

Given a real-valued function f on R and € L,, let lim f (resp. lim f)
denote the upper limit lim f(a) (resp. the lower limit 111[; f(a)).l If
lim f=lim £, then we ;;;g’oc(ﬁ;’s f has a limit along [. L(::t€ lg’/;gli;[g;)n extended
réal-valu;d function on L,. We define

)

s; superharmonie, bounded below on R,

lims=¢(l) for almost every /€L,
l
and
Fo={—s;s€F_,}.

Let Z,(a)=inf{s(a); s € #,} and Z,(a)=sup{s(a); s€ #,} (a€ R). Then it is
known ([1]) that #,(resp. g,) is either harmonic, =+ ccor =—c. Ifg,=g,
and are harmonic, then we write ¥,=%,=9,. It is known ([1]]) that

7,600 = [pdg=lpds=a,a).

Lemma 20. Let f be a function in BC such that it has a limit ¢(1) along
almost every 1 € L,. Then we have
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(@) If fisa function in BCW, then ¢,=h; and

[6dg=90a0=hta0).

(b) If fis a function in BCW,, then ¢(1)=0 for almost every [ € L,.

Proor. (a) Since ¥ ;C#,and #;C F,, we obtain that b, <¢,<2,<h;,.
Hence we have (a). Then, (b) is obvious.

Let ¢, be a real number such that Ko,={z; go(z) =t,} is compact in R and
|grad go| #0 on Ky—{a,}. We shall call such a compact set K, a Green disk
with center at a;. For a subset 4 of L,, we denote by A(K,) the family of
curves consisting of the restrictions of / € 4 to R—K,.

The following lemma is due to M. Ohtsuka [16].

Lemma 21, Let Abe a subset of L,. Then g(A)=0 if and only if M(A(K,))
=0.

Let K, be a compact Green disk with center at o, and let R,=R—K,.
Although the following propositicn follows from a result by M. Nakai ([14;
Proposition 4.17]), we shall give an alternative proof.

Prorosition 12. Let Fy and F; be regular closed subsets of R, such that
FiNF;=0. Let Abe a subfamily of L, whose member meets both Fy and F,
infinitely many times. Then we have

M) = 0l (FYNFD),
where g means the outer measure induced by g.

Proor. Let {6,};-, be as in the proof of Proposition 11. We set 4,=
{led; INo,=0), Ao=\=/1/1n, A,={l € A—4,; | meets Ry—0} infinitely many

times} and JO:OA;. As in the proof of Proposition 11, Lemma 18 implies
n=1

M(Ay(K))=0. Since Ry—02N2,, =@ and A,NA,.1=9, we have M(A,(K,))
=0, n=1, 2,..., again by Lemma 18. Hence M(A4,(K,))=0, and hence M(4,(K,)
Udy(Ko))=0. Since every € A—(A4y\UAy) tends to the ideal boundary of R
along {0.}5-1, 15, € Zx,_ o0z (=1, 2,...). Thus we have

0= g_(A—(/foUAo))gf?xA_uou 70)(ao)§18"(ao)
(n=1,2,...). By letting n—>co, we obtain that
M) < g(U—(Ay\UA40)) + g(Ao\J Ag) < 0B(FPNFD).

CoroLLARY. If o®(FPNF})=0, then g(4)=0.
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6.3 Separative conditions (£) and (G).

DeriniTion 6. We shall say that a resolutive compactification R* of R
satisfies condition (E) if almost every curve on R which starts at a point in
R and tends to the ideal boundary of R, has exactly one limit point in 4.

Definition 7. We shall say that a resolutive compactification R* of R
satisfies condition (G) if, for every a,, almost every Green line tends to one
point in 4.

Remark: (i) By Lemma 21, condition (E) implies condition (G).
(ii) The condition (G) is said to be Green-compatible in [157].

The following results are known

Lemma 22 ((11; Theorem 1] and [16; Theorem 17J).

(@) If Q is a countable subfamily of BC such that each f € Q has a limit
almost along every [ € L,, then R} satisfies condition (G).

(b) If Q is a countable subfamily of BC such that each f € Q has a limit
along almost every curve which starts at a point in R and tends to the ideal
boundary of R, then R} satisfies condition (E).

Tueorem 11. The H.D. separativeness implies condition (E).

Proor. Since R* is assumed to be metrizable, we can find a countable
subfamily Q of BC such that R*=R}. Let K, be a closed disk in R. We
denote by C the family of all curves on R which starts at a point in K, and
tends to the ideal boundary of R. Since R is covered by a countable family
of closed disks, by (b) in Lemma 22, it is sufficient to prove that each f € Q
has a limit along almost every curve in C. Let f be any non-constant func-
tion in Q. We may assume that inf f=0and sup f=1. Letr and ' be two
rational numbers such that 0<r<r'<1. Weset C,, ={c € C; ¢ meets both
{f<r} and {f=r'} infinitely many times}. Since {f<r}*"\{f=r}*=0 in
R%, it follows from the Corollary to Proposition 11 and H.D. separativeness
that M(C,,)=0. Hence M(UC, o )<ZM(C, »)=0. Since f has a limit

along every curve c € C— \/C, 5 We see that f has a limit along almost every
curve in C.

By virtue of Theorem 3 in [197], this theorem implies the following re-
sults by M. Ohtsuka [16; Theorem 1 and Theorem 27]:

CoroLLarY 1. If Q is a countable subfamily of BCD and Q separates
points of 4, then almost every curve on R which starts at a point in R and
tends to the ideal boundary, converges to a point in 4.

CoroLLARY 2. Ewery function in BCD has a limit along almost every
curve which has the property in Corollary 1.
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Using the Corollary to Proposition 12 and (a) in Lemma 22, we can prove
the following theorem by the same method as Theorem 11:

TureoreMm 12. The H.M. separativeness implies condition (G).

CororrLArY 1 ([117]). Almost every Green line converges to a point of the
Kuramocht boundary.

CororrLARY 2 ((5] and [147]). Ewvery fumnction in BCD has a limit along
almost every Green line.

Remark: We do not use the result by M. Godefroid ([5]) to obtain the
above Corollary 1 (cf. [117]).

Tueorem 13. (a) The H.M. separativeness does not imply condition (E).
(b) Regularity does not imply condition (E).

Proor. (a) Let R={|z|<1}. Let K be a closed set on |z|=1 such
that the logarithmic capacity of K is positive and the harmonic measure of K
with respect to R is zero. Since K is compact in D={|z| <2}, there exists
a sequence {K,}:; of regular compact sets in D such that 0K,N{|z| =1}
consists of a finite number of points, K:DK,., (n=1, 2,...) and /“\ K,=K.
We set F,=K,NR for each n. Then 1; >0 as n—oco by the assunmlption on
K. Since R—FIPNF2,,=0 (n=1,2,...), we obtain functions f, in BCD and
f in BCW as in Proposition 2. We set Q={f} and consider R§. By the
same method as the proof of Example 3, (a), we see that R} is H.M. separa-
tive. Next we shall prove that R} does not satisfy condition (E). Let Ko=
{|z] <1/2} and C be the family of all curves in R—K, which connect the
points of 0K, to the points of K. Then, by Lemma 19, we have A(C)<oo.
Let ¢ be any curve in C. Then ¢ meets all 0F,. Since f(z)=1 for z € 0F5
and =0 for z€0F;,_, (k=1,2,...), ¢ does not converge to a point of 4.
Therefore, R} does not satisfy condition (E).

(b) Since R—F"NFY,,=0 (1,2,..), we now take functions f, and f
in BCW constructed in the proof of Proposition 2 for this {F,};.,. Weset
Q={f} and consider R¥. By a discussion similar to the above, we see that
R} does not satisfy condision (E). We shall prove that R} is regular. Since
0K,N{|z| =1} consists of a finite number of points, by the definition of f,

we see that lim £,()=0 if &€ {|z| =1}~ \J0Kz—K. Tt follows that lim f,
z— k=1 lJ

=0 for almost all /¢ L,. Hence ¥, =0 for each n, and hence A, =0 by
Lemma 20 for each n. Thus, by the Corollary to Proposition 2, we see that
f € BCW,. Therefore, R} is regular by Proposition 9.

CoroLrary. Condition (G) does not imply condition (E).

Finally, summarizing the above results, we have the following implica-
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tion diagram for metrizable compactifications: Diagram 2.

[1]
[2]
[3]
(4]
(5]
[6]
(7]
(8]
(9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]
[19]

(D)= (HD) =2 (HM) =>(W)

=

(E)——(6)

(R)

Diagram 2.
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