Immersions and Embeddings of Lens Spaces

Teiichi Kobayashi

(Received September 20, 1972)

§1. Introduction

Throughout this note q will denote an odd integer >1, and n a positive integer. Let $L^{n}(q)$ be the $(2 n+1)$-dimensional standard lens space $\bmod q$, and let $L^{\infty}(q)$ be $\bigcup_{n} L^{n}(q)$, which is the Eilenberg-MacLane space $K\left(Z_{q}, 1\right)$, where Z_{q} is a cyclic group of order q. Denote by $\iota\left(\epsilon H^{1}\left(K\left(Z_{q}, 1\right) ; Z_{q}\right) \cong Z_{q}\right)$ the fundamental class of $K\left(Z_{q}, 1\right)$. The element $y_{n}\left(\epsilon H^{1}\left(L^{n}(q) ; Z_{q}\right) \cong Z_{q}\right)$ is called the distinguished generator if $y_{n}=i^{*} \iota$, where $i^{*}: H^{1}\left(K\left(Z_{q}, 1\right) ; Z_{q}\right) \rightarrow$ $H^{1}\left(L^{n}(q) ; Z_{q}\right)$ is the isomorphism induced by the natural inclusion $i: L^{n}(q) \rightarrow$ $L^{\infty}(q)=K\left(Z_{q}, 1\right)$.

For a given $d \epsilon Z_{q}$, a continuous map $f: L^{n}(q) \rightarrow L^{m}(q)$ is said to have degree $d(=\operatorname{deg}(f))$, if $f^{*} y_{m}=d y_{n}$, where $f^{*}: H^{1}\left(L^{m}(q) ; Z_{q}\right) \rightarrow H^{1}\left(L^{n}(q) ; Z_{q}\right)$ is the homomorphism induced by f, and where y_{n} and y_{m} are the distinguished generators. If $n<m$, the set of homotopy classes of maps of $L^{n}(q)$ in $L^{m}(q)$ is in one-to-one correspondence with $H^{1}\left(L^{n}(q) ; Z_{q}\right)\left(\cong Z_{q}\right)$. Thus the homotopy class of a map $f: L^{n}(q) \rightarrow L^{m}(q), n<m$, is completely characterized by $\operatorname{deg}(f)$.

The first purpose of this paper is to consider the question: "Which homotopy classes of continuous maps $L^{n}(q) \rightarrow L^{m}(q)$ contain a differentiable immersion (or a differentiable embedding)?"
S. Feder has investigated in [2] the question on complex projective spaces and H. Suzuki has studied in [10] and [11] the question in the case of higher order non-singular immersions for projective spaces. The problem for general manifolds is treated by E. Thomas [13], [14] and M. Adachi [1].

By the work of M. W. Hirsch [3] and D. Sjerve [8] we see that any map $L^{n}(q) \rightarrow L^{m}(q)$ is homotopic to an immersion for $m \geqq n+[n / 2]+1$ if q is odd (cf. §2). For $m \leqq n+[n / 2]$, we have the following results.

Theorem A. Let q be an odd integer >1, and let k be an integer with $0<$ $k \leqq[n / 2]$. If a map $f: L^{n}(q) \rightarrow L^{n+k}(q)$ with degree d is homotopic to an immersion, then

$$
\sum_{i+j=k}(-1)^{i}\binom{n+i}{i}\binom{n+k+1}{j} d^{2 j}
$$

is a quadratic residue $\bmod q$.

Corollary A. If $(-1)^{[n / 2\rceil}\binom{n+[n / 2]}{[n / 2]}$ is not a quadratic residue $\bmod q$, then a map $L^{n}(q) \rightarrow L^{n+[n / 2]}(q)$ with degree 0 is not homotopic to an immersion.

Theorem B. Let p be an odd prime, and let k be an integer such that $0<k$ $<[n / 2]$. Assume that $\binom{n+l}{j} \neq 0 \bmod p$ for some l and j with $k<l \leqq j \leqq$ [n/2]. Then a map $f: L^{n}(p) \rightarrow L^{n+k}(p)$ is homotopic to an immersion if and only if $\operatorname{deg}(f)= \pm 1$.

Corollary B. Suppose p is an odd prime and $\binom{n+[n / 2]}{[n / 2]} \neq 0 \bmod p$. Then a map $f: L^{n}(p) \rightarrow L^{n+[n / 2]-1}(p)$ is homotopic to an immersion if and only if $\operatorname{deg}(f)= \pm 1$.

According to D. Sjerve [9, Th. (4.7)], for an odd prime p there are examples of immersions of $L^{n}(p)$ in $L^{n+[n / 2]-1}(p)$ with degree 0 , if $\binom{n+[n / 2]}{[n / 2]} \equiv 0$ $\bmod p$.

As for embeddings, we get the following
Theorem C. Let q be an odd integer >1, and let k be an integer with $0<$ $k \leqq[n / 2]$. If a map $f: L^{n}(q) \rightarrow L^{n+k}(q)$ with degree d is homotopic to an embedding, then the following congruence holds:

$$
\sum_{i+j=k}(-1)^{i}\binom{n+i}{i}\binom{n+k+1}{j} d^{2 j} \equiv d^{2 n+2 k+2} \quad \bmod q
$$

Corollary C. If $\binom{n+[n / 2]}{\left[n / 2^{-}\right]} \neq 0 \bmod q$, then a $\operatorname{map} L^{n}(q) \rightarrow L^{n+[n / 2]}(q)$ with degree 0 is not homotopic to an embedding.

It is well-known that for an odd integer q there is no embedding of $L^{n}(q)$ in Euclidean $2 n+2[n / 2]+1$ space $R^{2 n+2[n / 2]+1}$ if $\binom{n+[n / 2]}{[n / 2]} \equiv 0 \bmod q$.

The second object of this note is to discuss the embeddability of $L^{n}(5)$ in Euclidean space. We have

Theorem D. If $n=3 \cdot 5^{t+1}+5^{t}$, then $L^{n}(5)$ cannot be embedded in $R^{3 n+2}$.
Recently, E. Rees has proved in [7, Th.1] that a smooth odd torsion manifold M of dimension m (i.e., a closed, smooth m-manifold such that $H_{i}(M ; Z) \otimes Z_{2}=0$ for $\left.0<i<m\right)$ can be embedded in R^{r} for every $r \geqq 3(m+1) / 2$. The result of E . Rees is seen to be the best possible general result for odd dimensional manifolds by the above theorem, because the mod 5 lens space is an odd torsion manifold.

In $\S 2$ some preliminaries are given. The proofs of Theorems A and B are carried out in $\S 3$, and Theorem C is proved in $\S 4$, by the technique of
S. Feder [2, Part I]. In §5 we verify Theorem D by making use of W.S. Massey's subalgebra (cf. [4], [5] and [6]).

§2. Preliminaries

Let X be a finite $C W$-complex. It is said that a stable bundle $\alpha \in \widetilde{K O}(X)$ has geometric dimension $\leqq k$ if there is a k-plane bundle β over X such that $\alpha+k=\beta$. For a smooth manifold M we denote by $\tau(M)$ the tangent bundle and $\tau_{0}(M)(=\tau(M)-\operatorname{dim} M)$ the stable tangent bundle. The following theorem of M.W. Hirsch [3] reduces the problem to that in homotopy theory.
(2.1) Theorem (M.W. Hirsch). Let N and M be smooth manifolds with $\operatorname{dim} N<\operatorname{dim} M$, and $f: N \rightarrow M$ be a continuous map. Then f is homotopic to an immersion if and only if the stable bundle $f \tau_{0}(M)-\tau_{0}(N)$ has geometric dimension $\leqq \operatorname{dim} M-\operatorname{dim} N$.

As for the geometric dimension of the stable bundle over the lens space, D. Sjerve [8] obtains the following result.
(2.2) Theorem (D. Sjerve). Let q be an odd integer >1, and $\pi: S^{2 n+1} \rightarrow$ $L^{n}(q)$ be the natural projection. If $\xi \in \widetilde{K O}\left(L^{n}(q)\right) \cap \operatorname{Ker} \pi^{\prime}$, then $\mathrm{g} \cdot \operatorname{dim} \xi \leqq$ $2[n / 2]+1$.

The next result is a consequence of (2.1) and (2.2).
(2.3) Proposition. Suppose q is odd. If $m \geqq n+[n / 2]+1$, any map f : $L^{n}(q) \rightarrow L^{m}(q)$ is homotopic to an immersion.

Proof. By (2.1) it is sufficient to show that the stable bundle $f^{!} \tau_{0}\left(L^{m}(q)\right)$ $-\tau_{0}\left(L^{n}(q)\right)$ has geometric dimension $\leqq 2 m-2 n$.

There is a map \bar{f} which satisfies the following commutative diagram :

where π and π^{\prime} are the natural projections. Thus we have

$$
\begin{gathered}
\pi!\left(f^{!} \tau_{0}\left(L^{m}(q)\right)-\tau_{0}\left(L^{n}(q)\right)\right)=\bar{f}!\pi^{\prime!} \tau_{0}\left(L^{m}(q)\right)-\pi!\tau_{0}\left(L^{n}(q)\right) \\
=\bar{f}!\tau_{0}\left(S^{2 m+1}\right)-\tau_{0}\left(S^{2 n+1}\right)=0,
\end{gathered}
$$

since the sphere is stably parallelizable. Hence, by (2.2),

$$
\mathrm{g} \cdot \operatorname{dim}\left(f^{!} \tau_{0}\left(L^{m}(q)\right)-\tau_{0}\left(L^{n}(q)\right)\right) \leqq 2[n / 2]+1<2 m-2 n . \quad \text { q.e.d. }
$$

Let $\triangle: H^{1}\left(L^{n}(q) ; Z_{q}\right) \rightarrow H^{2}\left(L^{n}(q) ; Z_{q}\right)$ be the Bockstein homomorphism associated with the coefficient sequence: $0 \rightarrow Z_{q} \rightarrow Z_{q^{2}} \rightarrow Z_{q} \rightarrow 0$. For the distinguished generator $y_{n} \in H^{1}\left(L^{n}(q) ; Z_{q}\right)$, put $x_{n}=\triangle y_{n} \in H^{2}\left(L^{n}(q) ; Z_{q}\right)$, which is also called the distinguished generator. Since the Bockstein homomorphism is natural for maps and the above Δ is isomorphic, we have
(2.4) Lemma. A map $f: L^{n}(q) \rightarrow L^{m}(q)$ has degree $d \in Z_{q}$ if and only if $f^{*} x_{m}=d x_{n}$.

Hereafter, we shall omit the subscripts and write x and y instead of x_{n} and y_{n}, respectively.

As is well-known, the cohomology algebra $H^{*}\left(L^{n}(q) ; Z_{q}\right)$ is the tensor product of the exterior algebra on y and the truncated polynomial algebra on x with relations: $\Delta y=x$ and $x^{n+1}=0$.

The $\bmod q$ Pontrjagin class p_{i} and $\bmod q$ dual Pontrjagin class \bar{p}_{i} of $L^{n}(q)$ are given by the following equations [12, Cor. 3.2]:

$$
\begin{align*}
& p=\sum_{i=0}^{[n / 2]} p_{i}=\left(1+x^{2}\right)^{n+1}, \tag{2.5}\\
& \bar{p}=\sum_{i=0}^{[n / 2]} \bar{p}_{i}=\left(1+x^{2}\right)^{-n-1}=\sum_{i=0}^{[n / 2]}(-1)^{i}\binom{n+i}{i} x^{2 i} . \tag{2.6}
\end{align*}
$$

§ 3. Immersions of $L^{n}(q)$ in $L^{m}(q)$
(3.1) Lemma. Let $g: L^{n}(q) \rightarrow L^{n+k}(q), k>0$, be an immersion with degree $d \in Z_{q}$. Denote by $\nu(g)$ the normal bundle of g. Then the Pontrjagin class $p(\nu(g))$ is given by the following:

$$
\begin{aligned}
p(\nu(g)) & =\sum_{t=0}^{[n / 2]}\left\{\sum_{i+j=t}(-1)^{i}\binom{n+i}{i}\binom{n+k+1}{j} d^{2 j}\right\} x^{2 t} \\
& =\sum_{i=0}^{[n / 2]}\binom{n+k+1}{i}\left(d^{2}-1\right)^{i} x^{2 i}\left(1+x^{2}\right)^{k-i} .
\end{aligned}
$$

Proof. By the assumption we have the Whitney sum decomposition:

$$
\nu(g) \oplus \tau\left(L^{n}(q)\right)=g^{!} \tau\left(L^{n+k}(q)\right)
$$

Since $H^{*}\left(L^{n}(q) ; Z\right)$ has no 2-torsion for odd q, it holds that

$$
p(\nu(g)) p\left(\tau\left(L^{n}(q)\right)\right)=g^{*} p\left(\tau\left(L^{n+k}(q)\right)\right)
$$

By (2.5) and (2.4), we obtain

$$
p(\nu(g))=\left(g^{*}\left(1+x^{2}\right)^{n+k+1}\right)\left(1+x^{2}\right)^{-n-1}=\left(1+d^{2} x^{2}\right)^{n+k+1}\left(1+x^{2}\right)^{-n-1}
$$

$$
\begin{aligned}
& =\sum_{j=0}^{[n / 2]}\binom{n+k+1}{j} d^{2 j} x^{2 j} \sum_{i=0}^{[n / 2]}\binom{-n-1}{i} x^{2 i} \\
& =\sum_{t=0}^{[n / 2]}\left\{\sum_{i+j=t}(-1)^{i}\binom{n+i}{i}\binom{n+k+1}{j} d^{2 j}\right\} x^{2 t} .
\end{aligned}
$$

Also we have

$$
\begin{align*}
p(\nu(g)) & =\left(1+x^{2}+\left(d^{2}-1\right) x^{2}\right)^{n+k+1}\left(1+x^{2}\right)^{-n-1} \\
& =\sum_{i=0}^{[n / 2]}\binom{n+k+1}{i}\left(d^{2}-1\right)^{i} x^{2 i}\left(1+x^{2}\right)^{k-i}
\end{align*}
$$

Proof of Theorem A. Suppose that the map f is homotopic to an immersion $g: L^{n}(q) \rightarrow L^{n+k}(q)$. Then $\operatorname{deg}(g)=\operatorname{deg}(f)=d$. Let $\nu(g)$ be the normal bundle of g. By (3.1) we have

$$
p_{k}(\nu(g))=\sum_{i+j=k}(-1)^{i}\binom{n+i}{i}\binom{n+k+1}{j} d^{2 j} x^{2 k} .
$$

On the other hand, $p_{k}(\nu(g))=x(\nu(g))^{2}$, where $x(\nu(g))$ is the Euler class of $\nu(g)$. Thus we obtain the desired result.
q.e.d.

Let $S^{2 n+1}=\left\{\left(z_{0}, \ldots,\left.z_{n} \in C^{n+1}\left|\sum_{i=0}^{n}\right| z_{i}\right|^{2}=1\right\}\right.$ be the unit sphere in complex $(n+1)$-space C^{n+1}. The image of $\left(z_{0}, \cdots, z_{n}\right)$ by the natural projection $S^{2 n+1} \rightarrow$ $L^{n}(q)$ is denoted by $\left[z_{0}, \cdots, z_{n}\right]$.

Proof of Theorem B. Suppose that the map f is homotopic to an immersion $g: L^{n}(p) \rightarrow L^{n+k}(p)$. Then $\operatorname{deg}(g)=\operatorname{deg}(f)=d$. Let $i: L^{n+k}(p) \rightarrow$ $L^{n+l-1}(p)$ be the standard inclusion defined by $i\left[z_{0}, \cdots, z_{n+k}\right]=\left[z_{0}, \cdots, z_{n+k}\right.$, $\left.\frac{l-k-1}{0, \cdots, 0}\right]$. Then, clearly, the composite map $i g: L^{n}(p) \rightarrow L^{n+l-1}(p)$ is an immersion with degree d. Since the normal bundle $\nu(i g)$ is ($2 l-2$)-dimensional and p is odd, we must have $p_{j}(\nu(i g))=0$ for $j \geqq l$. Thus it follows from the second equality of (3.1) that

$$
p_{j}(\nu(i g))=\sum_{i=l}^{j}\binom{n+l}{i}\binom{l-1-i}{j-i}\left(d^{2}-1\right)^{i} x^{2 j}=0, \quad j \geqq l .
$$

A simple calculation shows that, for any j with $l \leqq j \leqq[n / 2]$,

$$
\binom{n+l}{j}\left(d^{2}-1\right)^{j} \equiv 0 \quad \bmod p
$$

By the assumption, we see that $d= \pm 1$, because p is a prime.
Conversely, if $\operatorname{deg}(f)=1, f$ is homotopic to the standard inclusion which is obviously an immersion with degree 1 , and if $\operatorname{deg}(f)=-1, f$ is homotopic to the map $t: L^{n}(p) \rightarrow L^{n+k}(p)$ defined by $t\left[z_{0}, \ldots, z_{n}\right]=\left[\bar{z}_{0}, \ldots, \bar{z}_{n}, \widetilde{0, \ldots, 0}\right]$ which is seen to be an immersion with degree -1 . q.e.d.
§4. Embeddings of $L^{n}(q)$ in $L^{m}(q)$
(4.1) Lemma. If $g: L^{n}(q) \rightarrow L^{n+k}(q), k>0$, is an embedding with degree d, then the $\bmod q$ Euler class $x(\nu(g))$ of the normal bundle $\nu(g)$ of g is equal to $d^{n+k+1} x^{k}$.

Proof. Let $g_{*}: H^{0}\left(L^{n}(q) ; Z_{q}\right) \rightarrow H^{2 k}\left(L^{n+k}(q) ; Z_{q}\right)$ be the Gysin homomorphism defined by the following commutative diagram:

where the vertical maps are the Poincare duality isomorphisms, and the lower horizontal map is the homomorphism induced by g. Then, according to S . Feder [2, Th. 1.3], we have

$$
x(\nu(g))=g^{*} g_{*}(1)=g^{*}\left(d^{n+1} x^{k}\right)=d^{n+k+1} x^{k},
$$

by (4.2), (2.4) and the definition of the degree.
q.e.d.

Proof of Theorem C. Suppose that the map f is homotopic to an embedding $g: L^{n}(q) \rightarrow L^{n+k}(q)$. Then $\operatorname{deg}(g)=\operatorname{deg}(f)=d$. By the first equality of (3.1) we have

$$
p_{k}(\nu(g))=\sum_{i+j=k}(-1)^{i}\binom{n+i}{i}\binom{n+k+1}{j} d^{2 j} x^{2 k}
$$

On the other hand, (4.1) shows that

$$
p_{k}(\nu(g))=\chi(\nu(g))^{2}=d^{2 n+2 k+2} x^{2 k} .
$$

Thus we get the desired formula. q.e.d.

§ 5. Embeddability of $L^{n}(5)$ in R^{m}

First, we recall the properties of W.S. Massey's subalgebra. Suppose that a compact, connected, smooth manifold M of dimension m is embedded differentiably in $(m+l)$-sphere S^{m+l}. Let E be the total space of the normal S^{l-1} bundle associated with the embedding, and let $p: E \rightarrow M$ be the projection. Then there is a subalgebra $A^{*}=\Sigma A^{i}$ of $H^{*}\left(E ; Z_{q}\right)$ satisfying the following properties (cf. [4] and [5]):
(5.1) A^{*} is closed under cohomology operations.
(5.2) The following direct sum decomposition holds:

$$
H^{i}\left(E ; Z_{q}\right)=p^{*} H^{i}\left(M ; Z_{q}\right)+A^{i}, \quad 0<i<m+l-1
$$

$$
\begin{equation*}
A^{i}=0 \quad \text { for } i \geqq m+l-1 \tag{5.3}
\end{equation*}
$$

Proof of Theorem D. Suppose that $L^{n}(5)$ is embedded differentiably in $R^{3 n+2}$. We may assume that $L^{n}(5)$ is embedded differentiably in $S^{3 n+2}$. Let E be the total space of the normal S^{n}-bundle associated with the embedding, and let $p: E \rightarrow L^{n}(5)$ be the projection. Then there exists a subalgebra $A^{*}=$ ΣA^{i} of $H^{*}\left(E ; Z_{5}\right)$ which satisfies the properties (5.1-3) for $M=L^{n}(5)$ and $l=$ $n+1$.

Since the Euler class of the normal bundle of the embedding vanishes, the Gysin sequence breaks up into pieces of length 3 as follows:

$$
0 \longrightarrow H^{i}\left(L^{n}(5) ; Z_{5}\right) \xrightarrow{p^{*}} H^{i}\left(E ; Z_{5}\right) \xrightarrow{\psi} H^{i-n}\left(L^{n}(5) ; Z_{5}\right) \longrightarrow 0 .
$$

Let $a \in H^{n}\left(E ; Z_{5}\right)$ be an element such that $\psi(a)=1 \in H^{0}\left(L^{n}(5) ; Z_{5}\right)$. Then we have the following direct sum decomposition (cf. [4, §8]):

$$
\begin{equation*}
H^{i}\left(E ; Z_{5}\right)=p^{*} H^{i}\left(L^{n}(5) ; Z_{5}\right)+a \cdot p^{*} H^{i-n}\left(L^{n}(5) ; Z_{5}\right) \tag{5.4}
\end{equation*}
$$

We may assume that $a \in A^{n}$. Then, by (5.1), $a^{2} \in A^{2 n}$. By (5.4), there exist unique elements $\alpha \in H^{2 n}\left(L^{n}(5) ; Z_{5}\right)$ and $\beta \in H^{n}\left(L^{n}(5) ; Z_{5}\right)$ such that

$$
\begin{equation*}
a^{2}=p^{*} \alpha+a \cdot p^{*} \beta \tag{5.5}
\end{equation*}
$$

According to [4, Th. IV], it holds that $4 \alpha+\beta^{2}=\bar{p}_{n / 2}$, and hence

$$
\begin{equation*}
\beta^{2}=x^{n}+\alpha \tag{5.6}
\end{equation*}
$$

because $\bar{p}_{n \mid 2}=x^{n}$. It follows from (5.2) and (5.4) that

$$
\begin{equation*}
A^{i} \cong H^{i-n}\left(L^{n}(5) ; Z_{5}\right) \cong Z_{\overline{5}} \quad \text { for } n \leqq i \leqq 3 n \tag{5.7}
\end{equation*}
$$

Note that $\alpha= \pm x^{n}, \pm 2 x^{n}$ or 0 . If $\alpha=x^{n}$ or $2 x^{n}$, then $\beta^{2}=2 x^{n}$ or $-2 x^{n}$, respectively, by (5.6). But this is impossible. If $\alpha=-x^{n}$, then $\beta=0$, by (5.6), and so, $a^{2}=-p^{*} x^{n} \neq 0$, by (5.5). This is inconsistent with the fact that $a^{2} \epsilon A^{2 n}$ and the direct sum decomposition (5.2).

Assume that $\alpha=-2 x^{n}$. Then, by (5.6), $\beta= \pm 2 x^{n / 2}$. Thus, by (5.5),

$$
a^{2}=p^{*}\left(-2 x^{n}\right)+a \cdot p^{*}\left(\pm 2 x^{n / 2}\right)
$$

Let $p^{*} u+a \cdot p^{*} x^{n / 2} y$ be a non-zero element of $A^{2 n+1}$, where $u \in H^{2 n+1}\left(L^{n}(5) ; Z_{5}\right)$. Then $a\left(p^{*} u+a \cdot p^{*} x^{n / 2} y\right)=a \cdot p^{*}\left(u \pm 2 x^{n} y\right) \in A^{3 n+1}$. Since $A^{n} \cdot A^{2 n+1} \subset A^{3 n+1}=0$ by (5.3), we have $u=\mp 2 x^{n} y$. Therefore, we see, by (5.7), that $A^{2 n+1}$ is generated by $p^{*}\left(\mp 2 x^{n} y\right)+a \cdot p^{*} x^{n / 2} y$.

Put $s=n / 8=2 \cdot 5^{t}$, and let $\mathscr{P}^{s}: A^{n} \rightarrow A^{2 n}$ be the reduced power operation $\bmod 5$. According to [6, Th. 1], we have

$$
\mathscr{P}^{s} a=p^{*} \alpha_{s}+a \cdot p^{*} Q_{s}
$$

where α_{s} is an element of $H^{2 n}\left(L^{n}(5) ; Z_{5}\right)$, and where $Q_{s} \epsilon H^{n}\left(L^{n}(5) ; Z_{5}\right)$ is the characteristic class defined by $Q_{s}=\phi^{-1} \mathscr{P}^{s} U$ (ϕ is the Thom isomorphism of the normal bundle and U is its Thom class). By an easy calculation, we can see that $Q_{s}=-2 x^{n / 2}$. Finally, consider the operation $\mathscr{P}^{s}: A^{2 n+1} \rightarrow A^{3 n+1}$. Then, $\mathscr{P}^{s}\left(p^{*}\left(\mp 2 x^{n} y\right)+a \cdot p^{*} x^{n / 2} y\right)=a \cdot p^{*} x^{n} y \neq 0$. While, $A^{3 n+1}=0$, by (5.3). This is a contradiction.

In the case $\alpha=0$, we get a contradiction in the same way. q.e.d.

References

[1] M. Adachi, A remark on submersions and immersions with codimension one or two, J. Math. Kyoto Univ. 9 (1969), 393-404.
[2] S. Feder, Immersions and embeddings in complex projective spaces, Topology 4 (1965), 143-158.
[3] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
[4] W. S. Massey, On the cohomolog.y ring of a sphere bundle, J. Math. Mech. 7 (1958), 265-289.
[5] W.S. Massey, On the imbeddability of the real projective spaces in Euclidean space, Pacific J. Math. 9 (1959), 783-789.
[6] R. Nakagawa and T. Kobayashi, Non-embeddability of lens spaces mod 3, J. Math. Kyoto Univ. 5 (1966), 313-324.
[7] E. Rees, Embedding odd torsion manifolds, Bull. London Math. Soc. 3 (1971), 356-362.
[8] D. Sjerve, Geometric dimension of vector bundles over lens spaces, Trans. Amer. Math. Soc. 134 (1968), 545-557.
[9] D. Sjerve, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc. 138 (1969), 97-106.
[10] H. Suzuki, Higher order non-singular immersions in projective spaces, Quart. J. Math. Oxford (2), 20 (1969), 33-44.
[11] H. Suzuki, On higher order non-singular immersions of $R P^{n}$ in $C P^{m}$, J. Fac. Sci. Hokkaido Univ. 22 (1972), 161-170.
[12] R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math. 86 (1964), 685-697.
[13] E. Thomas, On the existence of immersions and submersions, Trans. Amer. Math. Soc. 132 (1968), 387-394.
[14] E. Thomas, Submersions and immersions with codimension one or two, Proc. Amer. Math. Soc. 19 (1968), 859-863.

