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1. The space PD(R) was initially investigated by Royden [10] and Nakai
[77], with more recent contributions also by Nakai [8, 9] and Glasner-Nakai
[2]. It was shown in [2] that the set 4, of P-energy nondensity points
determines the space PD(R) in some sense. In this note we give further
evidence along these lines.

2. Let R be an open Riemann surface and P>>0, P=0 a density on R.
Denote by PD(R) the space of Dirichlet-finite C? solutions on R of the equa-
tion du=Pu. Let M(R) be the class of all Dirichlet-finite Tonelli functions
on R, and M,(R) the set of functions f € M(R) such that f=0 on the Royden
harmonic boundary 4, of the Royden compactification R*. Since PD(R) C M(R),
the orthogonal decomposition of M(R) (cf. eg. Sario-Nakai[117]) yields a vector
space isomorphism 7: PD(R)— HD(R) which preserves the sup norm. The
distribution of PD(R)|4 in HD(R)| 4 is still an important subject for
investigation (cf. Singer [127]).

We shall make essential use of the operator T, given by

Tap=——| Ga(, 2) B P()d(),

where £ is an open subset of R having a smooth relative boundary and Gg(-, 2)
is the harmonic Green’s function on 2, dv(z) = dxdy. It is known that the
Dirichlet integral of Tou for u € PD(R) is given by

Do (Tow) =g Galz, W)u(2)u@)P(:)Pw)dv(z) dvw).
For a comprehensive discussion of the operator T, see Nakai[9]. A P-energy

nondensity point z* is a point of R* with the property that there exists an
open neighborhood U* of z* in R* such that

M [, 6o, PP du() dvw) < oo,

* Similar results have been obtained independently by Professor Wellington H. Ow, “PD-minimal
solutions of 4u=Pu on open Riemann surfaces”, to appear in the Proc. Amer. Math. Soc.
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where U=U*"\R.

8. We observe that the following maximum principle holds for PD-
functions (Glasner-Nakai [27]):

Tueorem 1. If u € PD(R), then sup|u|=sup|u|. Moreover, u|dp>0
R 4
implies u>>0 on R. ?

Proor. For u € PD(R)CM(R), we have u= Tu+ g, where Tu € HD(R)
and g|4=0. Since PD|4—4p=0, the HD-maximum principle implies

sup|u|=sup| Tu|=sup| Tu|=sup|u|=sup|u].
R R 4 4 4p

Furthermore, from Glasner-Katz [1], x>0 on 4 gives ©>>0 on R for u € PD(R).
CororLrLARY. If p€ dp is isolated, then for any u € PD(R), u(p)=# = oo.

Proor. Since u € PD(R) has the decomposition u=u;—uz, u, us € PD(R),
u,up >0 (Nakai [7]), it suffices to consider »>0. Suppose u(p)=co. From
the proof of the next theorem, there exists a function v € PBD(R) such that
v(p)=1, v|4p—{p}=0. Then for each n, u —nv>>0on 4p, and by the maximum
principle, u—nv>0 on R. This leads to the contradiction u(z)=co, z € R.

As a result we have the following characterization of PD(R), which is
analogous to that for HD-functions (Kusunoki-Mori [3]) and for PE-functions
(Kwon-Sario-Schiff [4]).

THEOREM 2. dim PD(R)=n if and only if 4p consists of exactly n points.

Proor. Assume dp={z¥, z¥,---, z¥}. We can find neighborhoods U} of
z¥ with smooth relative boundary such that U} N\ U¥=¢ for i=~j and (1) is
valid for U;, i=1, 2,..., n. Construct a function h; € HBD(U;) such that A;|0U;
=0,0<h;<1lon U; and h; (z¥)=1. Then the Fredholm equation (I— Ty, )u;=h;
has a solution u; on U; such that u; € PBD(U)), u;|0U;=0, 0 <u;<h;<1 on
U;, and u;(zf)=1. Extending u; such that u;|R—U;=0, the extended func-
tion, again denoted by u; is a bounded Dirichlet-finite subsolution, and
u; l AP— U,?k——-O.

Let {2.};-, be a regular exhaustion of R, and let P2~ be a solution on
£, such that P2~|02,=u;|082,. Then P2»>0 and the function

Pir—u; on 2,
wh=
0 on R—2,,
by the weak Dirichlet principle satisfies D(w?) <4Dy;(u;)<oo. Therefore,

w,:lim w7= lpu,'— u;

N—oo
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exists, where Apu; is the canonical extension of u; (cf. Nakai [9]). Since w? €
M4(R), the potential subalgebra (cf. eg. Sario-Nakai [117), w; € M,(R), i.e. v;=
Apu;=u; on 4, and v; € PBD(R), i=1, 2,---,n. Hence v;(z¥)=0;;. At this stage
it is not difficult to see that the functions {vi, v,, -, v,} form a basis for
PD(R). Conversely, if dim PD(R)=n, similarly as in the case of HD(R) and
PE(R), one shows that 4p consists of exactly n points.

As an immediate consequence we have:
CoroLLARY. If 4p consists of n points, dim PBD(R)=dim PD(R)=n.

A positive function u € PD(R) is a PD-minimal function if for v € PD(R),
0 <v <u, there exists a constant c, such that v=c,u. Our next result also
has an analog for HD-minimal functions (Nakai [6]) and for PE-minimal
functions (Kwon-Sario-Schiff [57]).

Tueorem 3. If u is a PD-minimal function, then there exists an isolated
point p € 4p such that 0<u(p) <oo and u|dp—{p}=0. Conversely, if p € 4p is
1solated in Adp, then there exists a PD-minimal function u such that u(p)=1
and u | 4p— {p}'—‘o

Proor. Let u be a PD-minimal function on R. Then dp%~¢ and >0 on
4p. Thus there is a point p € 4p such that u(p)>0. Assume there exists an-
other point ¢ € 4p such that u(¢q) >0. Choose disjoint neighborhoods U,, U,
such that ©>¢>0 on U, and construct a function » € HBD(U,) with h|0U,=
0,0 <A <0 on Uy and k(p)=0. As before, there exists a function w € PBD(U,)
such that 0 <w<h <6 on U,, and w(p)=0. Extending w to w|R—U,=0, the
canonical extension v=1,w belongs to PBD(R), with v|d=w|4. Therefore
v(¢)=0. However, 0 v <6< u on U, whence 0<v <u on 4p, and by the
maximum principle 0 <v <u on R. Thus there exists a constant ¢, with v=
c,u, and v(g) >0, a contradiction. Then u|4p—{p}=0 implies p is isolated.

On the other hand, suppose p is isolated in 4p. As above, there exists a
function u € PBD(R), 0<u <1 on R, u(p)=1,and u|4p—{p}=0. If v € PD(R)
is a function satisfying 0 <"v<u on R, then v|4p—{p} =0 and 0 <v(p) <1
Thus there is a constant c, such that v=c,u on 4p, with the equality holding
on R by the maximum principle. This proves the theorem.

Denote by #pp the class of Riemann surfaces on which there exists a
PD-minimal function.

CoROLLARY. R € «pp tf and only if there exists an isolated point of Ap.
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