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0. Introduction and Summary

In this paper, we shall investigate the ranks over the Galois field GF(#), i.e.,

g-ranks, of the incidence matrices of balanced incomplete block (BIB) designs and
partially balanced incomplete block (PBIB) designs where q is a prime or a prime

power, say q — pn.
These g-ranks, especially the /?-ranks of the incidence matrices of BIB designs

derived from finite geometries, have been investigated in relation to majority

decodable codes. The p-rank of the incidence matrix N(pm; t, μ) of points and
μ-flats in a finite projective geometry PG (ί, pm) has been investigated by several

authors [10, 11, 12, 30, 31, 32] and a general formula for the p-rank of N(pm; t, μ)
has been obtained by the present author [12]. An explicit formula for the p-rank

of the incidence matrix Mί(pm:> t, μ) of points other than the origin and μ-flats
not passing through the origin in an affine geometry EG(ί, pm) has been obtained

by Smith [31] for the case m = l and by the present author [12] for general m.
In this paper, another formula for the p-rank of N(pm; t, μ) and an explicit formula

for the p-rank of the incidence matrix M*(pm; ί, μ) of all points and μ-flats in EG(ί,
pm) will be given. Tables for the p-ranks of N(pm; ί, μ) and M*(pm; ί, μ) will

also be given. The above mentioned incidence matrices are those of BIB designs

or PBIB designs. If the transpose of incidence matrix N of a BIB design or a
PBIB design is used as a parity check matrix of a linear code C, the code C has a

merit in that a relatively simple decoding procedure, called majority decoding
[18], is applicable. It is desirable to obtain, in an error correcting code, a linear

code having a relatively large number of information symbols. The number of

information symbols of a #-ary linear code C with length v is equal to v~Rankq(N)

where Rank^(N) denotes the g-rank of N. It is, therefore, necessary to obtain,
in BIB designs and PBIB designs, the value of q and the incidence matrix N

having a relatively small g-rank.

This paper is divided into four parts. In Part I, the value of q and the

incidence matrix N having a relatively small g-rank in BIB designs and PBIB

designs are investigated. It will be shown that the g-rank of the incidence matrix

of a BIB design with parameters v, b, r, fe, λ is never less than v — 1 unless q is a
factor of r—λ and that, for q being a factor of r—λ, its g-rank depends on the block

structure of the design. A lower bound, from which we can obtain the value of

q such that the g-rank of N is relatively small, for the g-rank of the incidence matrix
N of a PBIB design is given. From this lower bound and the results in [35], we

can obtain lower bounds for g-ranks of the incidence matrices of Tm type PBIB
designs and Nm type PBIB designs. To obtain the incidence matrix of a BIB

design with a relatively small p-rank for a prime p which is a factor of r — λ, we

shall enumerate nonisomorphic solutions for a BIB design with parameters satisfy-

ing either the condition (i) lgA^3, 3g/c^5 and 6gt;^b^30or (ii) l<;λ^3
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and l^v = b^2Q and investigate their p-ranks. As far as we concern with BIB
designs discussed above, the p-rank of the incidence matrix of a BIB design derived
from a finite geometry is minimum among BIB designs with the same parameters.
In Table 6.2, if two BIB designs D± and D2 are nonisomorphic, their p-ranks are
different for some prime p except for the designs of Nos. 6, 8, 12 and 13. This
shows that p-rank is useful as a criterion of isomorphism.

In Part II, the p-ranks of the incidence matrices of BIB designs derived from
finite geometries are investigated. Another formula for the p-rank of N(pm; t, μ)
and tables for the p-rank are given. A formula for the p-rank of the incidence
matrix of points and certain sets in PG(ί, pm) is also given. As a special case,
the p-rank of the complement matrix of N(pm\ t, μ) can be obtained from the for-
mula. In Section 9, an explicit formula for the p-rank of the incidence matrix
M*(pm; t, μ) of all points and all μ-flats in EG(ί, pm) and tables for the p-rank are
given.

In Part III, the p-ranks of the incidence matrices of PBIB designs derived
from finite geometries are investigated. An explicit formula for the p-rank of
the incidence matrix of points and μ-flats with a cycle θ in PG(ί, pm) is obtained
by using the cyclic structure of μ-flats in PG(ί, pm) [36]. It is shown that the dual
of any BIB design PG(ί, pm) : μ is a PBIB design and its p-rank is given.

In Part IV, we shall apply these results and technique to error correcting codes,
especially to geometry codes and polynomial codes. In Section 13, the results
in Parts I, II and III are applied to BIBD codes and PBIBD codes. In Section
14, the number of information symbols of the Projective Geometry code, the
Affine Geometry code and the Euclidean Geometry code and their generator poly-
nomials are given. In Section 15, a formula for the number of information sym-
bols of a polynomial code is given.

Part I. The p-ranks of the incidence matrices of a BIB design

and a PBIB design

1. The incidence matrices of a BIB design and a PBIB design

A balanced incomplete block (BIB) design [37] with parameters v, b, r, fe, λ
is an arrangement of v objects (treatments) into b sets (blocks) such that:

(i) Each block contains exactly k distinct treatments,
(ii) Each treatment occurs in exactly r different blocks,

(iii) Every pair of treatments occur in λ blocks.
Among parameters v, b, r, fe, A, there are the following relations:

(1.1) υr = bk, A(t;-l) = r(/c-l) and b^υ.

The last inequality is due to Fisher [9].
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A partially balanced incomplete block (PBIB) design [6, 20] with m associate
classes and parameters v, b, r, fc, λi9 ni9 pl

jk (i,j9 /c = 0, 1, ..., m) is an arrangement
of v treatments into b blocks such that:

(i) Each block contains exactly k distinct treatments.
(ii) Each treatment occurs in exactly r different blocks.

(iii) There exists a relationship of association, called an association scheme
with m associate classes [7], between every pair of the v treatments satisfying the
following three conditions:

(a) Any two treatments are either 1st, 2nd, ..., or mth associates, the relation
of association being symmetrical. Each treatment is the zero-th associate of itself.

(b) Each treatment α has nt zth associates, the number nt being independent

of α.
(c) If any two treatments α and β are ίth associates, then the number of

treatments which are 7'th associates of α and /cth associates of β is pl

jk and is inde-
pendent of the pair of ίth associates α and β.

(iv) Any pair of treatments which are ίth associates occur together in exactly

λι blocks.
After numbering v treatments and b blocks in some way, respectively, we

define the incidence matrix of a BIB design or a PBIB design to be the matrix:

N=H||; i = l,2, ...,!> and 7 = 1, 2, ..., b

where n^ = 1 or 0 according as the ith treatment occurs in the jth block or not.
In the special case where N is the incidence matrix of a BIB design, the following
relations hold:

b
(1.2) Σ nu = r for each i = l, 2, ..., v.

(1.3) Σ "u = k for each ./ = 1, 2, ..., b.
i=l

b

(1.4) Σ n<*jnβj= λ for each pair of α and β.
j-ί

Since each entry of the incidence matrix N is 0 or 1, the rank of N over
GF(pn) is equal to its rank over GF(p) for any prime p and any positive integer n.
We shall deal with only the rank of N over G¥(p) or the p-rank of N in Part I.

2. A lower bound for the p-rank of the incidence matrix of a BIB design

To obtain the value of a prime p such that the p-rank of the incidence matrix
N of a BIB design with parameters v, b, r, k, λ is relatively small, we prepare the
following theorem:
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THEOREM 2.1. (i) // p zs a prime which is not a factor of r(r — λ), the p-

rank of N is equal to v.
(ii) If p is a prime which is a factor ofr but not a factor ofr — λ, the p-rank

of N is equal to υ — 1 or v. If p is a common factor ofr and k but not a factor

o f r — λ, the p-rank of N is equal to υ—l.

PROOF. Let p be any prime and let &P(N) be the vector space over GF(p)
generated by the column vectors of the incidence matrix N of a BIB design with
parameters v, b, r, k, λ. Then it follows from (1.2) and (1.4) that there exist
column vectors a and bt (z' = l, 2, ..., t;) in &P(N) such that

= 0*ι> rl9 ..., rj and bf = l5

where r t and λ± are non-negative integers less than p such that r1 = r and λί=λ
mod p, and #τ denotes the transpose of the vector x. Since

r^f-A^sίO, 0, ..., 0, r^-Ai), 0, ..., 0) mod p

for z = l, 2, ..., t; and Kr~"^)ΞΓι(rι ~^ι) m°d P, we can see that (i) holds. Simi-
larly, we can see from the linear combinations b1—bj (j = 2, 3, ..., v) that the p-
rank of N is greater than or equal to v— 1. If p is a factor of fc, it follows from
(1.3) that the p-rank of N is less than or equal to v— 1. We have therefore the

required result.

Theorem 2.1 shows that the p-rank of N is never less than v— 1 unless p is a
factor of r — λ. For a prime p being a factor of r — λ, the p-rank of N may be
less than ι?— 1. In general, it depends on the block structure of the design.

EXAMPLE 2.1. Consider a BIB design with parameters

t? = 8, 6 = 14, r = 7, fc = 4, A = 3.

It is known [21, 33] that there are four nonisomorphic designs Dt (i = 1, 2, 3, 4)

in all as follows :

π __ ί 1248, 2358, 3468, 4578, 5618, 6728, 7138 1
υ* ~ 1 3567, 4671, 5712, 6123, 7234, 1345, 2456 J

n _ ί 1234, 1256, 1278, 5678, 3478, 3456, 1357 )
U2 ~ \ 2457, 2458, 1358, 1467, 1468, 2367, 2368 j

n _ ί 1234, 5678, 1256, 1456, 1278, 1478, 1357 1
^3 ~ t 3457, 1368, 3468, 2358, 2458, 2367, 2467 j

n _ ί 1248, 2358, 3468, 4578, 5618, 6728, 7138 1
^4 ~ t 2357, 6731, 5174, 3412, 7246, 1625, 4563 j

where each of the numbers 1, 2, ..., 8 represents each of the eight treatments and
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each set of four numbers C1c2c3c4 represents a block which contains four treat-
ments cί9 c29 c3 and c4. Let Nt be the incidence matrix of the BIB design Di9 then
it can be shown easily that Rank2(JV1) = 4, Rank2(]V2) = 5, Rank2(JV3) = 6 and
Rank2(N4) = 7( = ι;-l) where Rankp(ΛΓ) denotes the rank of N over GFQ?).
This shows that for a prime p which is a factor of r — λ, the p-rank of the incidence
matrix of a BIB design with parameters v, b9 r, k9 λ depends on the block structure
of the design. In Section 6 and Part II, the p-rank of N for a prime p being a
factor of r —A will be investigated in detail.

3. A lower bound for the p-rank of the incidence matrix of a PBIB design

Let N be the incidence matrix of a PBIB design with m associate classes and
parameters v9 b9 r, fc, λi9 nh pl

jk (i, j, /c = 0, 1, ..., m) and we define association
matrices At (i = 0, 1, ..., m) to be the matrices:

4H|αJ,||;α = l,2, ...,ι> and/f=l,2, . . . , t>
where aβ

Λί = l or 0 according as the treatments α and β are zth associates or not.
These association matrices AQ9 Al9 ... >Am are symmetric, linearly independent
and satisfy the following relations:

(3.1) A0=IV9

(3.2)

where Iv is the unit matrix of order v, Gv is the vxv matrix whose elements are all
unity and A0 = r.

The linear closure of the association matrices A0, Al9 ..., Am over the real
field is a linear associative and commutative algebra, which is called the association
algebra [5], [24] of the given association and denoted by 2Im or \_A^ ΐ = 0,1, ..., m].
It is completely reducible and its minimum two sided ideals are linear. We define
^ f c(fc = 0, 1, ..., m)by

^fc=IIP}JI;7 = 0, 1, ..., m and i=0, 1, ..., m

and let zjk (j = 0,1,..., m) be the characteristic roots of ̂ k, then it is known that
the principal idempotents A%9 A\9 ..., ̂ of those m+1 ideals and the association
matrices A09 Al9 ..., Am are mutually linked by the linear combinations of the
others, that is,

m m

(3.3) Ak= ^zjkA] and A}= ΣO z'kAk

where zJk=<XjZJk/vnk and α, is the rank of Aj over the real field.
From (3.2) and (3.3), it follows that

(3.4)
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m

where p f= Σ λyZy for ί = 0, 1, ..., m and pt 's are the characteristic roots of

NNT with multiplicities αf. If zjfc's are all rational, p/s and all of the
idempotent matrices A\ (i = 0, 1, ..., m) are rational.

The following theorem which gives a lower bound for the p-rank of the inci-
dence matrix of a PBIB design may be useful in constructing a better PBIBD
code (see Section 13).

THEOREM 3.1. Suppose that z^s are all rational and let c± and c2 be the
minimum positive integers such that c^z^vn^s and c2ztj

9s are all integers
(i.e., entries ofc^A^s and c2ρ?s are all integers). Then the p-rank of N is greater

m

than or equal to Σ 8̂  provided p is not a factor ofcίc2, where εt = 0 or 1 accord-
i=0

ing as c2pt is zero mod p or not. In the special case p^Q for all ΐ = 0, 1, ...,
m

m, the p-rank of N is equal to v unless p is a factor ofci Π
i=0

PROOF. As Rankp(ΛΓ)^ R&nkp(NNT) for any prime p, it is sufficient to prove
m

that Rankp(ΛWΓ)= Σ eίαί for any prime p which is not a factor of c±c2. Let

Af = c^f andpf = c2p ffor ι = 0, 1, ..., m. pf sand entries of ^4f's are all integers.
Since

i=0

and

for any prime p and for any matrix B whose elements are all integers, where
Rank(jB) denotes the rank of B over the real field, we have

Ranked/,) = Rankp(

^ Σi=0 i=0 i=0

From the above inequalities, it follows that if p is a prime which is not a factor of

= ι; and

for ϊ = 0, 1, ..., m. Let aψ9 o(

2

ί}, ..., α .̂> (z = 0, 1, ..., m) be linearly independent
column vectors of Af and let
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Then P is a non-singular matrix over GF(p). Since Af9 s are all symmetric and
J = cίδiJAf9 using (3.4), we have

and

Rank/^P^ ΣQ pMf)P]=Rankp[

Therefore, we have the required result.

m

Since P;= Σ ^/zί/ 0 = 0, 1, ..., m), it is sufficient to obtain only the values of
.7 = 0

α/s and zl7's except for parameters ι;, πt 's and A/s to obtain such a lower bound.

4. A lower bound for the jp-rank of the incidence matrix of a Tm

type PBIB design

Suppose that there are v = (s J treatments </>(αl5 ̂  --> O indexed by the

combinations or subsets of m integers (αl5 α2, ..., αw) out of the set of s integers
(1, 2, ..., s) where m and 5 are any integers such that 4<^2m^s. Among those
v treatments, an association of triangular type or Tm type with m associate classes
is defined as follows :

DEFINITION 4.1. Two treatments </>(αl9 α2, ..., αm) and φ(βι, β2, •••> βm)
are ίth associates if their indices (αl5 α2, ..., αm) and (^1? j52> •••> ^m) have m — i
integers in common. Each treatment is the Oth associate of itself.

The association defined above satisfies three conditions of the association
scheme with m associate classes and this scheme is called a triangular type as-
sociation scheme with m associate classes, or briefly, a Tm type association scheme
[23, 35]. In this case, it has been shown by Yamamoto, Fujii and Hamada [35]
that

(4.D «.-(τ)Ci"> »-(ίH-ι>
(s-m\

(42) z -^ J ' Ϋ (-_ιv-«Γm~α

(4'2) Zl}-s-m\h( 1} V j «-/

or

(4.20
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for i, j = 0, 1, ..., m. The last equation is due to Ogasawara [23]. From The-
orem 3.1 and the above equations, we can obtain a lower bound for the p-rank of
the incidence matrix of a Tm type PBIB design.

In the special case m = 2, we have

z10 = l, zn=s-4, z12=-(s-3),

Z20 = l> ^21= ~2, Z22 = l>

α0 =1, αx =s-l, α2 =s(s-3)/2,

Po =rfc, Pi =r + A1(s-4)~A2(s-3), p2 = r-2λ1+λ2,

cί =s(s— l)(s — 2) and c2 = l

where s is an integer not less than four.

THEOREM 4.1. Let N be the incidence matrix of a T2 type PBIB design

with parameters ^ = (2)' ^> r> ,̂ λί9 nh pl

jk (i,j, /c = 0, 1, 2).

(A) In the case when Pι^0 and
(i) The p-rank of N is equal to v unless p is a factor of rkp1p2 s(s — 1)

•(s-2).
(ii) If p is a prime which is a factor of pί but not a factor of p2s(s — 1)

•(s — 2), the p-rank of N is greater than or equal to s(s — 3)/2.
(iii) If p is a prime which is a factor of ρ2 but not a factor of p^s—l)

•(s — 2), the p-rank of N is greater than or equal to s— 1.

(B) In the case when P!=0 and p2^0, Rankp( N) ̂  s(s - 3)/2 + 1 for any
prime p and the p-rank of N is never less than s(s — 3)/2 unless p is a factor of
ρ2s(s-l) (s-2).

(C) In the case when p^O and p2 = 0, Rankp(W) <: s for any prime p and
the p-rank of N is never less than 5 — 1 unless p is a factor of p^s(s— 1) (s — 2).

5. A lower bound for the p-rank of the incidence matrix of

an JYm type PBIB design

Suppose that there are v = sίs2...sm treatments φ(αl5 α2, ..., αm) indexed by
m-tuples (α1? α2, ..., αm) where α,= l, 2, ..., (Sf— 1) or sf for i = l, 2, ..., m. A-
mong these treatments, we define a relation of m-fold nested type or Nm type as-
sociation as follows :
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DEFINITION 5.1. A pair of treatments φ(αl5 α2, ..., O and φ(βl9 β2, ..-,

βm) are ith associates if α/=β/ for all j = l, 2, ..., m-i and αm_ ί + 1=^=/?m_ ί + 1.

Each treatment is Oth associate of itself.

The association defined above satisfies three conditions of the association

scheme with m associate classes and it is called an m-fold nested type association

scheme or an Nm type association scheme [35]. For the special case m = 2, it is

called a group divisible (GD) type association scheme [7]. After numbering v

treatments in dictionary- wise, we can express the association matrices as follows :

^o = Iv9 AI = ISl (x) (g) ISm_ t ®(GSm — 7Sm),

(5.1) ^ι=ίβm.<®(G^.l+1-/ftll.l

for i=2, 3, ..., m — 1 where vj = s1s2...Sj and A®B denotes Kronecker product

of the matrices A= \\atj\\ and J3, i.e., A®B= ||αyB||.

The linear closure of the association matrices A{ (ι = 0, 1, ..., m) over the real

field is called an m-fold nested type association algebra or an Nm type association

algebra and denoted by 2ί(Nm). It is known [35] that the mutually orthogonal

idempotents of 9I(Nm) are expressed as follows :

(5.2) ^f = / ®(/ S ( -_
si

for z = 2, 3, ..., m — 1. From (5.1) and (5.2), we have

α0 =1, α^Si-1, αj = s1s2...sj._1(s7 -l),

n0 =1, n1 = sm-l, nJ. = (sm_J +1-l)sm^J+2...sm,

Z00 = Z10='" =ZmO = l> Z01=Z11 = = = Z m-ll = = W l5

(5.3)
Zml= ""!> Z0j = zlj="'=zm-jj = nj9

zm-j+ίj = ""5m-7 + 2Sm-j + 3 ••• Sm5

Zm-j + 2,j = Zm-j+3J—'"= Zmj = 0

for 7 = 2, 3, ..., m. Theorem 3.1 and the above equations give a lower bound

for the p-rank of the incidence matrix of an Nm type PBIB design. As a special

case m = 2, we have
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(5.4) z20 = l, z21=-l, z22 = 0,

α0 = l, α1=s1-l, α2 = s1(s2-l),

Po = rk, pι = rk-vλ2, p2 = r-λl9

cί=sίs2 and c2 = l.

From Theorem 3.1, we have therefore the following theorem:

THEOREM 5.1. Let N be the incidence matrix of an N2 (GD) type PBIB
design with parameters v = sΐs2, fe, r, fc, λi9 nh p}fc (ί, j, fc = 0, 1, 2).

(A) /n f/ί£ c0se Pi=7^0 αnJ P2ΦQ (regular GD design).
(i) TTze p-rank of N is equal to v unless p is a factor ofrkpίρ2s1s2.

(ii) // p is a prime which is a factor of pv but not a factor of P2s1s2,
the p-rank of N is greater than or equal to s1(s2 — 1).

(iii) If p is a prime which is a factor of p2 but not a factor o/p1s152, the
p-rank ofN is greater than or equal to s^ — l.

(B) In the case Pι=0 and p2φ® (semi-regular GD design), Rankp(JV)
^51(52 — 1) + 1 for any prime p and the p-rank of N is never less than s1(s2 — 1)
unless p is a factor of p2s^s2.

(C) In the case p±φ§ and p2 = 0 (singular GD design), Rankp(N)^Sι for
any prime p and the p-rank of N is never less than sί — l unless p is a factor of
P1s1s2.

In Part III, the p-rank of N for a prime p which is a factor of pxp2 will be
investigated. Applying Theorem 3.1 to an Fp type PBIB design and an OLr type
PBIB design [35] etc., we can obtain similar results.

6. Enumeration of nonisomorphic solutions of BIB designs

and their p-ranks

In Section 2, it has been shown that the p-rank of the incidence matrix ^V
of a BIB design with parameters v, b, r, k, λ is never less than υ—1 unless p is a
factor of r-λ and that, for a prime p which is a factor of r-λ, the p-rank of N
depends, in general, on the block structure of the design. In this section, to in-
vestigate in detail the p-rank of the incidence matrix of a BIB design, we shall
enumerate all possible nonisomorphic solutions of a certain restricted class of
BIB designs and investigate their p-ranks.
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DEFINITION 6.1. Two BIB designs D1 and D2 with the same parameters
are isomorphic if there exist two permutation matrices P and Q such that N±

= PN2Q for their incidence matrices N1 and N2 Otherwise they are noniso-
morphic.

Let N1 and N2 be the incidence matrices of two BIB designs D^ and D2

with the same parameters, respectively. Then if two designs D{ and D2 are iso-
morphic, the p-rank of NL is equal to the p-rank of N2 for any prime p.

Since it is very difficult, in general, to enumerate all possible nonisomorphic
solutions, taking into account the results in Section 13, we shall confine ourselves

to BIB designs with parameters satisfying either the condition (i) 1 g λ ̂  3, 3^fe^5
and 6 ̂  Ό g b ̂  30 or (ii) 1^/1^3 and 7 ̂  v = b ̂  20. All parameter combinations
satisfying the above conditions, the number of nonisomorphic solutions and their
p-ranks are given in Table 6.1. The symbol — in Table 6.1 denotes the case
where the number of nonisomorphic solutions has not yet been obtained. The
symbols PG(ί, q): μ and EG(ί, q): μ denote the BIB design derived from finite
projective geometry PG(f, q) and Affine geometry EG(ί, q), respectively, by
identifying the points of the geometry with the υ treatments and identifying the

μ-flats of the geometry with the b blocks (see Sections 7 and 9). The number
a* with asterisk (*) denotes that the p-rank of the design PG(ί, q):μor EG(ί, q): μ
which is written on the right hand side of α* is equal to a and δ = [r/2A]. It is
easy to see that BIB designs Nos. 2, 3, 5 and 11 in Table 6.1 are all unique (i.e.,
all designs are isomorphic) and their p-ranks are equal to 4, 3, 6 and 7, respectively
where p = r — λ. Hussain [14, 15] showed that the BIB design No. 9 has only
one solution while the design No. 15 has three nonisomorphic solutions and the
design No. 14 does not exist. Nandi [21, 22] showed that BIB designs Nos. 1,
4, 7 and 13 have one, four, three and five nonisomorphic solutions, respectively.
Pasquale [25] showed that the BIB design No. 12 has two nonisomorphic solu-
tions. Since the design No. 10 is the complementary design of No. 9, it follows
from the uniqueness of the design No. 9 that the design No. 10 is also unique.
Thus, the designs which have not yet been solved in Table 6.1 are five designs Nos.
6, 8, 16, 17 and 18.
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TABLE 6.1.

NUMBER OF NONISOMORPHIC SOLUTIONS AND THEIR P-RANKS

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

i;

6

7

7

8

9

9

10

10

11

11

13

13

15

15

16

16

21

25

b

10

7

7

14

12

18

15

30

11

11

13

26

15

21

16

20

21

30

r

5

3

4

7

4

8

6

9

5

6

4

6

7

7

6

5

5

6

fc

3

3

4

4

3

4

4

3

5

6

4

3

7

5

6

4

5

5

A

2

1

2

3

1

3

2

2

2

3

1

1

3

2

2

1

1

1

δ

1

1

1

1

2

1

1

2

1

1

2

3

1

1

1

2

2

3

r-λ

3

2

2

4

3

5

4

7

3

3

3

5

4

5

4

4

4

5

no. of
noniso. ^

1

1

1

4

1

—

3

—

1

1

1

2

5

3

1

2

1

3

2

2

2

3

5

2

7

3

3

3

5

2

/7-rank

5
4*

3

4*, 5, 6, 7

6*
—

5,6,7
—

6

5

7*

13, 13

5*,6,8,8,8

non-existence

2

2

2

5

6,7,8

9*

10*, 12

15*

Geometrical
design

PG(2,2):1

complement

EG(3, 2):2

EG(2, 3):1

PG(2, 3):1

PG(3,2):2

EG(2, 4):1

PG(2,4):1

EG(2,5):1

(a) Enumeration of nonisomorphic solutions of the design No. 17

THEOREM 6.1. The BIB design with parameters (21, 21, 5, 5, 1) has two
nonisomorphic solutions and their 2-ranks are equal to 10 and 12.

PROOF.. Let us denote twenty-one treatments by oo, O l 5 02, 03, 04, I l 5 12,...,
43, 44 and twenty-one blocks by J3,(i = 0, 1, 2, 3, 4) and BJk(j, fe=l, 2, 3, 4).
Without loss of generality, we can assume that

BO =(oo, 015 02, 03, 04), Bί =(oo, 119 12, 13, 14), B2 =(oo, 2 l5 22, 23, 24),

B3 =(oo, 315 32, 33, 34), £4 =(oo, 415 42, 43, 44), B11 = (0l5 11? 2l9 3 l5 4J,

*i2 = (0ι, 12> 22, 32, 42), β13 = (0ι, 13, 23, 33, 43), B14 = (0l5 14, 24, 34, 44)

and Bjk contains two treatments O^ and lk for j = 2, 3,4 and k = 1,2, 3,4. It suffices
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therefore to consider an arrangement of 12 treatments (/+!),(/=!, 2, 3; z =

1, 2, 3, 4) into 12 blocks Bjk (7 = 2, 3, 4; fc = l, 2, 3, 4).

Since each treatment (/+!)( must be contained in only one block of four

blocks BJi9 BJ29 BJ39 BJ4 for each j = l, 2, 3, 4, we can define 4x4 matrices Al

(/=!, 2, 3) as follows:

At= \\afl\\: i = l, 2, 3, 4 and j = l, 2, 3, 4

where a(^ = k if treatment (/+!)/ is contained in a block Byfc of four blocks BJi9

BJ2, BJ3, BJ4.. Then it is easy to see that (i) the above twenty-one blocks constitute

a BIB design with parameters (21, 21, 5, 5, 1) if and only if Aί9 A2 and A3 are

4 x 4 mutually orthogonal Latin squares and that (ii) two BIB designs D1 and D2

are isomorphic if and only if the corresponding 4 x 4 mutually orthogonal Latin

squares [A{1\ A(

2

l\ A(

3^} and {A{2\ A(

2

2\ A(

3

2)} are isomorphic, that is, the

set {A{2\ A(

2

2\ ,4(

3

2)} can be obtained from the set {A[l\ A(

2

V\ A(

3

l}} by permut-

ing the elements 1, 2, 3, 4 in the matrices A\l) (/= 1, 2, 3) and permuting rows and

columns suitably of the matrices A\l). It is easy to see that there exist only

two nonisomorphic complete sets of 4 x 4 mutually orthogonal Latin squares as
follows:

and

Aψ-

1234"

2143

3412

4321

"1234"

2341

3412

4123

"1342"

2431

3 124

42 1 3

"1342"

2413

3 124

423 1

"1423"

2314

3241

4132

1423"

2134

3241

4312

=(0
4
,

The blocks corresponding to the above Latin squares are

V=(02, li, 22, 33, 44), .B(

2y=(02, 12, 21; 34, 43), B(

2

=(02, 14, 23, 32, 40,

=(03, 13, 2X, 32, 44),

=(04, 12, 23, 3 lf 44),

and

^=(02, 1,, 24, 33, 42), B2

2

2>=(02, 12, 2 l f 34, 43),

(O
a
, 1

4
.
 2
3. 3

2
, 40, B

3
V = (0

3
, 1

15
 2

3
, 3

2
, 4

4
), B<

3

2

2

)
=(0

3>

=(03, l l f 23, 34, 42),

=(03, 14, 22, 3t, 43),

=(04, 13, 22, 34, 40,

24, 3l5 42),

24, 33, 4J,

24, 32, 43),

2t, 33, 42)

22, 3X, 44),

24, 33, 40,
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= (03, 13, 215 34, 42), B&=(03, 14, 22, 315 43), B4V = (04, 11? 22, 34, 43),

= (04, 12, 23, 31? 44), 54

2

3>=(04, 13, 24, 32, 4J, B&=(04, 14, 21? 33, 42).

Let NI and N2 be the incidence matrices of the above two designs Dv and D2,
respectively. Then it is easy to see that Rank2(ΛΓ

1) = 10 and Rank2(N2) = 12.
This completes the proof.

In Section 7, it will be shown that the design D± is isomorphic with the BIB
design PG(2, 4): 1.

(b) Enumeration of nonisomorphic solutions of the design No. 16

THEOREM 6.2. The BIB design -with parameters (16, 20, 5, 4, 1) is unique
and its 2-rank is equal to 9.

PROOF. Let us denote sixteen treatments by 0, 1, 2, ..., 15 and twenty blocks
by B0, Bί9 ..., £19. Without loss of generality, we can assume that

£0 = (0, 1, 2, 3), £1==(0, 4, 5, 6), 52 = (0,7, 8, 9),

B3 = (0, 10, 11, 12), B4 = (0, 13, 14, 15), B5 = (l, 4, 7, 10),

JB6 = (1, 5, 8,13), B7 = (l, 6,11,14), β8 = (l, 9, 12, 15)

and B9, Bί0, ..., Bί9 contain {2, 4}, {2, 5}, {2, 6}, {2}, {3, 4}, {3, 5}, {3, 6},
{3}, {4}, {5}, {6}, respectively. It suffices therefore to consider an arrangement
of 9 treatments 7, 8, ..., 15 into 11 blocks Bi(i = 9, 10, ..., 19). Let xf (f = 9,
10, ..., 19) be integers such that xt=l or 0 according as the treatment 7 (or 10)
is contained in the block 5f or not. Then, since /L = l and r = 5, xfs must satisfy
the following conditions :

=1

=1

(6.1) x9 +x13 +x17 =0

~ ̂ 1 1 "I" ̂ 1 2 "̂ " ̂  1 3 + ̂ 1 4 ~t~ ̂ 1 5 + ̂ 1 6 "̂  ̂ 1 7 "̂ " Xί 8 "̂ " ̂ 1 9 ̂  3.

From the above equations, we have the following four solutions :

^ = (0, 1, 0, 0; 0, 0, 0, 1; 0, 0, 1), *3 = (0, 0, 0, 1; 0, 1, 0, 0; 0, 0, 1),
(6.2)

*2 = (0, 0, 1, 0; 0, 0, 0, 1; 0, 1, 0), *4 = (0, 0, 0, 1; 0, 0, 1, 0; 0, 1, 0)

where z=(x9, XIQ, ..., x19). It is easy to see that by renaming sixteen treatments
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and twenty blocks, we can obtain the solutions z3 and z4 from the solutions zί

and z2, respectively. It suffices therefore to consider two cases z1 and z2.

(i) In the case zl9 that is, treatment 7 is contained in blocks jB10, Bί6 and
Bί9.

In this case, it follows from (6.1), (6.2) and Xi 0 = X i 6 = xi9 :=0 tnat treatment
10 must be contained in blocks £12, B15 and B1S. Using a similar method, it is
shown that treatment 8 must be contained in blocks B12, B15 and B1Ί. This
contradicts /l=l, since there exist two blocks 512 and J515 which contain two
treatments 8 and 10. Hence, there does not exist such a design.

(ii) In the case z2>
 tnat ΐs» treatment 7 is contained in blocks Bίί9 B16 and

In this case, it follows from (6.1), (6.2) and Xn=λ:1 6 = x18 = 0 that treatment
10 must be contained in blocks J512, B14 and B19.

Let yj (j = 9, 10, . . ., 19) be integers such that yj = 1 or 0 according as the treat-
ment 8 is contained in the block Bj or not. Then yfs must satisfy the following
conditions :

^9 + ̂ 10 + ̂ 11+^12 =1

^13+^14 + 3^15+^16 =1

J9 +^13 +Jl7 =1

(6.3) yί0 +yί4 +yis =0

3Ίl +^15 +^19 = 1

Jll +^16 +^18 =0

From the above equations, we have the following unique solution:

0>9, Jio, -.., J>ι9) = (0, 0, 0, 1; 0, 0, 1, 0; 1, 0, 0).

This implies that treatment 8 must be contained in blocks Bί2, Bί5 and B1Ί.
Similarly, we can construct the design, step by step, and we have the following
unique solution :

B9 =(2, 4, 12, 13), 510 = (2, 5, 9,11), B^=(2969 7,15),

B12 = (2, 8, 10, 14), B13 = (3, 4, 9, 14), B14 = (3, 5, 10, 15),

B15=(3,6, 8,12), B16 = (3,7, 11, 13), B17 = (4, 8, 11, 15),

βl8=(5, 7, 12, 14), B19 = (6, 9, 10, 13).
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Since the design EG(2, 4): 1 is a BIB design with parameters (16, 20, 5, 4, 1),

it follows from the uniqueness of the design that any BIB design with parameters

(16, 20, 5, 4, 1) is isomorphic with the design EG(2, 4): 1. In Section 9, it is
shown that the 2-rank of the incidence matrix of the design EG(2, 4): 1 is equal to

9. Hence, we have the required result.
Using a similar method, it can be shown that the BIB design No. 18 is also

unique and any BIB design with parameters (25, 30, 6, 5, 1) is isomorphic with

the design EG(2, 5): 1.

(c) Table of nonisomorphic solutions and their jp-ranks

Nonisomorphic solutions of BIB designs in Table 6.1 and their p-ranks are

given in Table 6.2. The notations used are coincident with those generally used
for cyclic solutions. For noncyclic solutions, treatments are represented by α, f>,

c, ..., and so on. In Table 6.2 (or Table 6.1), if designs Dί and D2 are non-
isomorphic, their p-ranks are different except for designs Nos. 6, 8, 12 and 13.

In Sections 7 and 9, it will be shown that the designs D± of Nos. 4, 13 and 17

are isomorphic with EG(3, 2): 2, PG(3, 2): 2 and PG(2, 4): 1, respectively. These
designs have the minimum p-ranks. This suggests that the p-rank of the BIB

design PG(ί, q): μ or EG(ί, q): μ might be, in general, minimum in BIB designs

with the same parameters.
In Part II, we shall investigate the p-ranks of the incidence matrices of the

BIB designs PG(t, q): μ and EG(f, q): μ.

TABLE 6.2.

NONISOMORPHIC SOLUTIONS AND THEIR P-RANKS

No.

1

2

3

4

" ' λ ϊonfso. P «"*

6 5 2 1 3 5

7 3 1 1 2 4

7 4 2 1 2 3

8 7 3 4 2 4

5

6

nonisomorphic solutions

(oo, 1, 4), (0, 1,4) mod 5

(0, 1, 3) mod 7

(2, 4, 5, 6) mod 7

abdh, bceh, cdfh, degh, efah,
/V fgbh, gach, cefg, dfga, egab,

fabc, gbcd, acde, bdef

abed, abef, abgh, efgh, cdgh,
D2 : cdef, aceg, bdeg, bdeh, aceh,

adfg, adf h, bcfg, bcf h

abed, efgh, abef, adef, abgh,
D3 : adgh, aceg, cdeg, acf h, cdfh,

bceh, bdeh, bcfg, bdfg
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TABLE 6.2. (continued)

No.

5

6

7

8

9

10

11

12

13

' ' * ϊonil P rank

7

9 4 1 1 3 6

9 8 3 — 5 —

10 6 2 3 2 5

6

7

10 9 2 — 7 —

11 5 2 1 3 6

11 6 3 1 3 5

13 4 1 1 3 7

13 6 1 2 5 13

13

15 7 3 5 2 5

6

8

nonisomorphic solutions

abdh, bceh, cdfh, degh, efah,
D4 : fgbh, gach, bceg, fgca, eagd,

cdab, gbdf, af be, defc

(oo, 0, 4) PC(4), (0, 2, 7) mod 8

—

abed, abef, acgh, adij, bcij,
DI : bdgh, cdef, aegi, af hj, behj,

bfgi, cehi, cfgj, degj, dfhi

abed, abef, aceg, adhi, bchi,
D2: bdgj, cdfj, afhj, agij, behj,

bfgi, ceij, cfgh, defi, degh

abed, abef, aceg, adhi, bcij,
D3 : bdgh, cdfj, afhj, agij, behj,

bfgi, cehi, cfgh, defi, degj

—

(0, 1, 2, 4, 7) mod 11

(3, 5, 6, 8, 9, 10) mod 11

(0, 1, 5, 11) mod 13

D I : (0, 2, 8), (1, 4, 5) mod 13

abc, ade, afg, ahi, ajk, aim, bdf,
beg, bhj, bil, bkm, cdh, cei, cfj,

2 ' cgm, ckl, dgk, dim, djl, ef 1, ehk,
ejm, f hm, f ik, ghl, gij

abcdijk, abefilm, abghino, acegjln,

m acf hjmo, adehklo, adfgkmn, bcehkmn,
1 " bcfgklo, bdegjmo, bdf hjln, cdef ino,

cdghilm, efghijk, ijklmno

abcdijk, abcelmn, abfgjmo, acfhklo,

β adefino, adghilm, aeghjkn, bcghino,
2 ' bdegklo, bdf hkmn, bef hijl, cdehjmo,

cdfgjln, cefgikm, ijklmno

abcdijk, abcelmn, abfgjmo, acghilo,

β adefklo, adfhimn, aeghjkn, bcfhkno,
3 ' bdegino, bdghklm, bef hijl, cdehjmo,

cdfgjln, cefgikm, ijklmno
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TABLE 6.2. (continued)

No.

14

15

16

17

18

' ' λ Sonfso. * <«*

δO

δo

15 7 2 0 5 —

1 6 6 2 3 2 6

7/

Q
O

16 5 1 1 2 9

21 5 1 2 2 10

12

25 6 1 1 5 15

nonisomorphic solutions

abcdijk, abcelmn, abfgjmo, acghkno,

π adefklo, adfhimn, aeghijl, bcfhilo,
4 ' bdegino, bdghklm, bef hjkn, cdehjmo,

cdfgjln, cefgikm, ijklmno

abcdijk, abcelmn, abfgimo, acghkno,
adefklo, adfhjmn, aeghijl, bcfhjlo,

5 ' bdehino, bdghklm, befgjkn, cdegjmo,
cdfgiln, cefhikm, ijklmno

non-existence

abcdef, abghij, acgklm, adhkno,
aeίlnp, afjmop, bcgnop, bdhlmp,

1 ' beikmo, bf jkln, cdijkp, cehjlo,
cfhimn, degjmn, dfgilo, efghkp

abcdef, abghij, achklm, adilno,
aejknp, afgmop, bcgkno, bdikmp,

2 ' bejlmo, bf hlnp, cdgjlp, cehiop,
cf ijmn, deghmn, df hjko, efgikl

abcdef, abghij, achklm, adikno,
aejlop, afgmnp, bcgkop, bdilmp,

3 ' bejkmn, bf hlno, cdgjln, cehinp,
cfijmo, deghmo, df hjkp, efgikl

(oo, 0, 5, 10) PC(5) ,(0, 4, 12, 13)
mod 15

abcde, afghi, ajklm, anopq, arstu,
bfjnr, bgkos, bhlpt, bimqu, cfkpu,

D! : cgjqt, chmns, cilor, dflqs, dgmpr,
dhjou, diknt, efmot, eglnu, ehkqr,
eijps

abcde, afghi, ajklm, anopq, arstu,
bfjnr, bgkos, bhlpt, bimqu, cfmps,

Z>2 : cgjqt, chknu, cilor, df lou, dgmpr,
dhjqs, diknt, ef kqt, eglnu, ehmor,
eijps

(oo, 0, 6, 12, 18) PC(6),
(0, 8, 17, 21, 22) mod 24
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Part II. The p-rank of the incidence matrix of a BIB design

derived from a finite geometry

7. The p-rank of the incidence matrix of points and μ-flats in PG(ί, q)

With the help of the Galois field GF(g), where q is an integer of the form
pm (p being a prime), we can define a finite projective geometry PG(ί, q) of t dimen-
sions as a set of points satisfying the following conditions :

(i) A point in PG(f, q) is represented by (v) where v is a nonzero element
of G¥(qt+1).

(ii) Two points (vλ) and (v2) represent the same point when and only when
there exists a nonzero element σ of G¥(q) such that vi = σv2.

(iii) A μ-flat, O^μ^ί, in PG(f, q) is defined as a set of points

where α's run independently over the elements of GF(g) and are not all simul-
taneously zero and (v0), (vj, ..., (vμ) are linearly independent over the coefficient
field GF(#), in other words, they do not lie on a (μ-l)-flat. In G¥(qt+1\ there
exists an element α called primitive such that every nonzero element of G¥(qt+ί)
can be represented by α" (u = 0, 1, ..., qt+ί -2). It satisfies an irreducible equa-
tion of degree t + 1 with coefficients from G¥(q) :

(7.1) α ί + 1+fl?α f + +αϊα + fl8 = 0

and α*'*1"1 =1. Using (7.1), every nonzero element αw (0 ̂  u ̂  qt+ί-2) of
GF(gί+1)can also be represented uniquely by a polynomial in α, of degree at
most ί, with coefficients from GF(g). Thus, every nonzero element of GF(gί+1)
may be represented either as a power of the primitive element α or as a poly-
nomial in α, of a degree at most ί, with coefficients from GF(g). If

(7.2) α" = bία
f + bί_1α

ί-1 + +

then the correspondence

(7.3) α"~(&f, &,_!, ..., b0) and 0~(0, 0, ..., 0)

induces a vector space structure on GF(gί+1) over GF(g) and the elements α°

( = 1), α1, α2, ..., α' form a basis for GF(^ί+1)
Every point in PG(ί, q) is represented by (α°), (α1), (α2), ..., (α*"1) and a

μ-flat may be defined as the set of points

where v = (qt+1 -l)/(g-l) and αβ°, αeι, ..., αe* are μ + 1 linearly independent
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elements of GF(gί+1) over GF(g) and α0, aί9 ..., αμ run independently over the
elements of GF(g), not all zero. In the following, we shall call such a set of

points (αe°), (αβl)j ...,(αe*)the defining points of the μ-flat and denote the empty
set by (— l)-flat for convenience' sake. It is well known [8] that the number,
b, of μ-flats in PG(ί, q) is equal to φ(t, μ, q) where

for any integers t and μ such that 0^μ<;f. For convenience' sake, we make a
promise that φ(t, —1, q) = l for t^—1 and φ(t, μ, q)=Q for t and μ such that
t<μorμ<ί-2.

After numbering b μ-flats in PG(ί, q) in some way, we define the incidence
matrix of υ points and b μ-flats in PG(ί, q) to be the matrix :

N(q;t, μ)=K<4;', μ)||; ' = 0, 1, .. .,ι?-l and 7 = 1,2, ...,b

where ny(# ί, μ) = 1 or 0 according as the ith point (α1') is incident with the jih
μ-flat or not. In the following, N(q; ί, μ) may also be denoted by N(pm; ί, μ)
where q = pm. It is known [2] that N(q-9 ί, μ) is the incidence matrix of a BIB
design, denoted by PG(ί, q): μ, with parameters:

(7.5)
? -1) and λ = φ(t-2,μ-29

In this case, we have

(7.6) r-λ = q»φ(t-2, μ-1, ^) and 5 =

It is therefore necessary to investigate the g-rank and the p*-rank of N(q; t, μ)
where p* is a prime which is a factor of φ(t — 2, μ— 1, #).

The #-rank of N(q; ί, μ) has been investigated by many authors [10], [11],
[30], [31], [32] and the complete solution for this problem has been obtained by
the present author [12]. The result is as follows:

THEOREM 7.1. The q-rank of the incidence matrix N(q; ί, μ) of v points
and b μ-flαfs in PG(ί, q) is equal to

(7.7) Rμ(t,P^ ^Σ/) "Π

where q=pm and summation is taken over all ordered sets (sg, sj, ..., s*), denoted
by Sffμ(pm), ofm + 1 integers sf (/ = 0, 1, ..., m) such that

(7.8) s* = s§, μ + l£sj£t + l and
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for each 7=0, 1, ..., m-1 and L(sJ+ί, sj) = [(s*+1p-sp/p], that is, L(sJ+1, sj)

is ί/ze greatest integer not exceeding (s*+ίp — sj)lp.

From Theorem 7.1, we have the following theorem which may be useful in
calculating the value of Rμ(t, pm).

THEOREM 7.2. The q-rank of N(qι t, μ) is also equal to

(so,...,Sm) J = 0 1=0 \ * / \ *

w/iere #=/?m ami summation is taken over all ordered sets (s0, sί9 ..., sm), denoted

by Stίμ(pm)9 ofm + ί integers st (/ = 0, 1, ..., m) such that

(7.10) sw = s0, Q£sj^t-μ and 0^sy+1p-s^(ί-hl) (p-1)

/or eachj = Q, 1, ..., m — 1.

PROOF. Let s, and sf (/ = 0, 1, ..., m) be any non-negative integers such that
sl + sf = t+l. Then we can see that the ordered set (sg, sf, ..., s*) belongs to
s*μ(Pm) if and only if the corresponding ordered set (s0, sl9 ..., sm) belongs to
Sttfl(pm). Since both the coefficients of x" and χ(j»-i)(f+o-« of the (real) expansion

of (l+χ + χ2 + ...+χp-i)H ι are equal to Cff(-l)£ (̂  ̂ (^V^) and

sj+1p — sj = (p — 1) (ί + 1) — ( S j + 1 p — Sj) for 7 = 0, 1, ..., m — 1, it follows that

i=o

for each 7=0, 1, ..., m-1. Hence, we get the required result from Theorem

7.1.

COROLLARY 7.3. For any positive integer n, the rank of N(pm; t, μ) over
GF(pn) is equal to Rμ(t, pm).

PROOF. It is well known that if each entry of a matrix N is an element of
GF(p), the rank of N over GF(pw) is equal to its rank over GF(p) for any positive
integer n. Since each entry of the matrix N(qι t, μ) is 0 or 1, it follows that the

p-rank of N(qι ί, μ) is equal to the g-rank where q = pm. Hence, we have the re-
quired result.

In the special case μ = ί-l, since St>t.1(pm) = {(09 0, ..., 0), (1, 1, ..., 1)},
we have the following corollary:

COROLLARY 7.4. The p-rank of the incidence matrix N(pm, ί, ί — 1) of v
points and v hyperplanes ((t — l)-flats) in PG(ί, pm) is equal to
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(7.11) Λ,_1(ί,p")

In the case f = 2, this result has been obtained by Graham and MacWilliams
[11] and, for general ί, was conjectured by Rudolph [30] to be true and has been
independently obtained by Smith [31, 32] and by Goethals and Delsarte [10].

COROLLARY 7.5. In the special case q=p (i.e., m = l), the p-rank of the
incidence matrix N(p; t, μ) ofv points and b μ-flats in PG(f, p) is equal to

where L(s, s) is the greatest integer not exceeding s(p — l)/p.

This result has been obtained by Smith [31].

COROLLARY 7.6. In the special case q = 2, the 2-rank of the incidence

matrix N(2; t, μ) is equal to RJt, 2)= 'ff (*+

P

l\
s=0 \ S /

Table 7.1 gives all solutions for BIB designs PG(ί, pm): μ with 7^ι;^50 and
their p-ranks where v = (pm(t+ί) — l)/G?m — 1). These solutions are obtained by
using the cyclic structure of μ-flats [27, 36] and tables due to Alanen and Knuth

[1]
In the case φ(t — 29μ—l,q)^2, it is also necessary to investigate the p*-rank

of N(pm; t, μ) for a prime p* which is a factor of φ(t-2, μ- 1, q). In Table 7.1,
there are four designs (Nos. 4, 8, 9, 11) satisfying the above condition and their
p*-ranks are given in Table 7.2 which suggests that the p*-rank of N(pm; ί, μ)
might, in general, be equal to v — 1 or υ. Their p*-ranks are computed by the usual
method.

Table 7.3 gives the p-ranks of the incidence matrices N(pm; t, μ) for all BIB
designs PG(ί, pm): μ with parameters satisfying the following conditions:

p = 2, 3, 5, 7; l^m^5, l^μ<t and 50<ι;<10000

where

t, = (pm(ί+i)-l)/(p«»-l) and <5 = [r/21] = [(^~l)/2(^-l)].

Comparing the ^-ranks of designs Nos. 13 and 17 in Table 6.2 and the p-
ranks of designs Nos. 3 and 5 in Table 7.1, respectively, we can see that the design
D1 of No. 13 in Table 6.2 is isomorphic with the design PG(3, 2): 2 and the design
D! of No. 17 in Table 6.2 is isomorphic with the design PG(2, 4): 1.
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TABLE 7.1.

BIB DESIGNS PG(/, pm): μ AND THEIR P-RANKS

No

1

2

3

4

5

6

7

8

9

10

11

υ b r k λ

7 7 3 3 1

13 13 4 4 1

15 15 7 7 3

15 35 7 3 1

21 21 5 5 1

31 31 6 6 1

31 31 15 15 7

31 155 35 7 7

31 155 15 3 1

40 40 13 13 4

40 130 13 4 1

/?-rank<5 pm t μ

4 1 2 2 1

7 2 3 2 1

5 1 2 3 2

1 1 3 2 3 1

1 0 2 4 2 1

1 6 3 5 2 1

6 1 2 4 3

1 6 2 2 4 2

2 6 7 2 4 1

1 1 1 3 3 2

3 0 6 3 3 1

PG(/, pm):μ

(0, 1, 5) mod 7

(0, 1, 5, 11) mod 13

(0, 1, 2, 7, 9, 12, 13) mod 5

(0, 1, 12), (0, 2, 9) mod 15
(0, 5, 10) PC(5)

(0, 1, 4, 14, 16) mod 21

(0, 1, 6, 18, 22, 29) mod 31

(0, 1,2, 3, 5, 7, 11, 14, 15, 16,
22,23, 26, 28, 29) mod 31

(0, 1, 2, 14, 15, 22, 28),
(0, 1, 3, 5, 14, 26, 29),
(0, 1, 4, 6, 10, 14, 25),
(0, 4, 7, 9, 16, 24, 25),
(0, 8, 11, 13, 19,23, 30) mod 31

(0, 1, 14), (0, 2, 28), (0, 4, 25),
(0, 7, 16), (0, 8, 19) mod 31

(0, 1, 2, 8, 16, 18, 23, 25, 28,
29, 34, 37, 38) mod 40

(0, 1, 28, 37),r(0, 2, 18, 25),
(0, 5, 11, 19) mod 40
(0, 10, 20, 30) PC(10)

TABLE 7.2.

THE p*-RANK OF BIB DESINGS PG(ί, pm):μ

No.

4

8

V

15

31

b r

35 7

155 35

k

3

7

λ p*

1 3

7 7

p*-rank

14

30

No.

9

11

V

31

40

b r

155 15

130 13

k

3

4

λ p*

1 7

1 2

p*-rank

31

39
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TABLE 7.3.

THE P-RANK OF BIB DESINGS PG(ί, pm):μ

No.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Ό

57

63

63

63

63

73

85

85

91

121

121

121

127

127

127

127

127

156

156

255

255

255

255

255

255

273

341

341

341

364

364

p-rank

29

7

22

42

57

28

17

61

37

16

61

106

8

29

64

99

120

36

121

9

37

93

163

219

247

82

26

146

296

22

112

δ p
m

4 7

1 2

2 2

5 2

15 2

4 8

2 4

10 4

5 9

1 3

5 3

20 3

1 2

2 2

4 2

10 2

31 2

2 5

15 5

1 2

2 2

4 2

9 2

21 2

63 2

8 16

2 4

8 4

42 4

1 3

4 3

ί

2

5

5

5

5

2

3

3

2

4

4

4

6

6

6

6

6

3

3

7

7

7

7

7

7

2

4

4

4

5

5

μ

1

4

3

2

1

1

2

1

1

3

2

1

5

4

3

2

1

2

1

6

5

4

3

2

1

1

3

2

1

4

3

No.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

V

364

364

400

400

511

511

511

511

511

511

511

585

585

651

757

781

781

781

820

820

1023

1023

1023

1023

1023

1023

1023

1023

1057

1093

1093

p-rank

253

343

85

316

10

46

130

256

382

466

502

65

401

226

217

71

391

711

101

590

11

56

176

386

638

848

968

1013

244

29

190

δ

15

60

3

28

1

2

4

8

18

42

127

4

36

13

14

2

13

78

4

45

1

2

4

8

17

36

85

255

16

1

4

p
m

3

3

7

7

2

2

2

2

2

2

2

8

8

25

27

5

5

5

9

9

2

2

2

2

2

2

2

2

32

3

3

t μ

5 2

5 1

3 2

3 1

8 7

8 6

8 5

8 4

8 3

8 2

8 1

3 2

3 1

2 1

2 1

4 3

4 2

4 1

3 2

3 1

9 8

9 7

9 6

9 5

9 4

9 3

9 2

9 1

2 1

6 5

6 4
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TABLE 7.3. (continued)

No.

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

V

1093

1093

1093

1365

1365

1365

1365

2047

2047

2047

2047

2047

2047

2047

2047

2047

2451

2801

2801

2801

3280

3280

3280

3280

3280

3280

3906

3906

3906

3906

4095

4095

p-rank

547

904

1065

37

302

882

1289

12

67

232

562

1024

1486

1816

1981

2036

785

211

1401

2591

37

303

1087

2194

2978

3244

127

1078

2829

3780

13

79

δ p
m

14 3

45 3

182 3

2 4

8 4

34 4

170 4

1 2

2 2

4 2

8 2

16 2

34 2

73 2

170 2

511 2

25 49

3 7

25 7

200 7

1 3

4 3

13 3

42 3

136 3

546 3

2 5

12 5

65 5

390 5

1 2

2 2

ί

6

6

6

5

5

5

5

10

10

10

10

10

10

10

10

10

2

4

4

4

7

7

7

7

7

7

5

5

5

5

11

11

μ

3

2

1

4

3

2

1

9

8

7

6

5

4

3

2

1

1

3

2

1

6

5

4

3

2

1

4

3

2

1

10

9

No.

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

V

4095

4095

4095

4095

4095

4095

4095

4095

4369

4369

4681

4681

4681

5461

5461

5461

5461

5461

6643

7381

7381

7381

8191

8191

8191

8191

8191

8191

8191

8191

8191

8191

p-rank

299

794

1586

2510

3302

3797

4017

4083

257

2801

126

1576

4091

50

561

2276

4397

5342

1297

226

2761

6616

14

92

378

1093

2380

4096

5812

7099

7814

8100

δ

4

8

16

33

68

146

341

1023

8

136

4

32

292

2

8

32

136

682

41

4

41

410

1

2

4

8

16

32

66

136

292

682

p
m
 t

2 11

2 11

2 11

2 11

2 11

2 11

2 11

2 11

16 3

16 3

8 4

8 4

8 4

4 6

4 6

4 6

4 6

4 6

81 2

9 4

9 4

9 4

2 12

2 12

2 12

2 12

2 12

2 12

2 12

2 12

2 12

2 12

μ

8

7

6

5

4

3

2

1

2

1

3

2

1

5

4

3

2

1

1

3

2

1

11

10

9

8

7

6

5

4

3

2
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TABLE 7.3. (continued)

179

No.

138

139

140

141

v

8191

9841

9841

9841

p-rank

8178

46

460

2014

δ

2047

1

4

13

p
m
 t

2 12

3 8

3 8

3 8

μ

1

7

6

5

No.

142

143

144

145

v

9841

9841

9841

9841

p-rank

4921

7828

9382

9796

δ

41

126

410

1640

p-
3

3

3

3

t μ

8 4

8 3

8 2

8 1

8. The p-rank of the incidence matrix of points and certain sets

in PG(f, g)

Let us denote φ(t, μ, q) μ-flats in PG(ί, q) by Vt(t, μ) (/ = 0, 1, ..., φ(t, μ,
q) — ϊ) and let Wηl+k(t, μ, v) (/c = 0, 1, ..., η — 1) be η = φ(μ, v, #) v-flats contained
in the μ-flat Fj(i, μ) where ί, μ and v are any integers such that 0<v<μgί and
q = pm. Let Uηl+k(t, μ, v) be the set of points obtained from the μ-flat Fj(f, μ)
by deleting all points which are contained in the v-flat Wηl+k(t, μ, v) and we define

the incidence matrix of υ = (qt+ί — !)/(# — 1) points (α1') and b = φ(t, μ, q)φ(μ, v, g)
sets Uj(t, μ, v) in PG(f, q) to be the matrix:

N(q\ t, μ, v)=| , v)||; ι=0, 1, ..., i7-l and j=0, 1, ..., ί>-

where ntj(qi t, μ, v)=l or 0 according as the ith point (αf) is contained in the j'th
set Uj(t, μ, v) or not, and α is a primitive element of GF(gί+1). It is easy to see
that N(q ί, μ, v) is the incidence matrix of a BIB design with the following parame-
ters :

(8.1)

= ί, μ, « μ , v,

, v, q)-φ(μ-l, v-1

-2, v-2,

- , + 1)]

λ = φ(t-2, μ-2,

In this case, we have

(8.2) 5 =

and

(8.3) r-λ = q*{q»+iφ(t-2, μ-1, q)φ(μ-\, v, q)

+ φ(t-2, μ-2, q)φ(μ-2, v-1, q)}.

So, it is necessary to investigate the p-rank and the p*-rank of the incidence
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matrix of N(pm; t, μ, v) where p* is a prime which is a factor of {qμ+ίφ(t — 2,
μ-1, q)φ(μ-l9 v, q) + φ(t-29 μ-2, q)φ(μ-2, v-1, q)}.

In the special case μ = t, N(q; t, t, v) is the incidence matrix of a BIB design
with parameters:

-1), b = φ(t,vίq

(8.4) r=fe-<Kf-l,v-l, 4), fc = ι>-(β*+1

f-2, v-2,

and it is the complement matrix of N(q ί, v).
To obtain the p-rank of N(q f , μ, v), we prepare the

LEMMA 8.1. Let &P(N) be the vector space over G¥(p) which is generated
by column vectors of the matrix N. Then,

(i) Jc e ®p(N(q ί, μ», Jv £ @p(N(q t, μ, v))

and

(ϋ) ^P([JP: JV(q ί, /I, v)])=0,(N(g ί, v))

/or any integers t, μ and v such that 0<v<μ^ί where q = pm and Jv is the column
vector of order v whose elements are all unity.

PROOF, (i) Since N(q; t, v) is the incidence matrix of a BIB design with
parameter r = φ(t— 1, v — 1, q) and φ(t— 1, v— 1, q) is not a multiple of/?, it follows

from £ n^q; t, v) = r (ΐ = 0, 1, ..., u-1) that JvζΞ&p(N(q; t, v)).

Since JV(g ί, μ, v) is the incidence matrix of a 5/5 design with parameter

fc = β'+1(flrv-l)/(ί-l), it follows from g ny(g; ί, μ, v) = fc 0=1, 2, ..., i)

that N(q; t, μ, v)TJv = Q mod p. This implies that any vector which belongs to
; t, μ, v)) is orthogonal to Jw. On the other hand, it follows from v =

mod p.

This implies that Jυ <£ &p(N(q ί, μ, v)).
(ii) At first, we shall prove that

(8.5) 0Jί{J9 : N(q ί, μ, v)]) c ®p(N(q ί, v)).

Since Jυ^&p(N(q; t, v)), it suffices to show that any column vector of N(q; t, μ, v)
belongs to &p(N(q; t, v)). Let x be any column vector of N(q; t, μ, v) where
XT=(XO, χi9 ..., x^-i). Then, there exist a unique μ-flat Fand a unique v-flat
Pfi contained in the μ-flat Fsuch that xf = l or 0 according as the ϊth point (α1)
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is contained in V—W^ or not. Let us denote η = φ(μ, v, q) v-flats contained in
the μ-flat Fby Wj (y = l, 2, ..., f/) and let z/ (y'=l, 2, ..., */) be column vectors of
N(q f , v) such that z^ = 1 or 0 according as the ith point (αf) is incident with the
v-flat Wj or not, where zJ = (zQJ, zίjί ..., z y _ l 7 ). Then it follows that

n
X = CΛ Ύ\ sSi — ZΛ mod p

j=ι

where cx is a positive integer less than p such that

Cιφ(μ— 1, v— 1, pm)Ξl mod p.

This implies that (8.5) holds.

Next, we shall prove that

(8.6) 0p(U0 : N(q t, μ, v)]) D ̂ p(N(<? ί, v)).

Let * be any column vector of N(q; t, v) where *Γ = (z0, z l 9 ..., z^.J. Then there
exists a unique v-flat W such that z f =l or 0 according as the ith point (α*) is
incident with W or not. Let us denote b0 = φ(t — v — 1, μ — v— 1, g) μ-flats con-
taining the v-flat P^by Fj O' = l, 2, ..., 60) and let Xj (j = l, 2, ..., f>0) be column
vectors of N(g; ί, μ, v) such that x/7 =l or 0 according as the ith point (αf) is
contained in Vj— Woτ not. Then it follows that

bo

z = Jυ — c2 Σ χι mod p
;=ι

where c2 is a positive integer less than p such that

c2φ(t~-v-2, μ-v-2, pm)=i mod p.

This implies that (8.6) holds. This completes the proof.

From Lemma 8.1 and Theorem 7.2, we have the following theorem:

THEOREM 8.2. For any integer μ such that 0<v<μ^ί, the p-rank of N(q;
t,μ, v) is equal to Rv(t, pm)-l where q = pm and Rv(t, pm) is given by (7.7) or (7.9).

Since each entry of N(q\ t, μ, v) is 0 or 1, we have the

COROLLARY 8.3. For any positive integer n, the rank of N(pm\ t9 μ, v) over
GF(pn) is equal to Rv(t, pm)-l.

Since N(q ί, ί, v) is the complement matrix of N(q ί, v), we have the

COROLLARY 8.4. The p-rank of the complement matrix of the incidence
matrix N(q; t, v) of points and v-flats in PG(ί, q) is equal to Rv(t, pm)-l.

This corollary shows that the p-rank of the complement matrix of N(q ί, v)
is less than the p-rank of N(q ί, v).
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Table 8.1 gives all solutions for BIB designs N(q; t, μ, v) with 7<^v^5Q and
ί><1000 and their p-ranks. The symbol C(No. i in Table 7.1) means that this
design is the complement of the design No. i in Table 7.1. The symbol CT(...)
denotes that the rest of the initial blocks are generated by a cyclical transforma-
tion indicated by CΓ(...) after; for example, symbol (0, 7, 9, 12) mod 15 CT(0, 1,
2, 9, 7, 12, 13) of No. 5 in Table 8.1 denotes that all initial blocks may be generat-
ed cyclically from the initial block (0, 7, 9, 12) by the cyclical transformation
CΓ(0, 1, 2, 9, 7, 12, 13), that is, all initial blocks are

(0, 7, 9, 12), ( 1, 12, 7, 13), ( 2, 13, 12, 0), (9, 0, 13, 1),

(7,1,0, 2), (12, 2,1, 9), (13, 9, 2,7).

TABLE 8.1.

SOLUTIONS FOR BIB DESIGNS N(pm; t, μ, v) AND THEIR P-RANKS

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

υ b r k λ

7 7 4 4 2

13 13 9 9 6

15 15 8 8 4

15 35 28 12 22

15 105 28 4 6

21 21 16 16 12

31 31 25 25 20

31 31 16 16 8

31 155 120 24 92

31 465 120 8 28

31 155 140 28 126

40 40 27 27 15

40 130 117 36 105

40 520 117 9 24

rank δ pm t μ v

3 1 2 2 2 1

6 0 3 2 2 1

4 1 2 3 3 2

10 0 2 3 3 1

10 2 2 3 2 1

9 0 4 2 2 1

15 0 5 2 2 1

5 1 2 4 4 3

15 0 2 4 4 2

15 2 2 4 3 2

25 0 2 4 4 1

10 0 3 3 3 2

29 0 3 3 3 1

29 2 3 3 2 1

Solution

C(No. 1 in Table 7.1)

C(No. 2 in Table 7.1)

C(No. 3 in Table 7.1)

C(No. 4 in Table 7.1)

(0, 7, 9, 12) mod 15,
CΓ(0, 1, 2, 9, 7, 12, 13)

C(No. 5 in Table 7.1)

C(No. 6 in Table 7.1)

C(No. 7 in Table 7.1)

C(No. 8 in Table 7.1)

(0, 5, 7, 11, 14,22, 26,28)
mod 31, CΓ(0, 1, 2, 3, 5,
26, 11,22,23,28, 29, 7, 14,
15, 16)

C(No. 9 in Table 7.1)

C(No. 10 in Table 7.1)

C(No. 11 in Table 7.1)

(0, 8, 16, 18, 23, 25, 28,
34, 37) mod 40, CΓ(0, 1,2,
25, 8, 37, 38, 18, 23, 16, 34,
28, 29)
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9. The jp-rank of the incidence matrix of all points and all
μ-flats in EG(f, q)

(a) The incidence matrix of all points and all μ-flats in EG(ί, q)

The affine geometry of t dimensions, denoted by EG(f, q), is a set of points
which satisfy the following conditions :

(i) A point is represented by (v) where v is an element of the Galois field
GF(g') and each element represents a unique point.

(ii) A //-flat, 0<μ^ί, passing through the origin, denoted by (0), is defined
as a set of points :

where α's run independently over the elements of G¥(q) and v l 5 v2, ..., vμ are
linearly independent elements of G¥(qt) over GF(g).

(iίi) A μ-flat not passing through the origin is defined as a set of points :

where a's run independently over the elements of GF(g) and v0, v l 5 ..., vμ are
linearly independent elements of GF(gf)

Let α be a primitive element of GF(q'). Then every non-zero element of
GF(qt) can be represented by α°, α1, ..., αgt~2 and every point in EG(t, q) can be
expressed by (0), (α°), (α1), ..., (α€t~2). It is well known that the number, fc0,
of μ-flats passing through the origin in EG(f, q) is equal to b0 = φ(t—l, μ— 1, q)
and the number, bί9 of μ-flats not passing through the origin is equal to

(9.1) b, = φ(t, μ, q)-φ(t-l, μ, q)-φ(t-l, μ-1, q)

where φ(t9 μ, q) is given by (7.4). In order to define the incidence matrix of all
points and all μ-flats in EG(f, q), we shall denote the origin (0) in EG(ί, q) by JP0

and the point (α") by Pu+l (w = 0, 1, ..., q'-2).
After numbering b0 μ-flats passing through the origin in EG(ί, q) and ί?A

μ-flats not passing through the origin in EG(ί, q) in some way, respectively, we
define the incidence matrix, M$(q; t, μ), of all points and ί?0 μ-flats passing
through the origin in EG(ί, q) and the incidence matrix, M? (q ί, μ), of all points
and ί?! μ-flats not passing through the origin in EG(ί, q), to be the matrices:

Mf (q; ί, μ)=||m[f(^; ί, μ)|| i = 0, 1, ..., q'-l and j = l, 2, ..., bt

where m(

i

lf(q; ί, μ) = l or 0 according as the iih point Pt is incident with thejth
μ-flat or not. Let

(9.2) M*(q r, μ) = [Mg(g ί, μ) : M$(q ί, μ)].
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Then, M*(q t, μ) is the incidence matrix of all points and all μ-flats in EG(ί, q).
It is known [2] that M*(q f, μ) is the incidence matrix of a BIB design, denoted
by EG(f, q): μ, with parameters:

v = qt, b = φ(t, μ, q)-φ(t-!9 μ, q\ r = φ(t-l, μ-1, q),
(9.3)

k = q» and λ = φ(t-29 μ-2, q).

In this case, we have

(9.4) r-A=i^(*-2, μ-1, <?) and 5 = [r/2A] = [(^-l)/2(^~l)].

It is therefore necessary to investigate the p-rank and the p*-rank of M*(q ί, μ)

where q = pm and p* is a prime which is a factor of φ(t — 29 μ — 1, #). But they
have not yet been obtained. So, in this section, we shall investigate the p-rank of
M*(<z;f,μ).

(b) Main theorems for the p-ranks of M(q; t, μ) and M*(g; ί, μ)

Let M/(g; ί, μ) (ί = 0, 1) be the matrix which is obtained from M*t(q\ t, μ)
by deleting its first row (correspoinding to the origin) and let

(9.5) M(q t, μ) = [ΛfOfo ί, μ): Af ̂  ί, μ)].

Then we have the following main theorems:

THEOREM 9.1. The p-rank of the incidence matrix M(q; ί, μ) of q* — \
points other than the origin and all μ-flats in EG(f, q) is equal to Rμ(t, pm)~

Rμ(t-l, pm) where q=pm and Rμ(t, pm) is given by (7.9).

THEOREM 9.2. The p-rank of the incidence matrix M*(q; t, μ) of all points
and all μ-flats in EG(ί, #) is also equal to Rμ(t, pm)-Rμ(t-l, pm).

COROLLARY 9.3. For any positive integer n, the rank of M(pm\ ί, μ) (or

M*(pw; ί, μ)) over GF(p") is equal to Rμ(t9 pm)-Rμ(t-l, pm).

COROLLARY 9.4. In the special case μ = f — 1, the p-rank of the incidence
matrix M*(pm; ί, ί— 1) of all points and all hyperplane in EG(ί, pm) is equal to

C+r')"
COROLLARY 9.5. In the special case m = l, the p-rank of the incidence

matrix M*(p; t, μ) of all points and all μ-Άats in EG(f, p) is equal to Rμ(t9 p)
— Rμ(t-l, p) where Rμ(t, p) is given by (7.12).

COROLLARY 9.6. In the special case q = 2, the 2-rank of the incidence
matrix M*(2; t, μ) of 2t points and φ(t, μ, 2)-0(f-l, μ, 2) μ-flats in EG(t, 2)

is equal to
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(c) Preliminary result for the proof of main theorems

To obtain an explicit formula for the p-rank of the incidence matrix M(q; t, μ),
we shall use the following properties, called the cyclic structure, of μ-flats in
EG(ί, q).

THEOREM 9.7 (Rao), (i) Let

nθ) = {(0), (α"), 0*C3)> -.., («<")} (" = <?")

be any μ-flat passing through the origin in EG(ί, q\ then the set

is also some μ-flat passing through the origin for any positive integer r.
(ii) Let

be any μ-flat not passing through the origin in EG(t9 q), then the set

is also some μ-flat not passing through the origin for any positive integer r.

For some positive integer 0, V(θ) coincides with 7(0). Such an integer θ
is called a cycle of the (initial) flat F(0) and the minimum value of these cycles is
called the minimum cycle (m.c.) of F(0). Since F(^ί-l) = F(0) and F*(gf-l)
= F*(0), any μ-flat in EG(ί, q) has q{ — 1 as a cycle.

THEOREM 9.8 (Rao), (i) Any μ-flat passing through the origin in EG(ί, q)
has some factor of(qt — l)/(q — l) as the minimum cycle.

(ii) Any μ-flat not passing through the origin in EG(ί, q) has q* — ! as the
minimum cycle.

From the above two theorems, it follows that (i) all μ-flats passing through
the origin may be generated cyclically from a set of initial μ-flats, say F00(0),
F01(0), ..., F0πo_1(0), passing through the origin by the transformation:

(9.6) (0)->(0) and (α")->(α«+1)

for M = 0, 1, ..., qt — 2, that is, all μ-flats passing through the origin are represented
by Vok(r) (/c = 0, 1, ..., π0 — 1; r = 0, 1, ..., θk — 1) where θk is the minimum cycle of

πo
the initial μ-flat F0k(0) and π0 is an integer such that 2 ^/ = ̂ o and (ϋ) all μ-flats

i=0

not passing through the origin may be generated cyclically from a set of initial
μ-flats, say F10(0), Fu(0), ..., V^-^O), not passing through the origin by the
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transformation (9.6), that is, all μ-flats not passing through the origin are represent-
ed by Flfe(r) (fc = 0, 1, ..., πj-1; r = 0, 1, ..., q*-2) where πί = bί/(qt-l). Since
any multiple of the minimum cycle of a μ-flat is also a cycle of the μ-flat, any
μ-flat in EG(ί, q) has t;* = q* — 1 as a cycle.

Let F0fc(tt0fc + r0)=Fofc(r0) for all integers fc, u and r0 such that

and

*and we define the incidence matrix of v* points other than the origin and πtv
μ-flats Vlk(r) (fc = 0, 1, ..., π^— 1; r = 0, 1, ..., t;* — 1) to be the matrix:

M^Hm^ll i = 0, 1, ..., π^i;* —1 and j = 0, 1, ..., v* — 1

where wj$*+rf7 = l or 0 according as the jth point (α 7) is incident with the μ-flat
Vlk(r) or not. Let

(9.7) M = [$«].

Since M(q ί, μ) can be obtained from Mτ by deleting duplicates of rows of M
and by permuting rows suitably, the rank of M(q ί, μ) is equal to the rank of M.
Hence, it suffices to obtain an explicit formula for the rank of M over GF(g).

(d) The proof of main theorems

In the following, we shall use an extension of the methods used by Smith
[31]. From the definition of M0 and Ml5 we can see that

(9.8) ^iS +r+i.j+i = ^iS +r.y

for any integers /, k, r and j such that

(9.9) O^/^l, 0^k<πz, 0^r<ι;* and 0^;<t;*

where the subscripts r+1 and j + 1 are taken mod v*. We define the incidence
polynomial of the μ-flat Vlk(r) by

(9.10) dft(x)=V*Σ*™ti*+r,jX
j

Then it follows from (9.8) and (9.10) that

(9.11) ##(*) = *Γ0*ίo(*) mod xv*-l

for any integers /, k and r satisfying the condition (9.9). Let
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:° (α2)0 ... (αΌ° \

187

(9.12) V
(α2)2\1

yt>*-l (α *)"*-

Then the matrix V is a non-singular Vandermonde matrix over GF(q') of order

v*. From (9.10) and (9.11), we have the following equation:

(9.13)

where

(9.13')

MV =

DIk =

0 *$(«"*) J

for ί = 0, 1 and fc = 0, 1, ..., π/— 1. Since both Kand the composite matrix of K's
on the right hand side of (9.13) are non-singular matrices over GF(q*), the rank of

M over GF(^0 is equal to the rank of the second matrix on the right hand side of
(9.13). Hence, the rank of M over GF(gf) is equal to the number of integers ft,

l<ίft<^ί;*, such that 5^(αfc)=^=0 for some integers / and k. Since the entries of
M are elements of subfield GF(/?) of G¥(q*)9 the rank of M over GF(^0 is equal

to its rank over GF(/?). Thus we have the following theorem:

THEOREM 9.9. The p-rank of the incidence matrix M(qι t, μ) of qt — l

points other than the origin and all μ-ftats in EG(ί, q) is equal to the number of

integers ft, l^h^qt — 1, such that ^fco(αft)^0/or some integers I and k.

Let

be any /ι-flat passing through the origin in EG(ί, g) and let
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Σ* = {(&**+ a ia^+ +arOL***)}

= {(α<*),(α<0, ...,(««*«)} (π = ̂ )

be any μ-flat not passing through the origin in EG(ί, #) where α's run independently
over the elements of GF(g), αeι, αβ2, ...,αe* are linearly independent elements of
GF(#0 and αeo, αe*, ..., αe* are also linearly independent elements of G¥(qt).

We define the incidence polynomial of the μ-flat Σ and the μ-flat Σ* as the poly-
nomials

(9.14) ΘΣ(X) = XC*+XC* + ~+XC» (n = qμ)

and

(9.15) θr(x) = jccΐ

respectively. Then it follows that

(9.16) 0I(αΛ) = Σ
«1

and

(9.17) MαΛ) = Σ
βi αA

where each summation is taken over all elements of GF(#). Expanding each term
of (9.16) and (9.17) and using the following equation:

(9.18) Σ **=
aeGF(q) [ Q, Otherwise,

we have

(9.19) W) = (-l)"

and

(9.20) θA^ = (-ιr Σ (/o§ /l(?_ ,)*..., /μ(,-

where the summation in (9.19) is taken over all choices of positive integers fcl5
μ

k2> ...» fcμ such that Σ fc*(# — l) = ft an(i the summation in (9.20) is taken over
i=l

all choices of a non-negative integer /0 and positive integers I l 9 12, ..., lμ such

that /0+ Σ /^-l) = /z.
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Let F0fc(0) be a μ-flat passing through the origin in EG(t, q) from which the
μ-flat Σ can be generated and let F|j(0) be a μ-flat not passing through the origin
in EG(Z, q) from which the μ-flat Σ* can be generated. Then it follows from
(9.11) that (i) 0<o>(α")^0 if and only if ^(αΛ)^0 and (ii) 0J J>(α*)=£0 if and only
if 0I*(αΛ)^=0. Hence, from Theorem 9.9, we have the following theorem:

THEOREM 9.10. The p-rank of the incidence matrix M(q; t, μ) of qt — l
points other than the origin and all μ-flats in EG(f, q) is equal to the number of
integers h, l^h^q* — !, such that θΣo(uh)φQ for some μ-flat Σo (passing
through the origin or not passing through the origin) in EG(f, q).

In order to obtain the number of integers h satisfying the above condition,
we shall use the following two theorems summarizing the essential results due to
Smith [31].

THEOREM 9.11. Let h be an integer such that l^h^q'-l. Then a neces-
sary and sufficient condition for the integer h that there exists a μ-flat Σ passing
through the origin in EG(ί, q) such that θΣ((x,h)ηf=0 is that h is an integer such
that there exists a set of μ positive integers kt (i=l, 2, ..., μ) satisfying the fol-
lowing conditions:

(9.21) h= Σ fc/(4-l) and D,[Λ]= Σ Dplk{q-V]

where Dp[n] is defined by

(9.22) Dp[n] = c0 + cl + '"+cu

for a non-negative integer n having the p-adic representation:

THEOREM 9.12. Let h be an integer such that l^h^q* — !. Then a neces-
sary and sufficient condition for the integer h that there exists a μ-flat Σ* not

passing through the origin in EG(ί, q) such that θΣ*(ah)φQ is that h is an inte-
ger such that hφqt — l and that there exists a set of one non-negative integer 10

and μ positive integers lt (i = l, 2, ..., μ) satisfying the following conditions:

(9.23) Λ = /0+ Σ ««-!) and ϋpM=Dp[/0]+ £ !>,[/,(« -1)].
i=l * i=l v

If h is an integer which satisfies the condition (9.21), it is an integer which satis-
fies the condition (9.23). In the special case h = qt — l9it satisfies the conditions
(9.21) and (9.23). Hence, from Theorems 9.10, 9.11 and 9.12, we have the follow-
ing theorem:

THEOREM 9. 13. The p-rank of the incidence matrix M(q; t, μ) of q* — l
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points other than the origin and all μ-flats in EG(ί, q) is equal to the number

of integers h, l^h^q* — 1, such that there exists a set of one non-negative integer

IQ and μ positive integers /f (z = l, 2, ..., μ) satisfying the condition (9.23).

The following theorem due to the present author [12] plays an important role

in enumerating the number of integers h satisfying the above condition.

THEOREM9.14. Let h be an integer such that l^h^qt — l and let the p-

adic representation of h be

t-ί m-l

(9.24) h = Σ Σ CijPim+j

ί=o 7 =o

where q = pm and c^s are non-negative integers less than p. Then a necessary

and sufficient condition for the integer h that there exists a set of one non-negative

integer /0 and μ positive integers lt (i = l, 2, ..., μ) satisfying the condition (9.23),

is that there exists a set of ra + 1 positive integers st (/ = 0, 1, ..., m) satisfying the
following conditions:

(9.25) sm = s0, μ^sj^t,

and

(9.26) 'Σ

for each j = 0, 1, ..., m —1.

Using the above theorems, we now prove Theorems 9.1 and 9.2.

(Proof of Theorem 9.1) In [12], the present author showed that the number

of integers h satisfying the conditions (9.25) and (9.26) was equal to Rμ(t, pm)

-Rμ(t-l, pm). Hence, we have the required result from Theorems 9.13 and 9.14.

(Proof of Theorem 9.2) Since M*(q ί, μ) is the incidence matrix of a BIB

design with parameters (9.3), it follows from the definition of M*(q; t, μ) that

i=l

and

for j = l, 2, ..., V

This implies that the first row of M*(q ί, μ) can be expressed as a linear combina-

tion of the other rows of M*(q ί, μ) with coefficient from GF(p). Since M(q ί, μ)

is the matrix obtained from M*(q; ί, μ) by deleting its first row, the ^-rank of

M*(q ί, μ) is equal to the p-rank of M(q ί, μ). Hence, we have the required

result from Theorem 9.1.
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(e) Tables of the p-ranks of BIB designs EG U, pm) :μ

Table 9.1 gives solutions for BIB designs EG(f, pm): μ with 7 ̂  v ̂  50 and their
^-ranks where v = pmt. Solutions for designs Nos. 12, 13 and 14 are omitted here,
for values of b are large. Comparing the p-ranks of designs DI (i = l, 2, 3, 4) of
No. 4 in Table 6.2 and the p-rank of the design of No. 1 in Table 9.1, we can
see that the design D^ of No. 4 in Table 6.2 is isomorphic with the design EG(3, 2):
2.

Table 9.2 gives the p-ranks of the incidence matrices M*(pm; f, μ) of all BIB
designs EG(f, pm): μ with parameters satisfying either the condition:

or

(i) p=2

(ii) p = 3, 5, 7; l^m^

and

and 50<ι;<10000.

In the special case q = 2, we can see from Corollaries 7.6 and 9.6 that the 2-
rank of M*(2; ί, μ) is equal to the 2-rank of N(2; ί — 1, μ — 1). So, these designs
EG(ί, 2): μ and their 2-ranks are omitted from Table 9.2.

TABLE 9.1.

BIB DESIGNS EG(ί, pm): μ AND THEIR P-RANKS

No.

1

2

3

4

5

6

7

8

V

8

8

9

16

16

16

16

25

b

14

28

12

30

140

120

20

30

r

1

1

4

15

35

15

5

6

k

4

2

3

8

4

2

4

5

λ

3

1

1

7

7

1

1

1

rank

4

7

6

5

11

15

9

15

<5

1

3

2

1

2

7

2

3

^
2

2

3

2

2

2

4

5

/

3

3

2

4

4

4

2

2

μ

2

1

1

3

2

1

1

1

EG(/,̂ ):μ

(oo,0, 1, 5), (0, 3, 4, 5) mod 7

(oo,0), (0, 1), (0, 3), (0,5) mod 7

(oo,0, 4) PC(4), (0,2, 7) mod 8

(oo, 0, 1, 2, 7, 9, 12, 13),

(0,4,5,6,7,9, 11, 12) mod 15

(oo,0, 1, 12), (oo,0, 2, 9) mod 15,

(oo, 0, 5, 10) PC(5), (0, 7, 9, 12),

(0,4,5, 12), (0,4, 9, 11),

(0, 1, 2, 7), (0, 1, 3, 5),

(0,6, 11, 12), (0, 1,9, 13) mod 15

(oo,0), (0,1), (0,2), (0,3), (0,4),

(0, 5) (0, 6), (0, 7) mod 15

(oo, 0, 5, 10) PC(5), (0, 8, 12, 14)

mod 15

(oo, 0, 6, 12, 18) PC(6), (0, 8, 17,

21, 22) mod 24
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TABLE 9.1. (continued)

No.

9

10

11

12

13

14

15

v b r k λ

27 39 13 9 4

27 117 13 3 1

32 62 31 16 15

32 620 155 8 35

32 — 155 4 15

32 496 31 2 1

4 9 5 6 8 7 1

rank δ pm t μ

10 1 3 3 2

23 6 3 3 1

6 1 2 5 4

16 2 2 5 3

26 5 2 5 2

31 15 2 5 1

28 4 7 2 1

EG(t, pm): μ

(oo,0, 1, 5, 11, 13, 14, 18,24)
PC(13) (0, 7, 10, 16, 17, 18, 21,
22, 24) mod 26

(oo, 0, 13) PC(13), (0, 18, 24),
(0, 1, 5), (0, 3, 15), (0, 7, 16)
mod 26

(oo,0, l ,2,3,5,7, l l ,14,15,16,
22, 23, 26, 28, 29), (0, 5, 7, 9, 10,
11, 13, 14, 18, 19,20,21, 22,25,
26, 28) mod 31

—

—

—

(oo, 0, 8, 16, 24, 32, 40) PC(8),
(0, 18, 22, 28, 29, 31, 43)mod 48

TABLE 9. 2.

THE P-RANK OF BIB DESINGS EG(ί, pm): μ

No.

16

17

18

19

20

21

22

23

24

25

26

27

28

V

64

64

64

81

81

81

81

125

125

243

243

243

243

p-rank

16

51

27

15

50

76

36

35

105

21

96

192

237

δ p
m

2 4

10 4

4 8

1 3

5 3

20 3

5 9

2 5

15 5

1 3

4 3

15 3

60 3

t

3

3

2

4

4

4

2

3

3

5

5

5

5

μ

2

1

1

3

2

1

1

2

1

4

3

2

1

No.

29

30

31

32

33

34

35

36

37

38

39

40

41

υ

256

256

256

256

343

343

512

512

625

625

625

625

729

p-rank

25

129

235

81

84

287

64

373

70

355

590

225

28

δ p
m

2 4

8 4

42 4

8 16

3 7

28 7

4 8

36 8

2 5

13 5

78 5

13 25

1 3

t

4

4

4

2

3

3

3

3

4

4

4

2

6

μ

3

2

1

1

2

1

2

1

3

2

1

1

5
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TABLE 9.2. (continued)

No.

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

V

729

729

729

729

729

729

729

1024

1024

1024

1024

1024

2187

2187

2187

2187

2187

2187

2401

2401

2401

2401

3125

3125

p-rank

168

435

651

722

100

553

216

36

276

736

993

243

36

274

897

1647

2074

2179

210

1316

2275

784

126

1007

δ p
m

4 3

14 3

45 3

182 3

4 9

45 9

14 27

2 4

8 4

34 4

170 4

16 32

1 3

4 3

13 3

42 3

136 3

546 3

3 7

25 7

200 7

25 49

2 5

12 5

t

6

6

6

6

3

3

2

5

5

5

5

2

7

7

7

7

7

7

4

4

4

2

5

5

μ

4

3

2

1

2

1

1

4

3

2

1

1

6

5

4

3

2

1

3

2

1

1

4

3

No.

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

V

3125

3125

4096

4096

4096

4096

4096

4096

4096

4096

4096

4096

6561

6561

6561

6561

6561

6561

6561

6561

6561

6561

6561

jp-rank

2438

3069

49

524

1974

3515

4053

125

1511

3690

256

2719

45

423

1711

3834

5634

6404

6552

225

2660

6026

1296

δ p
m

65 5

390 5

2 4

8 4

32 4

136 4

682 4

4 8

32 8

292 8

8 16

136 16

1 3

4 3

13 3

41 3

126 3

410 3

1640 3

4 9

41 9

410 9

41 81

t

5

5

6

6

6

6

6

4

4

4

3

3

8

8

8

8

8

8

8

4

4

4

2

μ

2

1

5

4

3

2

1

3

2

1

2

1

7

6

5

4

3

2

1

3

2

1

1

Part III. The p-rank of the incidence matrix of a PBTB design

derived from a finite geometry

10. The p-rank of the incidence matrix of points and //-flats with a cycle

Θ in PG(ί, q)

In this section, we shall investigate the p-rank of the incidence matrix of points
and μ-flats with a cycle θ less than υ in PG(ί, q) where v = (qt+1 - !)/(# -1).
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(a) Preliminary results

Let q be a prime power, say q = pm and consider a μ-flat F(0) in PG(f, q) with

the defining points (α*0), (αeι)» •••» (α**):

V(0) = {(a0<xe° + a1a
eι + ..+aμoιe«)}

and a μ-flat F(r) with the defining points (αeo+r), (αeι+r)> ..., (αe"+r):

where r is a positive integer. For some positive integer θ, F(0) coincides with
F(0). Such an integer θ is called a cycle of the initial flat F(0) and the minimum
value of these cycles is called the minimum cycle (m.c.) of the initial flat F(0).
Since V(v)= F(0), υ is a cycle of any μ-flat F(0). To obtain the p-rank of the in-
cidence matrix of points and μ-flats with a cycle θ less than v in PG(f , q), we shall
use the following properties, called the cyclic structure, of μ-flats in PG(ί, q).

THEOREM 10.1 (Rao), (i) Let

F(0) = {(α<0,(oc<2), ...,(*<")}

be a μ-flat in PG(ί, q), where k = (q»+1 - 1 )/(<?- 1), then the set

is also some μ-flat in PG(ί, q)for any positive integer r.
(ii) Any μ-flat in PG(ί, q) has some factor of v as the minimum cycle.

This theorem shows that all μ-flats in PG(f, q) may be generated cyclically
from a set of initial μ-flats, say F0(0), F^O), ..., F^^O), by the transformation:

(10.1) («.)_>(«.+ !) (,, = 0,1, ..., t -1),

where (αy) = (α°), that is, all μ-flats in PG(ί, q) can be represented by Vβr) (i
= 0, 1, ..., π-1; r = 0, 1, ..., 0f-l) where 0f is the m.c. of the initial μ-flat Ff(0)

π-l
and π is an integer such that Σ θι = φ(t, μ, q).

i=0
The following theorems due to Yamamoto, Fukuda and Hamada [36] play

an important role in obtaining the p-rank of the incidence matrix of points and
μ-flats with a cycle θ in PG(ί, q).

THEOREM 10.2. If a μ-flat V has a cycle less than v, then there exists a posi-
tive integer I such that / + ! is a common factor of t + l and μ+1, and that θl

= (0ί+1 — l)/(gί+1 — l) is the m.c. of the μ-flat V. In this case, the flat V is com-

posed of (qμ+1 — ϊ)l(ql+ί — l) flats each of which belongs to a set of θl l-flats

7(0), 7(1), ..., 7(0, -1) generated from the initial l-flat F(0) = {(α0α° + αX'
+ — +e,aieO} of the m.c. θ,.
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Note that this theorem shows that (i) if a μ-flat V has a cycle θ less than υ,
then 0 must be an integer of the form (qt+i - l)/(ql+1 - 1), where / is some positive
integer such that / + 1 is a common factor of ί+1 and μ + 1, and (ii) the μ-flat F
can be also expressed as follows :

where μ/ is an integer such that μj+l=(μ +!)/(/+!) and fo's run independently
over the elements of GF(ql+ί), not all zero, and α/0, α/ J, ..., α^i are μ z+l
linearly independent elements of GF(gί+1) over GF(#ί+1).

In the following, we shall denote a μ-flat having the cycle θt = (qt+1 — l)/(g/+ 1

— 1) by a μ(/)-flat where / is an integer such that /+ 1 is a common factor of t + 1
and μ+1.

THEOREM 10.3. (i) If t+l and μ+1 are relatively prime, then all μ-flats
in PG(f, q) have the minimum cycle v = (qt+l — l)/(q — 1) and can be generated
from π = φ(t, μ, q)/v initial μ-flats where φ(t, μ, q) is given by (7.4). 7/(ί + l,

μ + l) = pl1py22 " Plu (>1» p's are primes such that Jp ί<A+ι) IS the highest com-
mon factor of t+l and μ + 1, ί/ien f/ie number of different minimum cycles is

(ii) Let

(10.2)

Then the numbers of μ(p^ίp^2 ...pJM — l)-flats having the cycle Θ[xί9 ...,xj and
the m.c. Θ[xί9 ..., xj are respectively

n(xί9 ..., xw) = <

(10.3) n*(Vι, ...,yM) = n(7l, ..., 7w),

n*(xx, ..., xtt) = n(xls ..., xtt)-

and the number of initial μ-flats of the m.c. Θ[xl9 ..., xα] is

(10.4) π(xl5 ..., xM) = n*(xl5 ..., xtt)/0|>ι, ..., xj

from which the totality of μ-flats having the m.c. Θ[xi9 ..., xj can be generated.

COROLLARY 10.4. Let I be any integer such that / + ! is a common factor
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0/f-f l and μ + 1, and let Θl9 tt and μl be integers such that

(10.5) β,=(β'+1

Then the number of μ(l)-flats is equal to n = φ(tl9 μl9 ql+i).

Note that since any μ-flat has a cycle υ, it is also μ(0)-flat.

(b) The main theorems for the p-ranks of N(θt) and N(θ[xl9 ..., #J)

After numbering n2μ(2)-flats in some way, we define the incidence matrix of
v points and n/μ(/)-flats in PG(ί, q) to be the matrix:

i = 0, 1, ..., t -1 and j = l, 2, ..., n,

where nf/fy) = 1 or 0 according as the ith point (α1') in PG(f , q) is incident with
the 7'th μ(/)-flat or not. It is known [36] that when />0, N(θt) is the incidence
matrix of a PBIB design of N2 type (GD) with parameters :

(10.6) k

n^Όfr-l), n2 = (vlθί)(θl-l\ pi, =0/0, -2 and

In this case, we have

(10.7) p1 = rfc-t;^ = ̂ +υ^(ί/-2,μί-l,^^)(^^-

and

p2 = r-A1=0.

Hence, this design is a singular GD design. Since

Rankpo(N(θ|)) ̂  Rank(JV(^)) = α0 + αx

for any prime p0, it follows from α0 = l and α1=(^ί+1 — l)/(ql+ί — 1) — 1 that
RankpoC/V(0,)) ̂  (^ί+ ! - l)/(ql+ 1 - 1). On the other hand, it follows from Theorem
5.1 that the p0-rank of N(0j) is never less than (qt+1 — l)/(^z+1 — 1) — 1 unless p0

is a factor of vp^. It is therefore necessary to investigate the p-rank and the p*-
rank of N(θt) where q = pm and p* is a prime which is a factor of vφ(tl — 2, μz — 1,
gί+1)(gz+1 — ϊ)/(q — 1). As a solution for this problem, we have the following
main theorem which is a generalization of Theorem 7.2.

THEOREM 10.5. The p-rank of the incidence matrix N(θ^ of points and
μ-flats having the cycle θl in PG(ί, q) is equal to Rμι (tl9 pw(*+1>) where q = pm

and Rμ(t9 pm) is given by (7.9).
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Since any μ-flat in PG(ί, q) is a μ(0)-flat, we have the

COROLLARY 10.6. The p-rank of the incidence matrix of points and μ-
flats in PG(f, q) is equal to Rμ(t, pm).

More generally, consider n(x1} ..., XM) μ-flats having a cycle 0[xl5 ..., xj.
After numbering these n(xί9 ..., XM) μ-flats in some way, we define the incidence
matrix of v points and n(xl5 ..., XM) μ-flats having the cycle 0[xl5 ..., xj to be the
matrix:

N(θlxi9 ..., xJ)=IK /0[>ι> ..., xj)||; i = 0, 1, ..., v-l9j = l9 2, ..., 77

where η = n(xi9 ..., XM) and «i/0[xi, ..., xj) = l or 0 according as the ίth point
(α*) is incident with thejth μ-flat having the cycle 0[x1? . . ., xj or not. It is known
[36] that when Θ[xl5 ..., xj<f, N(θ[xί9 ..., xj) is the incidence matrix of a

PBIB design of N2 type with parameters :

Ό = φ(t9 0, q\ b = φ(t[_xί9 ..., xj,μ[xl5 ..., xj, q[_xl9 ..., xj),

0, q), r=λί = λi(xί, ..., xw), λ2 = λ2(xί9 ..., XM),

1, ..., xj-l, n2 = {θ[xl5 ..., Xul-llί /ΘCx!, ..., xj,

Pιι=vlθ[xι> -., x«]-2 and

where

ι, ..., xJ-2, μ[xl5 ..., xJ-2, q[xl9 ..., xj).

From theorems 10.3 and 10.5, we have the following theorem:

THEOREM 10.7. The p-rank of the incidence matrix N(θ[xl5 ..., xj) of all
points and all μ-flats having the cycle 0[xl5 ..., xj in PG(ί, q) is equal to

where q = pm and μ[xl5 ..., xj, t[xl9 ..., xj and Θ[xl5 ..., xj are given by (10.2)
and Rμ(t, pm) is given by (7.7) or (7.9).

(c) The proof of Theorem 10.5

From Theorems 10.1 and 10.2, it follows that all μ(/)-flats in PG(ί, q) can
be generated cyclically from a set of initial μ(ί)-flats, say F0(0),
by the transformation (10.1), that is, all μ(/)-flats in PG(ί, q) can be represented
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by Vk(r) (fc = 0, 1, ..., π, — 1; r = 0, 1, ..., cfc-l) where ck is the m.c. of the initial
πϊ-l

μ(/)-flat Ffc(0) and πz is an integer such tha 2 ck — nι- Let
fc=0

(10.8) ι;* = <z<+1-l and Ffc(r1cfc + r2)=Ffc(r2)

for k=0, 1, ..., π,-l, rt = l, 2, ..., fj*/c f c-l and r2 = 0, 1, ..., cfc-l. We define
the incidence matrix of t?*π,μ(/)-flats Vk(r) (fc = 0, 1, ..., πj— 1; r = 0, 1, ..., t;* — 1)

and v* points (α O (7 = 0, 1, ..., u* — 1) in PG(f, #) to be the matrix:

ι)=l|βιX0ι)||; i = 0, 1, ..., t;*πz-l and ; = 0, 1, ..., ι?*-l

where nkv*+rj(et) = l or 0 according as the jth point (αj') in PG(ί, q) is incident

with the μ(/)-flat Vk(r) or not. Since (α^ιy+ /2) = (αJ'2) and K^CfcH- r2)=Fk(r2),
the following relations hold :

,
(10.9)

Wfcy* + r 1c k+

for any integers ϊ, 7^, y2, j, k, rί and r2 such that

υ*lck and

From (10.9) and the definition of ^(θt)9 we have

(10.10) nk^+r+1J+ί(θί) = nkv.+

for r, 7 = 0, 1, ..., ι?* — 1 and fc = 0, 1, ..., π^— 1 where the subscripts r+1 and

j + 1 are taken mod υ*. Since JV(Θ/) can be obtained from N(Θ,)Γ by deleting

duplicates of columns and rows of N(θt) and by permuting rows suitably, the rank

of N(θt) is equal to the rank of N(θt). It suffices therefore to obtain the p-rank
of N(θt). In the following, we shall use a similar method used in Section 9.

We define the polynomial 8kr(x) of the μ(/)-flat Vk(r) by

From (10.10) and (10.11), we have

(10.12) xrβko(x)=δkr(x) modx"*-l

for r = 0, 1, ..., ϋ*-l and fc = 0, 1, ..., πz-l. Using (10.11) and (10.12), it can

be shown that the following equation holds.
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where

(10.14)
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and F is a Vandermonde matrix of order v* = qt+ί — 1 defined by (9.12). Since

both Fand the composite matrix of F's on the right hand side of (10.13) are non-

singular matrices over GF(gί+1), the rank of N(θt) over GF(gί+1) is equal to the

rank of the second matrix on the right hand side of (10.13). Hence, the rank of

JV(0/) over G¥(qt+ί) is equal to the number of integers ft, Igft^i;*, such that

#fco(αΛ):£θ for some integer k. Since the rank of N(θt) over GF(gί+1) is equal

to the rank of JV^) over GF(p) and that the rank of N(Θt) is equal to the rank of

), we have the following theorem :

THEOREM 10.8. The p-rank of the incidence matrix N(θl) of points and

μ(ΐ)~flats in PG(f, q) is equal to the number of integers ft, l<Sft^u*, such that

some integer k.

Let

be any μ(/)-flat and we define the polynomial SΣ(x) of the μ(ί)-flat Σ by

(10.15) SΣ(x) = Σ *u

u

where the summation is taken over all integer u such that

(10.16) α" = α0α

for some elements α0, ai9 ..., aμ of G¥(q). Suppose Σ is a μ(/)-flat generated

from an initial μ(/)-flat Fk(0). Then we have

(10.17) SΣ(x) = xh8M(x) mod xv* -1

for some integer ft. This implies that SΣ(uh)3=Q if and only if

any integer ft. Hence, we have the
9 for
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THEOREM 10.9. The p-rank of N(θt) is equal to the number of integers

h,l^h^v*9 such that SΣ(ah)^Q for some μ(/)-flat Σ in PG(ί, q).

From (10.15) and the note of Theorem 10.2, it follows that the polynomial

SΣ(x) of the μ(/)-flat Σ can be expressed as follows :

(10.18) S*(α*) = Σ -. 2(6oα/o + 6ιαΛ + ... + t | | jαΛI)*
bo bμt

where the summations are taken over all elements of GF(g/+1). Expanding

(10.18) and using (9.18), we can see that (i) if h is not a multiple of ql+ί — 1,

5I(αΛ) = 0 for every μ(/)-flat Σ and (ii) if h is a multiple of ql+ί-l, SΣ(ah) can

be expressed as follows :

where the summation is taken over all choices of μ/ + l positive integers fc0, fel5

PE
..., kμι such that ^k^ql+1 — ί) = h. Comparing (9.19) and the above equation,

we have the following theorem from Theorem 9.11.

THEOREM 10.10. Let h be an integer such that l£h£qt+1 — l. Then

a necessary and sufficient condition for the integer h that there exists a μ(/)-

flat Σ in PG(ί, q) such that 5Σ(αΛ)^0 is that h is an integer such that there exists

a set of μι + i positive integers fef (i = 0, 1, ..., μt) satisfying the following condi-

tions:

(10.19) fe=Σfc|(«I+1-l) and DP[K] = £ DP[fc^l+1 -1)]
i=o * i=o

where Dp[n] is defined by (9.22).

The following theorem due to the present author [12] plays an important

role in enumerating the number of integers h satisfying the consition (10.19).

THEOREM 10.11. Let h be an integer such that l<^h<^qt+i-l and let the

p-adic representation of h be

tι mι-1
(10.20) h= Σ Σ c

i=0 7 = 0

where q=pm, mz = (/ + l)m and ctfs are non-negative integers less than p. Then

there exists a set of μt+l positive integers k{ (i = 0, 1, ..., μz) satisfying the condi-

tion (10.19) for the integer h if and only if there exists an ordered set (s0, s l5 ...,

smι) in S,*μί(p
m<) such that
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(10.21)

for each j = Q9 1, ..., mt — 1 wftere Sfifl(pm) is a set of ordered sets (s§, sf, ..., s*)

satisfying the condition (7.8).

Using the foregoing theorems, we can prove Theorem 10.5.

(Proof of Theorem 10.5) From Theorems 10.9, 10.10 and 10.11, it follows

that the p-rank of N(θt) is equal to the number of integers ft, l^ft^g ί + 1, such

that there exists an ordered set (s0, sl9 ..., smί) satisfying the condition (10.21) in

Stι,μι(Pmι) From Theorem 2.3, (2.56) and Lemma 2.6 in [12] due to the present
author, we can see that the number of integers ft satisfying the above condition

is equal to Rμι(ti9 pmι) where Rμ(t9 pm) is given by (7.7) or (7.9). We have

therefore the required result.

11. The/i-rank of the incidence matrix of points and μ-flats not passing
through the origin in EG(ί, q)

Let M^q; t9 μ) be the incidence matrix of qt — 1 points other than the origin

and &! μ-flats not passing through the origin in EG(ί, q) where q = pm and bx is

given by (9.1). Then if qφ29 M^qi t, μ) is the incidence matrix of an N2 type

PBIB design with parameters:

v = qt — l9 b = bl9 r = φ(t—ΐ,μ—l,q) — φ(t — 29μ — 2 9 q ) 9 k = qμ,

^=0, λ2 = φ(t-29 μ-2, q)-φ(t-39 μ-3, q\ n^q-2, n2 = q*-q9

ί-3, μ-29 q)}9

P2 = qμφ(t-29μ-l9q) and 5 = [r/2max{A1, A2}].

In the special case q = 2, Mi(2; t, μ) is the incidence matrix of a BIB design with

parameters :

ί-2, μ-1, 2),
(11.1)

fc = 2^ and λ = 2^ίφ(t-39 μ-2, 2).

Since Mi(2; ί, μ) is isomorphic with JV(2; ί— 1, μ, μ-1),

Ranki7o(M1(2; ί, μ)) = Rankpo(N(2; ί-1, μ, μ-1))

for any prime p0. We shall therefore consider only the case qφ2 in the follow-

ing. Since ρ±p2 =£ 0 and Rankpo(M1(^r ί, μ)) <: t; for any prime pθ9 it follows from

Theorem 5.1 that the p0-rank of M^q; ί, μ) is equal to v unless JPO is a factor of
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υrkpίp2. It is therefore necessary to investigate the p-rank and the p*-rank of
Mι(q', t, μ) where q = pm and £* is a prime which is a factor ofvrkρ1p2 except for

P.
The p-rank of M±(q\ ί, μ) for the special case q = p (i.e., w = l) has been ob-

tained by Smith [31] and its p-rank for general case q = pm has been obtained by
the present author [12]. The result is as follows:

THEOREM 11.1. The p-rank of the incidence matrix M^(q\ t, μ) of q* — \
points other than the origin and b^ μ-flats not passing through the origin in
EG(ί, q) is equal to Rμ(t, pm)-Rμ(t-l, pm)-l where q = pm and Rμ(t9 pm) is
given by (7.7) or (7.9).

In the special case q = 2, we have the following corollary:

COROLLARY 11.2. The 2-rank o/M1(2; t, μ) is equal to
s

Table 11.1 gives solutions for GD type PBIB designs M1(pm; ί, μ) with 7 g
v^5Q and their jp-ranks. The p-rank of Ml(pm\ ί, μ) with 50<ι;< 10000 can be
obtained at once from Table 9.2. The p*-rank of Mι(ρm; t, μ) has not yet been
obtained in general. But I dare say its p*-rank is equal to v— 1 or v.

TABLE 11.1.

SOLUTIONS FOR GD TYPE PBIB DESIGNS M^(pm\ t, μ)
AND THEIR P-RANKS

No.

1

2

3

4

5

6

v

8

15

24

26

26

48

b

8

15

24

26

104

48

r k λ1λ2n1

3 3 0 1 1

4 4 0 1 2

5 5 0 1 3

9 9 0 3 1

12 3 0 1 1

7 7 0 1 5

Pi

1

1

1

3

10

1

P2

3

4

5

9

12

7

rank

5

8

14

9

22

27

δ

1

2

2

1

6

3

/I"

3

4

5

3

3

7

/

2

2

2

3

3

2

μ

1

1

1

2

1

1

P£/J9 design

(0, 2, 7) mod 8

(0, 8, 12, 14) mod 15

(0, 8, 17, 21, 22) mod 24

(0, 7, 10, 16, 17, 18, 21,
22, 24) mod 26

(0, 18, 24), (0, 1, 5), (0,
3, 15), (0, 7, 16) mod 26

(0, 18,22,28,29,31,43)
mod 48

12. The dual of the BIB design PG(ί, q) :μ and its p-rank

Let q be a prime power, say q = pm and let α be a primitive element of GF(qt+ ί).
After numbering i?* = φ(t, μ, q) μ-flats in PG(f, q) in some way, we define the in-
cidence matrix of υ* μ-flats and b* = (qt+ί — !)/(# — 1) points in PG(ί, q) to be
the matrix:
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N*(q;t9μ)=\\nfj(q;t,μ)\\ i = l, 2, ..., ι>* and j = 0, 1, ..., fo*-l

where n *,-(#; f, μ) = l or 0 according as thejth points (α >) is incident with the ith

μ-flat Vt or not. Then we have the following theorem :

THEOREM 12.1. N*(q; t, μ) is the incidence matrix of a PBIB design with

m* = min{μ+l, ί — μ} associate classes and parameters:

v* = φ(t, μ, q), b* = (q<+i

(12.1) nt = qt2φ(t-μ-l, i-1, qffiμ, μ-i, q\

jk= Σ Σ<levlΦ(μ-ί> v, q)φ(i-l,μ-j-v, q)φ(ί-l,μ-k-v, q)
v=m0 i=0

l5 ω2, / : #)

/or ί, 7, fc=l, 2, ..., m* w/iere m0, m^ m2 αnJ evl are integers such that

m0 = max{-l, μ-i-j, μ-i-k, μ-j-k},

m1=min{/z~ϊ, μ-/, μ-fc},

(12.2) m2

χ(ωl5 ω2, /; q) is defined by

(12.3)

for any positive intergers ω l5 ω2, / and χ(ωl5 ω2, 0; q)=i for ω l5

In order to prove the above theorem, we prepare the following lemma :

LEMMA 12.2. Let ί, π, μ and v be any integers such that

(12.4) 0^v^π<ί and

and let W be a π-flat in PG(ί, q). Then the number, η(t, π, μ, v; q), of μ-flats

V such that FΠ W coincides with the given v-flat U in W is equal to
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(12.5) η(t, π, μ, v; g) = g<*-*><*-*ψ(f-π-l, μ-v-1, q)

and the number, η(t, π, μ, —1; q\ of μ-flats V such that V Π W is empty is equal
to

(12.50 η(t, π, μ, -1; 4) = 4(π+1)(μ+1W-π-l, μ, <?)•

PROOF. Let (αd°), (αdl)5 •••> (αdv) be the defining points of the v-flat U and
let (αd°), (αdl)> ..., (αd")> O**1)* • ••> (a**"") be the defining points of a μ-flat Fsuch
that VnW=U. Then the first points (α*1) can be chosen in ί>* - (qπ+ * - l)/(q - 1)
ways, the second in fe* — (qπ+2 — !)/(# — 1) ways, the third in b* — (qπ+3 — ΐ)/(q — ϊ)
ways and so on. The total number of ways of choosing μ — v linearly independent
points (αeι)> (α*2), ..., (αe"-*) such that FΠ Pf = 17 is

While, each μ-flat F which contains the given v-flat U can be generated by any
one of (q»+1-qv+1)(q»+i-qv+2)...(q»+ί--qv+tl-v)/(q-iγ-v sets of μ-v inde-
pendent points (αeι)> (αe2), ..., (αe*-»). Hence, the number of μ-flats Fsuch that
VnW=U is equal to g<π-v>^-v)0(ί-π-l, μ-v-1, g) when v^O. Since the
number of μ-flats in PG(ί, q) is equal to φ(t, μ, q) and the number of v-flats U in

equal to φ(π, v, ^f), the number of μ-flats Fsuch that F Π Wis empty is equal to

<Kt, V> «)- Σ ^(π-v)(μ-v)φ(ί-π-l, μ-v-1, ςf)φ(π, v, ^)
v=«o

i.e., q(π+ί)(μ+ί>>φ(t — π— 1, μ, g) where n0 = max{0, π + μ — ί} and n1 = min{π, μ}.
Hence, we have the required result.

Note that this lemma shows that if we denote the empty set by (-l)-flat,
the number of μ-flats F such that F n W coincides with a given v-flat U in W is
given by ^(π~v)(μ~v)φ(ί — π — 1, μ — v— 1, q) for any integer v such that — l^v^
min{μ, π} where φ(t, μ, g) = 0 in the case t<μ or μ< — 1.

(Proof of Theorem 12.1) Since N*(q; t, μ) is dual of the design N(q; t, μ),
it follows that parameters v*9 ί>*, r* and k* are given by (12.1). To prove that
parameters λh nt and pl

jk are given by (12.1), we define a relationship of association
between every pair of v* = φ(t, μ, q) treatments, φl9 φ2, ..., φυ*9 as follows: Two
treatments φtί and φh are ίth associates (ί = 0, 1, ..., m*) if Vlt n F/2 is a (μ — i)-
flat. From this definition and Lemma 12.2, it is easy to see that the number,
nt(lι\ of treatments φh being ith associates of a treatment φh is equal to q*2-
φ(t—μ—l, i — 1, q)φ(μ9 μ — i, q) and the number, λt(lί9 12\ of blocks which contain
both treatments φl2 and φh being ith associates is equal to (q^~ί+ί — !)/(# — 1).
Hence, it suffices to show that parameters p}k's are given by (12.1).

To calculate the number jp/u 2, let us consider any μ-flats Vli and Vl2 in



On the />-Rank of the Incidence Matrix of a BIBD or a PBIBD 205

PG(ί, q) such that Vh Π Vl2 is a (μ-ι)-flat, and a μ-flat F/3 such that Vh Π F/3

is a (μ-./O-flat and F,2 Π F,3 is a (μ-j2)-ftat. Since Fh Π F/2 Π Vh is a flat
or the empty set, we can assume, without loss of generality, that Vh n Vh Π F/3

is a v-flat (— 1 5g vgμ — i) and that

l3 = wid09 dί9 ..., dv],

9dί9 ...,dv; ei9 e2,

9 dί9 ..., rfv; 4
fc), 4

for fc = l, 2, where W[cθ9 cl9 ..., cπ] denotes the π-flat generated by π + 1 linearly

independent points (αc°), (αcι)> •••> (αCπ) Moreover, we can assume that the first
/ points (α'1)* («/2λ • ••, (α'1) belong to the (μ + 0-flat T(Vll9 VΪ2) and the other
points (α/I+1), (α/I + 2)> •••» (α^+^1+^-*) do not belong to T(F/1? F/2) where / is
an integer such that 0^l^v +jί + j2 — μ and T(Fl5 F2) denotes the minimum
flat of flats which contain both Vl and F2. For a moment, we shall fix points

h»+i+jk-v) (fc=l, 2) and investigate the number of μ-flats F/3 satisfying the above

conditions. Since points (αeι ), (α*2 ), ..., (αe*-Jι-")5 (α ̂ 1) and μ + 1 defining

points of VΪ2 must be linearly independent, and points (α6^), (α**2 ), ..., (a^^-^a'Oj
(a'1) and μ + 1 defining points of Vh must be linearly independent, point (α ̂ 1)
can not belong to W^ and W(^ where W ̂ fc) is a flat generated by the defining

points (α'o), ..., (α^), (*e"\ .», (α^.-O, (αeί2)), ..., (αβia-^-0, (*h?\ -,

(αA"+«+ j k-A) 5 (αβl), .-.5 (α**-1-*). Hence, the number of ways of choosing a point
(α ̂ 1) in T(Vh, Vl2) is equal to

^μ+i+l_l J ^2μ-j!-v+l__ J ^2μ-j 2 -v+l_J ^3μ-2 v-ί-j ι-J2 + l |

JPI 1 ^=Π + 1̂ ^IΓl }'

i.e., ^f'i+ί+1(^μ~v~ί~ /'1-iX^μ"v~ί~ /2-l)/(^-l). Since (α'1) is a point in the
i)-flat T(F/15 F/2), α/J can be expressed as

(12.8) α/* = 1 } d i 2 ) ^ 6

using elements a^1}, αp}, b[k\ c\k) of GF(ήf) such that c[k\ c(

2

k), ..., c(

v

fc

+

)

ί+yk_μ are
not all simultaneously zero for each fc = l, 2. Let PF(

1

fe) be the flat generated by
a point (α'1) and defining points of W(

0

k\ Then it follows from (12.8) that W{^
Π JF(!2) is a (3μ-2v-i-;1-;2+2)-flat. Since a point (α'2) in T(F/1? F/2) can
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not belong to W[^ and W{2\ the number of ways of choosing a point (α/2) in

T(Vlί9 Vl2) is equal to ^+i+1(^~v~I'~yi+1 -IX '̂̂ 1'"-7'̂ 1 -l)/(^-l) Similarly,
we can see that the number of ways of choosing a point (afr) (1 ̂  r <: /)

in T(Vll9 F/2) is equal to ^+i+1(^~v~i~7l+r~1 -1) (^'v~ί~;2+r~1 -l)/(ί~l).
Hence, the total number of ways of choosing / linearly independent points (afί),

_ 1)}
r=

While each flat JFK, <*ι, ..., dV9 *(Λ -, 4-!/i-v; *(ι2)> •••> 4-;2-v; /ι> -, /J

can be generated by any one of Π {(<22μ~v~ /1" /2+ί+1 -^2μ~v~7'1" /2+l')/(^-l)}
r=l

sets of / independent points (α ̂ 1)* 0*/2), •••» (&fl) Hence, the number of flats

W[dθ9 dl9 ..., dv; 4°, ..., 4-jι-v; 42)» •••» 4-Jι-vί/ι* •••»//] passing through

the fixed points (αd°), (αdO, -., (αdO, (αe(1)), -, ( α e < > ) , ( α 6 ) , -, (α -)
is equal to q(μ~v~ί)lχ(v + i + jι— μ, v + i + j2 — μ, l\ q) and it does not depend on
the fixed points. From Lemma 12.2, it follows that the number of μ-flats Vh

in PG(ί, q) such that

is equal to η(t,μ + i,μ9 2μ+l — v->j1 — j2l q) and it does not depend on the
fixed points. Since the number of v-flats PF123 in JF12 is equal to φ(μ — i, v, q)

and the number of (μ — jfc)-flats V in Vlk such that Fn W12 = W123 is equal to

ι/(μ, μ-i, μ-jk, v; ^f) for fc=l, 2, it follows that pljίJ2(h, Ϊ2) is equal to

IW 1 IW2

PίiJaCi* '2)= Σ ΣΦ(μ-i> v, ̂ (μ, μ-i, μ-^, v; ςf)fy(/ι, μ-i, μ~j2, v; 0)
v=mo i=0

V-^^Xίv + i+A"^ v + i+./2-μ, /; β)ιy(ί, μ + z, μ, 2μ-f l-v-j.-j^ q)

and it does not depend on μ-flats Vtί and Fί2 such that Vtl Π Fί2 is a (μ — i) flat.

This completes the proof.

Since N*(q ί, μ)Γ is isomorphic with iV(g ί, μ), we have the following theo-

rem from Theorem 7.2.

THEOREM 12.3. The p-rank of the incidence matrix N*(q; t, μ) of a PBIB

design with parameters (12.1) is equal to Rμ(ί, p
m) where q = pm and Rμ(t, pm) is

given by (7.9).
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Part IV. Applications to error correcting codes

13. Applications to BIBD codes and PBIBD codes

Consider a channel which is capable of transmitting any one of q distinct
symbols. Such a channel is called a #-ary channel. In this paper, we shall
confine ourselves to the case when q is a prime or a prime power, say q = pm. The
symbols can then be put into a one-to-one correspondence with the elements
of the Galois field GF(q). Given a set of s(<qn) distinct messages, we can set
up a one-to-one correspondence between the massages and a set C of 5 distinct
n-vectors with elements of GF(#). The elements of C may be called code vectors
or code words. Thus each message corresponds to a unique code vector. If
C is a subspace of the vector space Wn(q) of all n-vectors with elements of GF(g),
the code is said to be a q-ary linear code with length n. The dimension, /c, of
the subspace C is called the number of information symbols of the code C. The
orthogonal or null space CD of C is also a linear subspace of Wn(q) and it is called
the dual code of C. A matrix H whose row vectors span the dual code CD is called
a parity check matrix of the code C. To transmit a message over the channel,
the n elements of the code vector (cl9 c2, ..., cn) corresponding to the message
are presented in succession to the channel. Due to the presence of noise a trans-
mitted symbol may be received as one of the other q — 1 symbols. In this case,
we say that an error has occurred in transmitting the symbol and, at the receiver,
a decision is made, based on the information in the received vector, which speci-
fies a unique vector of C, from which the corresponding message is interpolated.
The process of specifying a code vector, based on the received vector, is called
decoding. If the decoding procedure necessarily gives a correct result, provided
at most δ errors have occurred in transmitting the code vector, we say that the code
is capable of correcting up to δ errors. The ratio k/n is called the transmisson
rate of information. A problem of error correcting codes is how to construct a
linear code such that

(i) it is capable of correcting a relatively large number of errors,
(ii) it has a relatively high transmission rate of information and that

(iii) the encoding and decoding procedures are simple and economical to
implement. If we use the transpose matrix of the incidence matrix N of a BIB
design or a PBIB design as a parity check matrix, a relatively simple decoding
procedure, called majority decoding [18], is applicable. So, we call such a code
C a BIBD code and a PBIBD code, respectively and we shall investigate them in
this and next sections.

Let N be the incidence matrix of a PBIB design with ra* associate classes and
parameters v, ft, r, fe, λh nt, p

l

jk (ί, j9 k— 1, 2, ..., m*) and let C be a g-ary PBIBD
code with parameters υ, b, r, fc, λi9 n f, p}k, that is, let C be the g-ary linear code
with length v which has Nτ as a parity check matrix.
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Suppose that xτ = (xί9 x2, ..., xv) is a transmitted code vector of C and the
corresponding received vector is rτ = (r1? r2, ..., rv). Then the error vector,

eτ=(el9 e2, ..., eυ)9 is rτ—xτ and the syndrome, sτ= (sί9 s2, ..., sb\ of rτ is
(Nτr)τ, i.e., s = Nτr. Applying the majority decoding algorithm [18, 30, 31] to
a PBIBD code, we can obtain a relatively simple decoding algorithm as follows:

THEOREM 13.1. Let C be a q-ary PBIBD code with parameters v9 b9 r, fc, λί9

ni9 p]k (i, j, fc = l, 2, ..., m*) and let λ = max{A1, λ29 ..., λm*}. Provided at most
δ = [r/2λ] errors have occurred in transmitting the code vector, et (z = l, 2, ..., v)
are given correctly by the following rule:

(i) βi is that value of GF(q) which is assumed by the greatest fraction of
the {sφί(i)9 sφ2(ί)9 ..., sψr(ί)}, // such a most frequent value exists where φι(i)
(/ = !, 2, ..., r) denote the r integers j such that n/7 = l for the given integer

i(l^ί^v), that is, niφί(ί) = niφ2(i} = ... = niφr(i) = l.
(ii) In the case where no single value is assumed by a strict plurality of the

iS0i(0' SΦ2(»> •••> S^r(»)}' ei ίs Zer°

Theorem 13.1 shows that a PBIBD code with parameters v, b, r, k, λi9 nί9 p}fc

(ί, 7, fc=l, 2, ..., m*) is capable of correcting up to δ = [r/2A] errors. Hence,
in PBIBD codes with the given length v, a PBIBD code with parameters such that
[r/21] is as large as possible is desirable. In the special case of a BIBD code,
it follows from the equation λ(v — l) = r(/c — 1) that a BIBD code with parameters
v, b9 r, fc, λ such that fc is as small as possible is desirable. Hence, a problem in
PBIBD codes is how to construct a g-ary PBIBD code which has a relatively high
transmission rate of information, in other words, a relatively small #-rank in
PBIBD codes with the given parameters v, b, r, k, λί9 nί9 pl

jk.
Theorem 2.1 shows that the transmission rate of information of a g-ary

BIBD code with parameters v, b, r, k, λ is never greater than 1/υ unless q is a factor
of r-λ and that for q which is a factor of r-A, the transmission rate of a g-ary BIBD
code depends on the block structure of the design which is used as a parity check
matrix. For a PBIBD code, it follows from Theorem 3.1 that the transmission
rate of information of a #-ary PBIBD code with parameters v, b, r, λi9 nί9 pl

jk
m

(i, j> fc = 0,1,..., m) is zero unless q is a factor of c< Π c2pi9 provided that zf/'s are
i=0

all rational and p0ρ1 ... pm^0. For example, the transmission rate of a #-ary
PBIBD code which has the transpose of the incidence matrix of a regular GD
design as a parity check matrix is zero unless q is a factor of vrk(rk — vλ2)(r — λ1)
(see Theorem 5.1).

Table 6.1 shows that in Table 6.1, a #-ary BIBD code derived from PG(ί, q)
or EG(ί, q) has the maximum transmission rate of information in BIBD codes
with the same parameters. This suggests that a g-ary BIBD code derived from
PG(ί, q) or EG(ί q) might be the most desirable code in BIBD codes with the
same parameters. (In the special case fc = 2, a BIB design with parameters:
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ϋ = r+l, fc = ( rΐ )' fc = 2, λ=l is unique and its p-rank is equal to v or r —1

according as a prime p is odd or not. So, such a design is omitted from Table
6.1). In Section 14, we shall investigate such a geometric code in detail.

14. Applications to geometric codes

A q-ary linear code C of length n is called a cyclic code if, for every code

vector (c0, c l5 ..., cn_ι) of C, the vector (cn_ι, c0, ..., £,,-2) is als° a c°de vector of
C. A convenient representation of cyclic codes may be made through the theory
of ideals in the residue class ring of polynomials over GF(q) modulo xn — 1 [26].
In the residue class ring, we correspond the polynomial c(x) = c0 + cίx + ...+
c,,-!*71"1 with the vector cr = (c0, cl9 ..., cn_ι). Under this correspondence, it
may be shown that a linear code C is cyclic if and only if it is an ideal in the residue
class ring. Such ideal C contains a unique monic generator polynomial, g(x)9

of smallest degree less than n such that each element of C is a multiple of g(x).
Moreover, g(x) is a divisor of xn — l in GF(g), say xn~ l=g(x)h(x). The dual
code of C is also cyclic and its generator polynomial, gD(x) , is given by

(14.1) 0*(x) = ***(*-*)

where k is the degree of h(x).
A cyclic code may be specified by the roots of its generator polynomial of

an extension field of GF(#). In the case where the code length n is a divisor of
qu — 1 for some positive integer u ̂  2, which has been investigated by many authors,
the roots of x" —1 are simple and are expressed by β°9β

1

9β
2

9..., βn~l where /? =

α(βu-υ/« and α is a primitive element of GF(qu). In such a case, every root of

the generator polynomial of a cyclic code is simple and is expressed by a
power of /?, say βh. A characterization of a class of cyclic codes can, there-
fore, be made by the type of the roots of their generator polynomials.

14.1 Projective Geometry codes

Let N(q; t, μ) be the incidence matrix of v = (qt+1 — l)/(q — l) points and b =

Φ(t> μ> #) μ-flats in PG(ί, q) where q is a prime power, say q = pm.

DEFINITION 14.1.1. A g-ary μth order Projective Geometry (PG) code is
a 4-ary linear code of length v which has N(q; ί, μ)Γ as a parity check matrix.

It is known [31] that this code is a cyclic code and by using the generator
polynomial, it may also be defined as follows:

DEFINITION 14.1.2. A g-ary μth order Projective Geometry code is the cyclic
code of length v = (qt+l — ϊ)l(q — l) with symbols from GF(g) such that the genera-



210 Noboru HAMADA

tor polynomial gD(x) of the dual code has as roots those elements αΛ (4~ 1 \ 1 ̂  h ̂  v,
such that

(14.1.1) 0< min
Q^Km

where α is a primitive element of GF(#ί+1) and Dp[rί] is defined by (9.22).

From Definition 14.1.1 and Theorem 7.2, we have the following theorem:

THEOREM 14.1.1. The number of information symbols of a q-ary μth
order Projective Geometry code of length v = (qt+ί — l)/(q — 1) is equal to v —
Rμ(t9 pm) and the number of information symbols of its dual code is equal to
Rμ(t9 pm) where q = pm and Rμ(t9 pm) is given by (7.9).

In the special case m = l, we have the following corollary:

COROLLARY 14.1.2. The number of information symbols of a p-ary μth
order Projective Geometry code of length v = (pt+ί — l)/(p — 1) is equal to v —
Rμ(t, p) and the number of information symbols of its dual code is equal to
Rμ(t, P) where Rμ(t9 p) is given by (7.12).

This result has been obtained by Smith [31]. The Projective Geometry
code defined by Definition 14.1.1 may also be characterized as follows:

THEOREM 14.1.3. Let h be an integer such that l^h^v and let the p-adic
representation of h(q — 1) be

(14.1.2)

where q = pm and cf/s are non-negative integer less than p. Then βh is a root of
the generator polynomial gD(x) of the dual code of the q-ary μth order PG code
if and only if h is an integer such that

(14.1.3)

for some integers (s0, sί9 ..., sm) in Tttμ(pm) where j? = α9"1 and Tt>μ(pm) is a set of
(m + l)-tuples (sθ9 sί9 ..., sm) of integers st such that

(14.1.4) sm = 5

for j = 0, 1, ..., m — 1 and l^sk^μfor some integer k.

PROOF. Let Σ be a μ-flat (μ(O)-flat) in PG(ί, q) composed of k = (qμ+1 - 1)/

(g — 1) points (αcι)» (#C2)> •••> 0*Ck) and we define the incidence polynomial θΣ(x)
of the μ-flat Σ as the polynomial:

(14.1.5) θI(x) = xC l+x^ + ...+χckφ
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Between ΘΣ(X) and SΣ(x) defined by (10.15), the following relation holds:

(14.1.6) SΣ(x) = ΘΣ(X) + x«θΣ(x) + - - + («-2»θΣ(x)

= (q-ϊ)θΣ(x) mods'-l.

From Theorems 10.10, 10.11 and (14.1. 6), it follows that a necessary and sufficient
condition for an integer h,l^h^υ, that there exists at least one μ-flat Σ in PG(ί, q)
such that 0I(αΛ(ί~1))^=0 is that h is an integer such that there exists an (m + 1)-

tuple (s0, «!, ..., sm) in S*μ(pm) such that Σty = J / + ιP-ty for 7 = 0, 1, ..., m-1.
i=0

From the above result, Lemmas 2.1 and 2.3 in [12] due to the present author,
it is easy to see that a necessary and sufficient condition for an integer h that
θΣ(βh) = 0 for every μ-flat Σ is that h is an integer such that there exists an (m + 1)-
tuple (s0, sl9 ..., sw) satisfying the condition (14.1.3) in Tttμ(pm). Since βh is a
root of gD(x) if and only if θΣ(ah) = Q for every μ-flat 21, we have the required result.

COROLLARY 14.1.4. The generator polynomial g(x) of the q-ary μth
order PG code has βh as a root if and only ifh is an integer such that there exists
an (m + l)-tuple (sθ9 sl9 ..., sm) satisfying the condition (14.1.3) in Sttfί(pm) where
St,μ(Pm) is the set of (m + l) tuples (s0, sl9 ..., sm) of integers st (ί = 0, 1, ..., m)
satisfying the following conditions:

(14.1.7) s0 = s

>rj = 0, 1, ..., m-1.

PROOF. From (14.1), it follows that the generator polynomial g(x) is given
by

(14.1.8) g(x) = x'hD(χ-i)

where hD(x) is a polynomial of degree r = Rμ(t, pm) such that

(14.1.9) gD(x)hD(x) = x«-l.

Since βh (1 g /ι ̂  υ) is a root of /ID(X) if and only if h is an integer such that there
exists an (m + l)-tuple (s0, si9 ..., 5m) satisfying the condition (14.1.3) in Sftfl(pm)
and β-h=βv-h, we have the required result from (14.1.8).

It is known that the minimum distance of a g-ary μth order PG code is at
least equal to dBCH = (qt~μ+1-l)/(q-l)+l and the minimum distance of its
dual code is equal to (qμ+ί - !)/(#-!) where dBCH denotes the designed distance
of a BCH code [3, 4, 13]. We can therefore summarize these results as follows:

THEOREM 14.1.5. A q-ary μth order PG code is a cyclic code with pa-
rameters:
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(14.1.10) n = (<z'+1

and its dual code is also a cyclic code with parameters:

(14.1.11) n = (<?ί

where n, k and d denote the code length, the number of information symbols
and the minimum distance of the code, respectively.

14.2 Affinβ Geometry codes

Let M^q; t, μ) be the incidence matrix of q* — 1 points other than the origin
and bΐ μ-flats not passing though the origin in EG(ί, q).

DEFINITION 14.2.1. A g-ary μth order Affine Geometry (AG) code is a
q-ary linear code of length n = qt-l which has M^q; ί, μ)τ as a parity check
matrix.

The term Affine Geometry code has been introduced by Smith [31] and it
is defined as follows :

DEFINITION 14.2.2. A #-ary μth order Affine Geometry code is the cyclic
code of length n = q' — l with symbols from GF(q) such that the generator poly-
nomial gD(x) of the dual code has as roots those elements αΛ, Q<*h<q* — 1, such
that

(14.2.1) 0^ min DJplh]<μ(q-l)
Q^Km

where q=pm and α is a primitive element of GF(qt).

We shall show that the above two definitions are quivalent. The q-ary
μth order AG code defined by Definition 14.2.1 can be characterized as follows:

THEOREM 14.2.1. Let h be an integer such that l^ h^q' — l and let the
p-adic representation of h be

(14.2.2) h^Σ^CuP*"1^
j=0 j = 0 J

where q = pm and c^s are non-negative integers less than p. Then αΛ is a root
of the generator polynomial gD(x) of the dual code of the q-ary μth order AG
code defined by Definition 14.2.1 if and only i f h is q* — l or an integer such that
there exists an (m + Γ)-tuple (s0, sί9 ..., sm) in Tttfl(pm) such that

(14.2.3) (5j.+ 1-l)ι>-(s,

for every j' = 0, 1, ..., m — 1 and that
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ί-l
(\ΔΊ A\ V / ^ <^« n — c
V / / i I'/t "̂" >Jfr 4- \lf ^^ ιJ]r

i=0

for some integer k.

To prove the above theorem, we prepare the following lemmas:

LEMMA 14.2.2. For any set (cίy; i = 0, 1, ..., /-I, 7=0, 1,..., m-l} of
nonnegatiυe integers ctj less than p, not all zero, there exists a unique set of
integers sz (ί = 0, 1, ..., m) satisfying the conditions (14.1.4), (14.2.3) and (14.2.4).

ί-l m-l

PROOF. Let h= Σ ΣcijPίm+J Then h is an integer such that l^h^q*

-I.

(i) In the case where h is not a multiple of pm— 1 there exists a unique set
{c0 ; 7 = 0, 1, ..., m — 1} of non-negative integers ctj less than p9 not all zero, such

ί m-l
that 2 2 CiiPίm+j is a multiple of pm— 1. It follows therefore from Lemma

i=Q j=0

2.1 due to Hamada [12] that there exists a unique set of m + 1 integers sz (ί = 0,
1, ..., m) such that

(14.2.5) sm = s0, l^Sj^ί+1 and

for 7 = 0, 1, ..., m — 1. Since co 's are non-negative integers less than p, not all
zero, these integers st (/ = 0, 1, ..., m) satisfy the conditions (14.1.4), (14.2.3) and
(14.2.4). Hence, in this case, Lemma 14.2.2 holds.

(ii) In the case where h is a multiple of pm — 1 there exists a unique set of
m + 1 integers sf (/ = 0, 1, ..., m) such that

*(14.2.6) s* = s$, i^sj^t and Σ cij = sj

for 7=0, 1, ..., m — 1. Let st = sf + 1 for ί = 0, 1, ..., m. Then s/'s satisfy the con-
ditions (14.1.4), (14.2.3) and (14.2.4). Hence, we have the required result.

From Lemma 3.2 in [12], we have the following lemma:

LEMMA 14.2.3. For any set {c^ ; i = 0, 1, ..., t — 1, 7 = 0, 1, ..., m — 1} of
non-negative integers Cy less than p such that there exists a set of integers sf
(/ = 0, 1, ..., m) satisfying the following conditions:

(14.2.7) 5* = S

and

(14.2.8)
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forj = Q, 1,..., ra — 1, there exists a unique set of'integer>55/(/ = 051, ..., m) satisfy-

ing the conditions (14.2.3), (14.2.4) and

(14.2.9) 5m = 50,

forj = Q, 1, ..., m —1.

(Proof of Theorem 14.2.1) From Theorems 9.12 and 9.14, it follows that

a necessary and sufficient condition for the integer h that there exists a μ-flat Σ*

not passing though the origin such that θΣ*((xh)=^= 0 is that h is an integer such that

(i) h =J= cf — 1 and (ii) there exists a set of m +1 integers sf (I = 0,1,..., m) satisfying

the conditions (14.2.7) and (14.2.8). Using the above result, Lemmas 14.2.2 and

14.2.3, it can be shown that a necessary and sufficient condition for integer h

that 0r(αΛ) = 0 for every μ-flat Σ* not passing through the origin in EG(t, q)

is that h is q* — 1 or an integer such that there exists an (m + l)-tuple (s0, sl9 ...,

sm) of integers st (ί = 0, 1, ..., m) satisfying the conditions (14.2.3) and (14.2.4) in

Tt,μ(pm) Since αΛ is a root of gD(x) if and only if 0r(αΛ) = 0 for every μ-flats

not passing through the origin in EG(t, q), we have the required result.

COROLLARY 14.2.4. The generator polynomial g(x) of the q-ary μth order

AG code has ah as a root if and only if h is a positive integer less than q* — l

such that there exists an (m + ϊ)-tuple (s0, s l5 ..., sm) satisfying the conditions

(14.2.3) and (14.2.4) in St}fi(pm)9 provided that h is an integer such that l^h ̂ q*

-1.

THEOREM 14.2.5. The q-ary μth order PG code defined by Definition

14.2.1 and the q-ary μth order PG code defined by Definition 14.2.2 are equivalent.

PROOF. Since a**'"1 =a°, it suffices to consider only the case where l^/ι<

g'-l. If h is an integer satisfying the conditions in Theorem 14.2.1, then we

have

ί-l m-l-Z

(14.2.10) Djtfκ\ = Σo ^Σ c

"Σ
j=m-l

for each / = 0, 1, ..., m. Since sm_fc^μ for some integer fe, it follows that

(14.2.11) ^[^]<5M-k(^

for some integer fe. This implies that the integer h satisfies the condition (14.2.1).

Conversely, if h is positive integer satisfying the condition (14.2.1), there
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m-l

exists an integer h0= Σ ctjp
tm+J such that h* = h0 + h is a multiple of pm— 1 where

ctj (j=0, 1, ..., m — 1) are non-negative integers less than p, not all zero. Hence,
it follows from Lemma 2.2 in [12] that

(14.2.12)

for each / = 0, 1, ..., m. Since ft*= 5] 7] ciJp
im+J is a multiple of pm— 1, it fol-

ί=o j=o '
lows from Lemma 2.1 in [12] that there exists a unique set of m + 1 integers st

(/=0, 1, ..., m) satisfying the condition (14.2.5). Since cί7 's are non-negative in-
ί-l

tegers less that p and ctfs are not all simultaneously zero, Σ ci/s satisfy the con-

ditions (14.2.3) and (14.2.4) for the integers sz. It suffices therefore to show that
there exists at least one integer sk such that sk^μ.

Using a similar method used in (14.2.10), we have

(14.2.13) 'Dq[p*h*l = sm-jfr*-ϊ) = sm.tq-l)

for / = 0, 1, ..., m. Since DjLpm~kh~\<μ(q — 1) for some integer fc and

D Lplh0] = m~ΣlctjpJ+l+ "Σ ctjpJ+l-m<p>»-l9
j=0 j=m-l

it follows from (14.2.12) and (14.2.13) that sΛ<(μ + l) for some integer fc. This
completes the proof.

From Definition 14.2.1 and Theorem 11.1, we have the

THEOREM 14.2.6. The number of information symbols of a q-ary μth order
AG code of length n = q* — \ is equal to n — {Rμ(t,pm) — Rμ(t—l, p™) — 1} and the
number of information symbols of its dual code is equal to Rμ (ί, p

m) — Rμ(t— 1,
pm)— 1 where q = pm and Rμ(t9 p™) is given by (7.9).

Since the minimum distance of a g-ary μth order AG code is at least equal to
qt~μ + pqt~μ^ί-l and the minimum distance of its dual code is equal to qμ, we
can summarize those results as follows :

THEOREM 14.2.7. A q-ary μth order Affine Geometry code is a cyclic code
with parameters:

n = g'-l, k = n-{Rμ(t,pm)-Rμ(t-l,pm)-l}, d^q

and its dual code is a cyclic code with parameters:

n = q<-l, k = Rμ(t,pm)-Rμ(t-l,p>»)-l, d =
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14.3 Euclidean Geometry codes

Let M(q; t, μ) be the incidence matrix (defined by (9.5)) of qt — 1 points other
than the origin and all μ-flats in EG(f, q).

DEFINITION 14.3.1. A q-ary μth order Euclidean Geometry (EG) code is
a q-ary linear code of length n = qt — l which has M(q t, μ)τ as a parity check
matrix.

This code is a cyclic code and can be characterized as follows :

THEOREM 14.3.1. Let h be an integer such that l^h^qt — l and let the
p adic representation of h be

Then the generator polynomial gD(x) of the dual code of a q-ary μth order
Euclidean Geometry code has αΛ as a root if and only if h is an integer such that
there exists an (m + l)-tuple (s0, si9 ..., sm) satisfying the conditions (14.2.3) and
(14.2.4) in Γ

PROOF. From Theorems 9.11 and 9.12, it follows that (i) in the case when
1 ̂ h^q* — 2, a necessary and sufficient condition for an integer h that there exists
a μ-flat ΣQ (passing or not passing through the origin) in EG(f, q) such that θΣo

(αft)^0 is that there exists a μ-flats Σ* not passing through the origin such
that θΣ*(oth)ΦQ and (ii) in the case when h = q' — l9 there does not exist a μ-flat
J* not passing through the origin such that Θ1*(αβt~1)=£θ but exists a μ-flat Σ
passing through the origin such that θΣ(μqt~^)^Q. This implies that (i) in the
case when l^h^q* — !, gED(x) has αΛ as a root if and only if gAD(x) has αΛ as a
root and (ii) qt — \ is not a root of #£D(X), where gED(x) and gAD(x) denote the
generator polynomials of the dual codes of the EG code and the AG code, re-
spectively. Since there is no (w + l)-tuple (s0, s l5 ..., sm) satisfying the conditions
(14.2.3) and (14.2.4) in Tt>μ(pm) for integer h = q* — l9 we have the required result
from Theorem 14.2.1.

COROLLARY 14.3.2. The generator polynomial g(x) of the q-ary μth order
Euclidean Geometry code has αΛ as a root if and only if h is an integer such
that there exists an (m + l)-tuple (s0, s l5 ..., sm) satisfying the conditions (14.2.3)
and (14.2.4) in St}tl(pm), provided that h is an integer such that l^h^q* — !.

EXAMPLE 14.3.1. Let us consider the case when ^=2, m = 2, ί=3 and μ =
1. In this case, q = 4 and Γ3>1(22) = {(1, 1, 1), (1, 2, 1), (2, 1, 2)}. The generator
polynomial gD(x) of the dual code of the 4-ary 1st order Euclidean Geometry code
with length 63 can be obtain as follows :
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In the case (s0, s l 5 s2) = (l, 1, 1), there are six solutions for ordered sets (c00,
cιo» C2oί coι> cιι> C2i)> not all zero» satisfying the conditions (14.2.3) and (14.2.4)
as follows :

(1, 0, 0; 0, 0, 0), (0, 1, 0; 0, 0, 0), ..., (0, 0, 0; 0, 0, 1).

Let h = Σ Σ Cij22i+J. Then h = 1, 2, 4, 8, 16 and 32. Similarly, it follows from

(so, sl9 C)°==(1, 2> 1) and (2> 1 > 2) that * = 5> 17> 20> 10> 34 and 40. Let α be a pri-
mitive element of GF(43). For example, let α be a root of the irreducible function
f(x) = x*+γx2 + γx + γ where γ is a primitive element of GF(22) such that y2 =

y + l a n d y 3 = l. Then,

gD(x) = (x - α1)^ - a2)(x - oc4)(x - α8)(x - α1 6)(x - α3 2)

•(x-a5)(x-a10)(x~a20)(x~a40)(x-a17)(x-a34)

From Theorem 14.2.1, 14.3.1 and 14.2.5, we can see that using the generator
polynomial, the EG code defined by Definition 14.3.1 may also be defined as

follows :

DEFINITION 14.3.2. A g-ary μth order Euclidean Geometry code is the cyclic
code of length n = q* — 1 with sumbols from GF(q) such that the generator poly-
nomial gD(x) of the dual code has as roots those elements αΛ, l^h^qt — 2, such
that

(14.3.2) 0< min Dq[plH]<μ(q-ΐ)
Q^Km

where α is a primitive element of GF(qt).

In the case q = 2m, this code was introduced by Weldon [34] and called. a
(v, m)th order Euclidean Geometry code where v = t — μ.

From Theorem 9.1 and Definition 14.3.1, we have the following theorem:

THEOREM 14.3.3. The number of information symbols of a q-ary μth order
Euclidean Geometry code of length n = qt — l is equal to n — {Rμ(t,pm) — Rμ

(t— 1, jpm)} where q = pm and Rμ(t, pm) is given by (7.9).

It is known that the minimum distance of a g-ary μth order EG code is at
least equal to qt~μ + pqt~μ"ί and the minimum distance of the dual code is equal
to qμ — 1 . We can therefore summarize those results as follows :

THEOREM 14.3.4. A q-ary μth order Euclidean Geometry code is a cyclic
code with the following parameters:

n = qί-l, k = n-Rμ(t,pm)-Rμ(t-l,pm)9 d^q'
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and its dual code is a cyclic code with parameters:

Let M *(q f, μ) be the incidence matrix (defined by (9.2)) of all points and
all μ-flats in EG(t9 q).

DEFINITION 14.3.3. A q-ary μth order extended Euclidean Geometry
(EEC) code is a q-ary linear code of length n = (f which has M*(q t, μ)τ as a
parity check matrix.

This code is not a cyclic code. From Theorem 9.2 and Definition 14.3.3,
we have the following theorem :

THEOREM 14.3.5. The number of information symbols of a q-ary μth

order EEG code of length n = qt is equal to n — {Rμ(t, pm) — Rμ(t—l, pm)}.

15. Applications to polynomial codes and Reed-Muller codes

(a) Definition and the main theorems

Let q be a prime power, say q=pm° and let t and m be any positive integers.
Suppose that b is a factor of qm — 1 and let

(15.1) z = (g»<-l)/fe and n = (qmt-l)/b.

DEFINITION 15.1. An (n, ί, m, v, ^-polynomial code is the cyclic code of
length n = (qmt — l)/ί> with symbols from GF(q) such that the generator polynomial
gD(x) of the dual code has as roots those elements αhb, 0^/ι<n, such that

(15.2)

for some integer j(0^ j^v) where D€[n] is defined by (9.22) and α is a primitive
element of GF(qmt) and v is an integer such that 1 <^

This code has been introduced by Kasami, Lin and Peterson [17]. An
explicit formula for the number of information symbols has not yet been obtained.
In this section, we shall show that using a similar method used in proving Theorem
7.1, an explicit formula for the number of information symbols of a polynomial
code can be obtained.

We denote by Γ(ί, z, m, q), the set of (m + l)-tuples (s0, s l5 ..., sm) of integers
S such that

(15.3) sm = s0, Q^Sj<tz and

and that (Sj+ιp — Sj)lz is an integer for each j =0, 1, ..., m — 1 and by Sv(ί, z, m, q),
the set of (m + l)-tuples (s0, si9 ..., sw) of integers Sj such that
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(15.4) (s0, s1? ..., sw)eT(i, z, m, 4) and

for every / = 0, 1, ..., m. Then we have the following main theorem:

THEOREM 15.1. The number of information symbols of the (n, t, m, v,

^polynomial code is equal to

m-l LZ(SJ+ ι , S j ) / A / / — 1 4- f e n — c ϊ / 7 — in\
(15.5) Iv(t9z9m9q) = Σ Π Σ (-WίY' 1 + (^ 1 ^

)/Z '*)
(SO ..... Sm) J = 0 i=0 W\ *— * /

w/iere ί/ie summation is taken over all (m + l)-tuples (s0, s1? ..., 5m) in Sv(t9 z, m,
^r) and Lz(sj+ί9 Sj) = [(sj+ίq-Sj)lqz]9 i.e., Lz(sj+1, Sj) is the greatest integer

not exceeding

In the special case z = l and q = p, we have the

COROLLARY 15.2. The number of information symbols of the ((pmt — I)/
(pm— 1), ί, m, v, p)-polynomial code is equal to

(15.6) Iv(t, l,m, />)=*,_!_/(- l,p")

where Rμ(t, pm) is given by (7.9).

In the special case m = l, we have the

COROLLARY 15.3. The number of information symbols of the (n, ί, 1, v,
q)~polynomial code is equal to

(15.7) /,(ί,z,l,ί)-Σ^(-l
s i=0

/i^ summation is taken over all integers s such that Ogs^v and that
— l)/z is an integer, and Lz(s, s) = [s(̂ f —

In the special case b = l (i.e., z = qm— 1 and n = qmt — 1) and v = v0(gm — 1) — 1
for some positive integer v0, we have the following theorem which may be useful
in calculating /v(ί, qm—l, m, q).

THEOREM 15.4. The number of information symbols of the (qmt — l, t9 m,

v0(qm — 1) — 1, q)-ρolynomial code is equal to

(15.8) /voίβm-D-Λf, ^m-l, m, )̂ = /Vo(ί + l, 1, m, q)-IVQ(t, 1, m, 4).

In the special case q=p9 we have the following corollary:

COROLLARY 15.5. The number of information symbols of the (jpmί — 1, ί,
m> vo (pm — 1) — 1, p)'polynomial code is equal to

(15.9) /vod^-D-ifr ^-^ m> P) = ̂ -v005 ^-^-i-vo^-1' P")
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The following generalization of the original Reed-Muller code [19, 29] to
the non-binary case is due to Kasami, Lin and Peterson [16].

DEFINITION 15.2. The vth order Generalized Reed-Muller (GRM) code is
the cyclic code of length n = qt — 1 with symbols from GF(q) such that the generator
polynomial gD(x) of the dual code has as roots those elements αΛ, 0^h<qt — 1,
such that

From Definitions 15.1 and 15.2, it follows that the vth order GRM code is
the (q* — 1, ί, 1, v, g)-polynomial code with parameters:

(15.10) n = g'-l, 6 = 1, m = l and z = q-l.

From Corollary 15.3, we have therefore the following corollary:

COROLLARY 15.6. The number of information symbols of the vth order
GRM code is equal to

(15.11) /,(/, q- I, 1, ?)= Σ (~ 0 ' } ' ~
s=0 i=0 Vs=0 i=0

In the special case v = vQ(q — 1) — 1 for some interger v0, we have the

COROLLARY 15.7. The number of information symbols of the (vQ(q — 1)
— l)sf order GRM code is equal to

(15.12)

vo \.s(q-l)lq] / f\ /f __ i , _ / __ ι \ _ \

(15.13) /,„(/, i, ι,ί)=Σ Σ (-i)'GT /-i )
s=0 i=0 V / \ * 1 /•

This result has been obtained by Smith [31]. In the special case q = 2, we
have the following well known result:

COROLLARY 15.8. The number of information symbols of the vth order
Reed-Muller code is equal to

(15.14) Iv(t, 1, 1, 2)= 1

(b) Proof of the main theorems

In order to prove Theorem 15.1, we prepare the following lemmas:

LEMMA 15.9. Let h be an integer such that Q^h<(qmt — ϊ)/b and let the
q-adic representation of hb be

(15.15) Λ&=:Σ"Σf
i=0 j = 0
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where ctfs are integers such that 0^c0 <g. Then there exists a unique set of
m + 1 integers Sj (/ = 0, 1, ..., m) such that

(15.16) 5m = 50,

(15.17) z'Σct^Sj+tf-Sj and

Note that since ctfs are non-negative integers less than q,
must be integers such that Q^(sj+1q- sj)/z ^ t(q - 1).

PROOF. Since

"(15.18) Σ ΣctjqJΣ ctjqim+J- Z i/ ί 1

i=0 j = 0 i=0 j = 0 i=0 j=0

it follows from (15.15) and (15.1) that the left hand side of (15.18) is a multiple
of b. There exists therefore an integer r, 0^r<ίz, such that

(15.19)

Since fc = (gm-l)/z, we have

(15.20) zΣ ΣctjqJ = r(q'»- 1).
i=0 j = 0

This equation can be expressed as follows :

f-l jo-l ί-l m-l

(15.21) r+zΣ ΣctJqJ = rq»-zΣ Σ
j=0 j = 0 ^ ί=0 j=jQ

for each 70 = 1, 2, ..., m-l. Since the right hand side of (15.21) is a multiple of
qJo, there exist ra — 1 integers sjo, 0^sjo<tz9 such that

(15.22)

for each 70 = 1, 2, ..., m-l. Solving m-l equations (15.22), we have

(15.23)

for 7 = 0, 1, ..., m —1 where 5m = 50 = r. The uniqueness of the set of intergers
Sj (/ = 0, 1, ..., m) is obvious. From the definition of Dq[n], it follows that

(15.24) zD,m[.q*hbl=zΣm~ΣlCtjqJ+l + zΣ "E
ί=0 j=0 i=0 j=m-Z
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Σ1

j=m-l

Since b = (qm—l)/z, we have the required result from (15.24).

From the above lemma, we have the following lemma:

LEMMA 15.10. // h is a non-negative integer less than (qmt — l)/b which
satisfies the condition (15.2), there exists a unique set of m + 1 integers sz (ί=0,
1, ..., m) such that

t-l
(15.25) (s0, sl9 ..., sm)eSv(f, z, m, q) and z

ί-l m-1
for 7=0, 1, ..., m — 1 where hb= Σ Σ ciiq

im+j.
i=o j =o

Conversely, the following lemma holds :

LEMMA 15.11. Let (s0, sί9 ..., sm) be any set in Sv (ί, z, m,q) and let {c0 ;
ί = 0, 1, ..., ί— 1,7 = 0, 1, ..., m — 1} foe απj set of non-negative integers less than
q such that

(15.26) ' C t j

for each 7 = 0, 1, ..., m — 1. 77ιen 2 Σιcij<lim+J IS ^ multiple of b, that is,
i=0 j = 0

exists an integer h, Q^h<(qmt — l)/b, such that

(15.27)
ί=0 j=0

and the above integer h satisfies the condition (15.2).

PROOF. From (15.26) and sm = s0, it follows that

(15.28)

Since (qim-l) is a multiple of b for i = l, 2, ..., ί-l, it follows from (15.18) and

(15.28) that Σ *Σ ctiq
im+J is a multiple of fo. There exists therfore an integer

ί=0 j=0

h satisfying the condition (15.27).

From (15.26) and (15.24), we have

(15.29)
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Since s/s are integers such that Ogs^v, h satisfies the condition (15.2). This
completes the proof.

(Proof of Theorem 15.1) For a set of non-negative integers HJ 0*=0, 1, ...,
m — 1), we denote by Nt(uθ9 uί9 ..., wm_!) the number of ordered sets (c00, c10,

•••> Cfo; ... c0w_ι, c im-ι> •••> Cfm-i) of non-negative integers ctj less than g which
t

satisfy 2 c0 = u j f or j = 0, 1 , . . . , m - 1 . Then it follows from the foregoing lemmas

that the number of integers h, Q^,h<(qmt-l)lb, satisfying the condition (15.2)
is equal to

Y Σ #

where the summation is taken over all (m + l)-tuples (s0, sί9 ..., sm) in 5v(ί, z,
m, )̂. Since the number of information symbols of a cyclic code C is equal to
the number of roots of the generator polynomial gD(x) of the dual code and

(15.31) Nt(u0, u,,..., «.-!)

we have the required result from (15.30).

(Proof of Theorem 15.4) Since the number of information symbols of a
cyclic code C is equal to the number of roots of the generator polynomial gD(x)

of the dual code, it follows from the definition that /vo(<r-i)-ι(A 4 m — l> m> #)
is equal to the number of integers h, 0^h<qmt — 1, such that

(15.32) maxDί|m[ήf//ι] = ; with 0
0^i<m

Let the g-adic representation of h be

(15.33) h=Σ "ΣCijq^
f=0 ./ = 0

m-1
and let h0 be an integer such that /ι0= Σ ctjq

tm+j and that h + h0 is a multiple of

qm — 1, say h + h0 = h*(qm— 1), where cf/s are non-negative integers less than #.
Then it follows from Lemma 2.2 in [12] that

(15.34) ββ-[«lΛ*(βI--l)] = i)ίm[«ϊΛ] + Dfm[ί'fco]

for 1 = 0,1,..., m-1. Since O^D€m[^z/ι0]^^w-l for / = 0, 1, ..., m~l, it follows
from (15.34) that h is a non-negative integer less than qmt — 1 satisfying the condi-
tion (15.32) if and only if h* is a non-negative integer less than (qm^ + 1 > — ί)/(qm — 1)
such that

(15.35) maxDβ«[«lft*(^I"-l)]=ι/(gm-l) with Ogj<v 0 + l.
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If h is not a multiple of qm — 1, the correspondence h and ft* is unique. But if
h is a multiple of qm— 1, the correspondence h and ft* is not unique, that is, two
integers ft and ft + (gm — ί)qtm are corresponding to the integer ft. Since the number
of integer ft* satisfying the condition (15.35) is equal to 7vo(f + l, 1, m, q) and the
number of integers ft, 0 ̂  ft < gmί — 1, such that ft is a multiple of gm — 1 and satisfies
the condition (15.32) is equal to /vo(f, 1, m, g), the number of integers ft satisfy-
ing the condition (15.32) is equal to /Vo(f +1, 1, m, q)-IVo(t, 1, m, g). This com-
pletes the proof.

Since the pm-ary μth order Projective Geometry code is the dual code of the
((pm(ί+1) —l)/(pm—1), ί+1, m, ί — μ, ^-polynomial code, we have the

COROLLARY 15.12. The number of information symbols of the μth order
PG code with length n = Q?m<ί+1>-l)/(j?m-l) is equal to n-It_μ(t+l, 1, m; p\
i.e.,n-Rμ(t,pm).

Since the pm-ary μth order Euclidean Geometry code is the dual code of the
(pmt — 1, t, m, (ί — μ)(pm— 1), ^-polynomial code, we have the

COROLLARY 16.13. The number of information symbols of the μth order
EG code with length n = pmt-l is equal to n-{/ f_μ(ί+l, 1, m, p)-/ί_ι-μ(ί, 1,
m, />)}, i.e., n-{Λμ(f, p" )-Xμ(f-l, p-)}.
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