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§ 1. Introduction

Recently, Y. Nomura [12] has studied the enumeration problem of liftings

of a given map to a fibration and its application to the enumeration problem of

immersions of certain manifolds. In this note, using his results we enumerate

the non-zero cross sections of certain vector bundles, and then study the embedd-

ing problem of the real projective spaces in the euclidean spaces.

Let ξ be an orientable w-plane bundle over a CW-complex X of dimension

less than n + 2, and let w2(ξ) be the second Stiefel-Whitney class of ξ. Consider

the homomorphisms

Θ\\ W-\X;Z) >Hί+1(X;Z2),
(1.1)

Γ<: Hi(X;Z2) >Hi+2(X'9 Z 2),

of the cohomology groups, defined by

where p2 is the mod 2 reduction. Then we prove the following theorem in §§ 2-4,

using Nomura's theorem [12, §2] and the Postnikov factorization of the universal

orientable (n-l)-sphere bundle BSO(n-l)^BSO(n).

THEOREM A. Let n>6 and let ξ be an orientable n-plane bundle over

a CW-complex X of dimension less than n + 2 with a non-zero cross section.

Then, the set cross (ξ) of (free) homotopy classes of non-zero cross sections of

ξ is given by

Ker Θξ x Coker (9JΓ1, if Γ1^1 is epίmorphic,
cross(ξ) =

Ker Θn

ξx Coker Θ^'1 x Coker Γ^"1, if ΘJΓ1 is monomorphic,

where <9|, Γ | are the homomorphisms 0/(1.1).

This is a generalization of a part of the theorem of I. M, James [8, Th. 5.1]
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for the case άimX<n.
Applying the above theorem, we prove the following theorem in §§ 5-7, using

the results of A. Haefliger [6].

THEOREM B. Let n be an even integer and let n>10, nφ2r. Then, there
exists only one isotopy class of embeddings of the real n-dίmensional projective
space RPn in the real (2n-2)-space R2n~2.

§ 2. Nomura's theorem

Let h: A-*Dbea. principal ίibration with fiber F, and let p: E-*A and q: Γ-*
E be the principal fibrations with the classifying maps θ: A-+B and p: £->C,
respectively. For a given CFF-complex X and a map u: X^D, we assume that
there are liftings υ and w in the following commutative diagram:

(2.1)

and also we assume that w has a lifting to T.
In this section, we consider the set [Z, T; u\ of homotopy classes of liftings

X-±Toϊu, under the following stability condition (i)-(iii) for the sequence {ft, p9 q}
of fibrations:

(i) the spaces B and C are homotopy associative //-spaces,
(ii) there exists a map d: FxD^B such that

θm~d(ίdFxh) + θπ2 and di2 — 0,

(iii) there exists a map c: ΩBxD^C such that

pμ ~ c(idΩB x hp) + pπ2 and ci2 cz 0,

where m: FxA-*A and μ: ΩBxE-^E are the actions of fibers in the principal
fibrations ft: A^D and p: E-+A, respectively, π2 and i2 denote the projection
and the injection to the second factors, and + denotes the multiplication of an
//-space.

The maps d and c define the maps d': ΩFxD^ΩB and c : Ω2BxD^>ΩC
by d\λ, x)(f)=d(λ(t)9 x) and c'(v, y)(t) = c(v(t), y). These maps induce the maps
between homotopy sets;
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Θu: [X, F] >IX, B], Θ'u: [_X, ΩF] >IX, ΩB]9

(2.2)
Γu: IX, ΩB] >IX, C], Γ'u: IX, Ω 2 £] >[*, ΩC],

by setting

Θu(a) = d*(a, u), Θ'u{a') = d'*{a', u),

Γu(b)=c*(b,u), Γ'u(b') = cί(b',u),

where « G [ I , D] is a given map, and d*\ {X, F] x [X, D]-»[X, B~] is the in-

duced map of d and so on. Then it is easy to see that the maps of (2.2) are homo-

morphisms of groups, by the existence of a lifting of u and the above stability

condition (i)-(iii). Further, we define

(2.3) φ:KcrΘu >CokerΓtt

as follows: For a fixed lifting v: X^A of u, the correspondence \X, F]3σ->

m*(σ, V)GL[X, A; M] is, as is well-known, a bijection. We see easily that σ e

Ker6>M if and only if m*(σ, v) has a lifting to E. Let wσ: X-+E be a lifting of

m*{σ, v) and define

Φ)=P*M modImΓu.

It is easily shown that φ is well-defined.

The following theorem is proved by Y. Nomura [12, Cor. 2.5-6].

THEOREM. Under the above assumptions and notations, we obtain, as

a set,

I Ker ψ x (KcrΓJlm Θ'u) if Γ'u is an epimorphism,
lX,T;u] = {

{ Ker ψ x (KerΓJlm Θ'u) x CokerΓ'u if Θ'u is a monomorphism.

§3. The Postnikov factorization of the universal orientable Sn~ ̂ bundle

Let n>6. The Postnikov factorization for the fourth stage of the universal

orientable Sn~^bundle BSO(n-l)-^BSO(n), induced by the inclusion SO(n-1)

cSO(n), is given as follows:

>K(Z2>n+2)
S ty . Ύ I

(3.1)



412 Tsutomu YASUI

where χn^Hn(BSO(n); Z) represents the Euler class, px: Eί-^BSO(n) is the princi-
pal fibration with the classifying map χM, and Θ and p are the second and the third
/c-invariants, and p2: E2-^E1 and p3: E3->E2 are the principal ίibrations with
the classifying maps θ and p, respectively. Furthermore q3: BSO(n —1)-»£3

is an (n + 2)-equivalence, i.e., q3*: π^BSCHji —1))-^^(£3) is isomorphic for i < n +2
and epimorphic for ί = n + 2.

Let mί: K(Z, n — l)xEί-^E1 be the action of fiber in pt: Eί^BSO(n) and
consider the map vx =mί(idx qγ)\ K(Z, n— l)x BSO(n — l)->£i Then, by
the results of E.Thomas [14, p. 21], the second ^-invariant Θ^Hn+ί(E1; Z2)
is characterized by the equality

(3.2) v\θ = Sq2p2cγ x l+p2ci xp*w2,

where v?: H n + 1 (^i ; Z2)^Hn+1(K(Z, n-l)xBSO(n-ί); Z2) and ^ G H " " 1

(K(Z, n —1); Z) is the fundamental class and w2 is the second universal Stiefel-
Whitney class.

Now, consider the homomorphism

m f - T φ H'(EX; Z2) ,iί'(X(Z, n - l ) x £ i ; Z2),

where π2 is the projection to the second factor. Since (idx ^i)*πf(^) = l x <z*(0)
=0, we have (idxq1)*(mίt-π^)(θ)=(idxqι)*m*ί(θ)=v*ι(Θ). On the other hand,

®Hl{BSO{n- 1) Z 2) is monomorphic, because g?: H^Ej Z2)-+Hr(BSO(n-l);
Z2) is so for r<2. Therefore, (3.2) shows that

(3.3) (mϊ-π*2)(Θ)=Sq2p2c1 xl+p2e1xp*1w2.

Similarly, let m2: K(Z2, ή)xE2-+E2 be the action of fiber in p2: E2-+Eu

and consider the map v2=m2(idx q2): K(Z2, ή)xBSO(n — \)-+E2. Then the
third /c-invariant p e / / n + 2 ( £ 2 ; Z2) is characterized by

v*ρ=Sq2c2x l + ί2xp*w2,

where c2(=Hn(K(Z29 n); Z2) is the fundamental class (cf. [15, Th. 3.5]). There-
fore we have

(3.4) (mj-πj)(p) =Sq2c2

by the same argument as above.

§4. Proof of Theorem A

Continuing the previous section, we choose the maps
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d: (X(Z, n-l)xBSO(n), BSO(n)) >(K(Z2, n + 1),*),

c: (K(Z2, n)xBSO(n), BSO(n)) >(K(Z2, n + 2),*)

such that they represent the elements d = Sq2ρ2cί x l + p 2 ' i x W2 a n d c = Sq2t2

x l + ί2

χ v v2» respectively. Then from the equalities (3.3) and (3.4), it is easy

to see that the sequence {pί9 p2, p3} of principal fibrations in the diagram (3.1)

satisfies the stability condition (i)-(iii) in § 2. Therefore, for a given map ξ: X-*

BSO(ή) which has a lifting X->£3, we can define the homomorphisms

Θ\: W-\X\ Z) >Hi+1(X; Z2) for i = n, n - 1 ,

Πζ:H'(X; Z2) >Hi+2(X; Z 2 ) /or i = n, n - 1 ,

corresponding to Θu, Θ'u, Γu and Γ^ of (2.2) and these are the homomorphisms

of (1.1) by definition.

We now prove Theorem A in § 1.

Let ξ be an orientable n-plane bundle over a CPF-complex X of dimension

less than n + 2 and suppose that ξ has a non-zero cross section. Then the set

cross (ξ) of homotopy classes of non-zero cross sections of ξ is

cross(ξ) = ίX,BSO(n-l);ξ ]

by [9, Lemma 2.2], where ξ: X^BSO(n) denotes the classifying map of ξ. Since

d i m X < n + 2 and q3: BSO(n— 1)-+E3 is an (n + 2)-equivalence, we obtain

by [9, Th. 3.2]. Now we can apply the theorem in §2. Since dimX<n + 2,

we have Hn+2(X; Z 2 ) = 0 and so KerΓ£=//"(Z; Z2) and Ker(^: Ker6)^->

CokerΓjj) = Ker Θn

ξ. This completes the proof.

EXAMPLE. Let ξ be a (2n —l)-plane bundle over the real 2n-dimensional

complex projective space CPn with a non-zero cross section. Then the set cross (ξ)

is equal to Z, the set of integers. Infact, θ\n~2\ H2n~3(CPn', Z)-*H2n-1(CPn\

Z2) is obviously monomorphic and Coker 6 ) | π " 2 =0. Also Yitx{Θ\n~1: H2n~2

(CPn;Z)-+H2n(CPn;Z2)) is equal to Z and Coker(Γf*"2: H2n~2(CPn; Z2)->

H2n(CPn;Z2)) is Z 2 or 0.

§ 5. Enumeration of embeddings

Let M be an n-dimensional differentiable closed manifold, M* be its reduced

symmetric product obtained from M x M — A (A is the diagonal of M) by identify-

ing (x, y) with (y, x) and let η be the real line bundle over M* associated with the
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double covering MxM — A-+M*. Then the set [ M c i ? 2 " " 2 ] of isotopy classes

of embeddings of M into R2n~2 for n > 8 is equal to the set of homotopy classes

of cross sections of the associated S2n"3-bundle (MxM — A)x ZlS
2n~3-*M*

and so equal to cross ((2n — 2)η), by the theorem of A. Haefliger [6, § 1].

Since M* is an open 2n-manifold, there is a proper Morse function on M*

with no critical points of index In by [13, Lemma 1.1] and so M* has the

homotopy type of a CFΓ-complex of dimension less than In by [11, Th. 3.5].

Therefore we obtain the following proposition from Theorem A.

PROPOSITION. Let n>8 and let M be an n-dimensional differentiable

closed manifold which is embedded in R2n~2. Then the set [ M c K 2 π ~ 2 ] of

isotopy classes of embeddings of M into R2n~2 is given by

[Ker Θ2n~2 x Coker (92π~~3, if Γ is epimorphic,
[McK 2 w - 2 ] = j

(KerΘ2w~2 x Coker Θ2n~3 x Coker Γ, if Θ2n~3 is monomorphic,

where the homomorphisms

<9f: W-^M*; Z) >Hi+ί(M*; Z2) for i=2n-2, 2n-3,

Γ: H2n~\M*; Z2) >/f2n"1(M*; Z2),

are defined by

n-l)b-v2,

and v^Hι(M*; Z2) is the first Stiefel-Whitney class of the double covering
MxM-A-*M*.

COROLLARY. In addition to the conditions of the above proposition, we

assume that H^M; Z 2)=0. Then we have

[ M c Λ 2 " - 2 ] = H 2 » - 3 ( M * ; Z)xCoker Θ2n~3.

PROOF. Since H^M; Z 2 )=0, we have Hx{MxM, A; Z 2 )=0 by the exact

sequence of the pair (MxM, A) and so H2n-1(MxM-A;Z2)=H1(MxM,

A', Z 2 ) = 0 by the Poincare duality. Therefore, the Thom-Gysin exact sequence

of the double covering MxM —A ->M*:

-^H2n-\MxM-A; Z2)-*J»2»-1(M*; Z 2 ) - H 2 " ( M * ; Z2) (=0)

shows that H2n~ί(M*; Z 2 ) = 0 and we have the desired result by the above pro-
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position.

§ 6. Remarks on the cohomology of (RPn)*

Let Gn+12 be the Grassmann manifold of 2-planes in Rn+1. By [2, Th. 11],

the mod 2 cohomology of Gn+ί>2 is given by

H*{GΛ+lt2; Z 2 )=Z 2 [x, yll(aΛ9 an+1),

where degx = l, degy=2 and ar = J^(rji)xr~2iyi (r = n, n + 1).

S. Feder [4], [5] and D. Handel [7] investigated the mod 2 cohomology

of the reduced symmetric product (RPn)* of the n-dimensional real projective space

RPn and they showed that

(6.1) H*((RPn)*;Z2) has {1, v} as basis of H*(Gn+ίt2; Z2)-module, where

I G H 1 ^ ? ' ' ) * ; Z2) is the first Stiefel-Whitney class of the double covering RPn

x RPn — A-+(RPn)* and there are the relations

v2=vx, Sq1y=xy, and x2r+1~1=0 for n=2Γ + s, 0<s<2 Γ .

We study H*((RPn)*; Z) for even n. According to [7, (3.4)], there exists

a fibration

P.+ 1.2 >SZn+U2 >BG,

such that Vn+ίt2 is the Stiefel manifold of 2-frames in Rn+1

9 SZn+ίt2 is a {In — 1)-

dimensional closed manifold having the homotopy type of (RPn)* and BG is the

classifying space of a group G of order 8 (as a matter of fact, G is the dihedral

group D4). Let p be an odd prime. The £2-term of the mod p cohomology

spectral sequence of the above fibration is given by

E}'=H (BG;IP(VH+U2;ZP)),

which is the cohomology with local coefficients {H'(Vn+12; Zp)}. Since if*

(Vn+U2; Zp)=H+(S2*-*\ Zp) for even n by [1, (10.5)], we have

H°(BG;H°(Vn+U2;Zp)) for ί=0

H°(BG;H2»-i(Vn+lt2;Zp)) for t=2n-l

0 for tΦ0,2n-L

Since the action of πx(BG) on H°(Vn+U2; Zp) is trivial and Hf(J5G; Z p )=0 for

ί > 0 by [3, Chap. 12, Cor. 2.7], we have

s=0

sΦO.
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These imply that Hs((RPn)*; Zp)=0 for 0 < s < 2 n - l and so

(6.2) the orders of elements of HS((RP")* Z) for 0 < s < 2 n - l are powers of 2.

Using the above facts, we determine the groups H2n~3((RPn)*; Z) and

ρ2H
2n-\(RPn)*\ Z). Let n=2r + s, 0<s<2r and 5 be even. By (6.1) and the

Poincare duality for the manifold SZn+ί2,

(6.3) the mod2 cohomology groups H'((RPn)*; Z2) for 2n-4<t<2n-l are

given as follows:

2/2-1

2/2-2

2/2-3

2/2-4

W

z 2

z 2

z 2

z 2

+ z 2

+ Z2-i

+ Z21

*;z2)

vz2

-Z2 + Z2

vx2r

vx2r

vx2r

vx2r

*'~4y\

x2r1

J C 2 Γ H

-ί-2

ι - 3

• i - 4

y

ys,

ys

basis

vx2"

OX2"*

l-2yS-l

Consider the exact seuqence associated with

where )S2 is the Bockstein homomorphism. By simple calculations, we have the

following relations for the elements of H2n~3((RPn)*; Z 2) by (6.1):

Sq1(vx2r*y-Arys) = vx2r*t-3ys

9 Sq1 (x2r+1~3 ys) = x2r+ ί~2 ys,

vx*

These imply that p2H
2»-3((RPn)*; Z) is Z 2 generated by vx2r+1-2ys-K Hence

we have

(6.4) H2»-3((RP»)*; Z)=Z2 generated by β2(vx2r+i~3y2r+i-31,s-l^

by (6.2) and the above exact sequence.

This shows that p2: H2»-3((RPn)*; Z)-*H2n~3((RPn)*; Z2) is amonomorp-

hism. Furthermore p2H
2n~4((RPψ; Z) = Ker^ 2 =Ker(S^ 1 : H2n~4((RPn)*; Z2)

-+H2n-3((RPn)*; Z2)), because Sq1=ρ2β2. On the other hand, we have the

relations:

2"* '-5 ys) = 0 ,
2r*ι' V ) =0,
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Therefore, by (6.3), we have

(6.5) p2H
2n~4((RPn)*; Z)=Z2 + Z2 + Z2 generated by {vx2r+i-5y\ x2r+1~4ys,

§ 7. Proof of Theorem B

We now prove Theorem B in § 1.

The existence of embeddings of RPn in R2n~2 is shown in [7, Th. 4.1] and

[10, Th. 7.2.2]. To prove that any two embeddings of RPn in R2n~2 are isotopic,

we apply the proposition in § 5 for M=RPn, where the homomorphisms

Θι\ W-^iRP")*; Z) >Hi+1((RPn)*; Z2) for i=2n-292n-3,

Γ: H2n-3((RPn)*; Z2) >H2n-ί((RPn)*; Z2)

are defined by Θi(a) = Sq2ρ2a + ρ2av2 and Γ(b) = Sq2b + bv2. We see that

<92n-2 j s a monomorphism by (6.4) and the following relations:

= vx2r+1-2ysΦ0(by (6.3)).

Also, the equation r(vx2r+i~2ys-1) = vx2r+i-2ys and (6.3) imply that Γ is an

epimorphism. Consider the homomorphism Θ': p2H
2n~4{{RPnY\ Z)-^H2n~2

((RPn)*; Z 2) defined by Θ'(a) = Sq2a + av2. Then we have the relations

These and (6.3), (6.5) show that Θ' is an epimorphism, and so is Θ2n~3 =Θ'ρ2.

This completes the proof of Theorem B.
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