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§ 1. Introduction

Recently, Y. Nomura [12] has studied the enumeration problem of liftings
of a given map to a fibration and its application to the enumeration problem of
immersions of certain manifolds. In this note, using his results we enumerate
the non-zero cross sections of certain vector bundles, and then study the embedd-
ing problem of the real projective spaces in the euclidean spaces.

Let ¢ be an orientable n-plane bundle over a CW-complex X of dimension
less than n+2, and let w,(£) be the second Stiefel-Whitney class of £. Consider
the homomorphisms

OL: H-Y(X; Z)— H*\(X; Z,),
(1.1)

Fé3 HY(X; Z,)— H"¥(X; Z,),
of the cohomology groups, defined by

Oi(a)=Sq>p,a+pya-wy(§),
r'i(b)=Sq%b+b'w,(%),
where p, is the mod 2 reduction. Then we prove the following theorem in §§ 24,

using Nomura’s theorem [12, § 2] and the Postnikov factorization of the universal
orientable (n—1)-sphere bundle BSO(n—1)—BSO0(n).

THEOREM A. Let n>6 and let ¢ be an orientable n-plane bundle over

a CW-complex X of dimension less than n+2 with a non-zero cross section.
Then, the set cross (£) of (free) homotopy classes of non-zero cross sections of
¢ is given by

Ker ©1 x Coker ©171, if 'y~' is epimorphic,
cross(é) =

Ker 0% x Coker 37! x Coker I'} "1, if @11 is monomorphic,
where ©%, I'; are the homomorphisms of (1.1).

This is a generalization of a part of the theorem of I. M, James [8, Th. 5.1]
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for the case dim X <n.
Applying the above theorem, we prove the following theorem in §§ 5-7, using
the results of A. Haefliger [6].

THEOREM B. Let n be an even integer and let n>10, n+2". Then, there
exists only one isotopy class of embeddings of the real n-dimensional projective
space RP" in the real (2n—2)-space R?""2,

§ 2. Nomura’s theorem

Let h: A— D be a principal fibration with fiber F, and let p: E->Aand q: T—
E be the principal fibrations with the classifying maps 6: A—-B and p: E-C,
respectively. For a given CW-complex X and a map u: X—D, we assume that
there are liftings v and w in the following commutative diagram:

T

la
E-£5C

2.1 ot P
b's /,11—'—»3

and also we assume that w has a lifting to T.
In this section, we consider the set [X, T'; u] of homotopy classes of liftings
X — T of u, under the following stability condition (i)-(iii) for the sequence {h, p, g}
of fibrations:
(i) the spaces B and C are homotopy associative H-spaces,
(ii) there exists a map d: F x D— B such that

Om=~d(idg x h)+6r, and di,~0,
(iii) there exists a map ¢: 2B x D—C such that
pu=c(idggx hp)+pn, and ci,~0,

where m: Fx A—>A and u: QBx E—E are the actions of fibers in the principal
fibrations h: A—D and p: E— A, respectively, n, and i, denote the projection
and the injection to the second factors, and + denotes the multiplication of an
H-space.

The maps d and ¢ define the maps d': QF x D—QB and ¢': 22Bx D—-QC
by d'(A, x)(£)=d(A(f), x) and ¢'(v, y)(#)=c(v(t), y). These maps induce the maps
between homotopy sets;
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0,: [X, F]—I[X, B], 0,: [X, QF]—[X, QB],
2.2
@2 r,: [X,@B]—I[X,C], TIi: [X, 2?B]—I[X, QC],

by setting
0 a)=dy(a,u), 0Oy la)=dya’, u),
ru(b)=c*(b’ u)’ ra(b’)=c=’k(b" u),

where u[X, D] is a given map, and d,: [X, F]x[X, D]-[X, B] is the in-
duced map of d and so on. Then it is easy to see that the maps of (2.2) are homo-
morphisms of groups, by the existence of a lifting of u and the above stability
condition (i)-(iii). Further, we define

2.3) ¢: Ker®,— Coker ',

as follows: For a fixed lifting v: X—A4 of u, the correspondence [X, F]So—
my(o, v)E[X, A; u] is, as is well-known, a bijection. We see easily that o=
Ker @, if and only if m,(o, v) has a lifting to E. Let w,: X—E be a lifting of
my(a, v) and define

50(0') =p*(wa) mod Im ru'

It is easily shown that ¢ is well-defined.
The following theorem is proved by Y. Nomura [12, Cor. 2.5-6].

THEOREM. Under the above assumptions and notations, we obtain, as
a set,

Ker ¢ x (Ker I',/Im @}) if I',, is an epimorphism,
[X, T;u]l=
Ker ¢ x (Ker I',/Im @,) x Coker I',  if ©, is a monomorphism.

§3. The Postnikov factorization of the universal orientable S"~!-bundle

Let n>6. The Postnikov factorization for the fourth stage of the universal
orientable S»~1-bundle BSO(n—1)—2- BSO(n), induced by the inclusion SO(n—1)
c SO(n), is given as follows:

E,

q, P3
; E, 5 K(Z,,n+2)
2
(3.1) / e
BSO(n—1) ——___ E,~*>K(Z,, n+1)
p P,y

BSO(n)-2 K(Z, n)
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where y, € H"(BSO(n); Z) represents the Euler class, p,: E;—BSO(n) is the princi-
pal fibration with the classifying map y,, and 6 and p are the second and the third
k-invariants, and p,: E,—E, and p;: E;—E, are the principal fibrations with
the classifying maps 6 and p, respectively. Furthermore g;: BSO(n—1)—E,
is an (n+2)-equivalence, i.e., ¢34 T(BSO(n— 1))~ mn,(E;) is isomorphic for i<n+2
and epimorphic for i=n+2.

Let m,: K(Z, n—1)x E,—E, be the action of fiber in p,: E,—»BSO(n) and
consider the map v,=m,(idxq,): K(Z, n—1)x BSO(n—1)—E,. Then, by
the results of E. Thomas [14, p. 21], the second k-invariant 0 H**(E,; Z,)
is characterized by the equality

(3.2) vi0=Sg%p,e; X 1+ pyey X p*w,,

where v¥: H"Y(E,; Z,)>H"*Y(K(Z, n—1)xBSO(n—1); Z,) and ¢ H"!
(K(Z, n—1); Z) is the fundamental class and w, is the second universal Stiefel-
Whitney class.

Now, consider the homomorphism

mi—n%: H(E,; Z,)— H"(K(Z, n—1) X Ey; Z,),

where 7, is the projection to the second factor. Since (id x q,)*n%(6) =1 x q%(0)
=0, we hav; (id x q)*(m% — n%)(0) =(id x q,)*m*(0) =v’}‘(0) On the other hand,
(idx gq,)*: ZOH"“ (K(Z,n—=1); Z,)QHE,; Zz)—’Z]H"+1 (K(Z,n—1); Z,)
®H!(BSO(n—1); Z,) is monomorphic, because g%: H'(E,, ,)—~>H(BSO(n—1);
Z,) is so for r<2. Therefore, (3.2) shows that

(33) (mY—nE)0)=5q?paey X L+ pyey X ptw,.

Similarly, let m,: K(Z,, n)x E,—~E, be the action of fiber in p,: E,~E,,
and consider the map v,=m,(idx q,): K(Z,, n)x BSO(n—1)>E,. Then the
third k-invariant pe H**%(E,; Z,) is characterized by

vip=Sq2:, x 1+, x p*w,,

where ¢, € H(K(Z,, n); Z,) is the fundamental class (cf. [15, Th. 3.5]). There-
fore we have

34 (m3—n3)p)=S5q%c; X 1+, X p3piw,,

by the same argument as above.

§4. Proof of Theorem A

Continuing the previous section, we choose the maps
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d: (K(Z, n—1) x BSO(n), BSO(n))— (K(Z,, n+1),),
¢: (K(Z,, n) x BSO(n), BSO(n))—> (K(Z,, n+2),+)

such that they represent the elements d =Sq2p,¢c; X 1+pye, Xxw, and c=Sq?c,
x 1+4¢, x w,, respectively. Then from the equalities (3.3) and (3.4), it is easy
to see that the sequence {p,, p,, p3} of principal fibrations in the diagram (3.1)
satisfies the stability condition (i)-(iii) in § 2. Therefore, for a given map ¢: X —
BSO(n) which has a lifting X— E;, we can define the homomorphisms

Oi: H-Y(X; Z)—H*Y(X; Z,)  for i=n,n—1,
I'i:H{(X; Z,))— H*%(X; Z,) for i=n, n—1,

corresponding to @,, @), I', and I';, of (2.2) and these are the homomorphisms
of (1.1) by definition.
We now prove Theorem A in § 1.

Let £ be an orientable n-plane bundle over a CW-complex X of dimension
less than n+2 and suppose that ¢ has a non-zero cross section. Then the set
cross (&) of homotopy classes of non-zero cross sections of €& is

cross(£)=[X, BSO(n—1); £]

by [9, Lemma 2.2], where ¢: X —BSO(n) denotes the classifying map of £. Since
dim X <n+2 and gq5: BSO(n—1)—E; is an (n+2)-equivalence, we obtain

[X, BSO(n—1); {1=[X, Ej; ]

by [9, Th.3.2]. Now we can apply the theorem in §2. Since dim X<n+2,
we have H"*%(X; Z,)=0 and so KerI'=H"(X; Z,) and Ker(¢: Ker®}—
CokerI'ty) =Ker ©%. This completes the proof.

ExAMPLE. Let ¢ be a (2n—1)-plane bundle over the real 2n-dimensional
complex projective space CP* with a non-zero cross section. Then the set cross (£)
is equal to Z, the set of integers. Infact, @}*~2: H2"=3(CP*; Z)-»H?2""(CP";
Z,) is obviously monomorphic and Coker @32 =0. Also Ker(©%"~!: H?""2
(CP*; Z)y»H?*"(CP"; Z,)) is equal to Z and Coker(I'3"~2: H*"~%(CP"; Z;)—
H?2"(CP"; Z,))is Z, or 0.

§5. Enumeration of embeddings

Let M be an n-dimensional differentiable closed manifold, M* be its reduced
symmetric product obtained from M x M — 4 (4 is the diagonal of M) by identify-
ing (x, y) with (y, x) and let n be the real line bundle over M* associated with the
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double covering M x M —A—M*. Then the set [M c R2"~2] of isotopy classes
of embeddings of M into R2"~2 for n>8 is equal to the set of homotopy classes
of cross sections of the associated S2"~3-bundle (M x M —4)x ,,S2" 3 >M*
and so equal to cross ((2n—2)n), by the theorem of A. Haefliger [6, § 1].

Since M* is an open 2n-manifold, there is a proper Morse function on M*
with no critical points of index 2n by [13, Lemma 1.1] and so M* has the
homotopy type of a CW-complex of dimension less than 2n by [11, Th.3.5].
Therefore we obtain the following proposition from Theorem A.

PROPOSITION. Let n>8 and let M be an n-dimensional differentiable
closed manifold which is embedded in R?"~2. Then the set [M Cc R*""2] of
isotopy classes of embeddings of M into R?"~2 is given by

Ker ©®272 x Coker @273, if I is epimorphic,
[McR?2]=
Ker ©®27=2 x Coker @273 x Coker I', if @2"~3 is monomorphic,
where the homomorphisms
@i H-Y(M*; Z)— H*Y\(M*; Z,)  for i=2n-2,2n-3,
I': H?"3(M*; Z,)— H2""Y(M*; Z,),
are defined by
Oi(a)=Sq?p,a+(n—1)p,av?,
I'(b)=Sq%b+(n—1)b-v?,

and ve HI(M*; Z,) is the first Stiefel-Whitney class of the double covering
MxM—A—M*,

COROLLARY. In addition to the conditions of the above proposition, we
assume that H,(M; Z,)=0. Then we have

[McR2"=2]=H?2""3(M*; Z) x Coker @23,

Proor. Since H,(M; Z,)=0, we have H,(M x M, A; Z,)=0 by the exact
sequence of the pair (M xM, 4) and so H?" {(MxM—A4; Z,)=H,(MxM,
4; Z,)=0 by the Poincaré duality. Therefore, the Thom-Gysin exact sequence
of the double covering M x M — A— M*:

S HA UM X M= 45 )~ HH(M*; Z,) > HP"(M*; Z;) (=0)

shows that H2"~1(M*; Z,)=0 and we have the desired result by the above pro-
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position.

§6. Remarks on the cohomology of (RP")*

Let G, ., , be the Grassmann manifold of 2-planes in R***. By [2, Th.11],
the mod 2 cohomology of G, ., is given by

H*(Gn+ 1,2; ZZ)=Zl[x, y]/(am Ap+ 1)1

where degx=1, degy=2 and a,=3("7)x""2iy! (r=n, n+1).

S. Feder [4], [5] and D. Handel [7] investigated the mod2 cohomology
of the reduced symmetric product (RP")* of the n-dimensional real projective space
RP" and they showed that
(6.1) H*((RP™*; Z,) has {1, v} as basis of H*(G,.,.; Z,)-module, where
ve HY((RP™)*; Z,) is the first Stiefel-W hitney class of the double covering RP"
x RP*"— A—(RP™)* and there are the relations

v2=vx, Sqly=xy, and x2"*'"1=0 for n=2"+s, 0<s<2".

We study H*((RP™)*; Z) for even n. According to [7, (3.4)], there exists
a fibration

Va+1,,—8Z,4,,,— BG,

such that V., , is the Stiefel manifold of 2-frames in R**!, SZ, ., , isa 2n—1)-
dimensional closed manifold having the homotopy type of (RP*)* and BG is the
classifying space of a group G of order 8 (as a matter of fact, G is the dihedral
group D,). Let p be an odd prime. The E,-term of the mod p cohomology
spectral sequence of the above fibration is given by

E3'=HBG; H'(V,+ 1,25 Zp))’

which is the cohomology with local coefficients {H!(V,+,,2; Z,)}. Since H*
(Vas1,25 Z,)=H*(S?""1; Z,) for even n by [1, (10.5)], we have

HS(BG; LIO(Vn+l,2; Zp)) for t=0
Ept= HY(BG; H*"'(Vo41,2; Z,))  for t=2n—1
0 for t+0,2n—1.

Since the action of 7,(BG) on H°(V,,,,; Z,) is trivial and H'(BG; Z,)=0 for
i>0 by [3, Chap. 12, Cor. 2.7], we have

Z, s=0
E3°=HYBG; Z,)=
0
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These imply that HS(RP™)*; Z,)=0 for 0<s<2n—1 and so

(6.2) the orders of elements of H{((RP")*; Z) for 0<s<2n—1 are powers of 2.
Using the above facts, we determine the groups H2" 3((RP")*; Z) and

poH?"4(RP")*; Z). Let n=2"+s, 0<s<?2" and s be even. By (6.1) and the

Poincaré duality for the manifold SZ,, , ,,

(6.3) the mod2 cohomology groups H!((RP™)*; Z,) for 2n—4<t<2n—1 are

given as follows:

t | H(RP*; Z,) basis
2n—-1| Z, vx27t 12y
2n—2|{ Z,+Z, px21=3ys 52 1-2 0
2n=-3| Z,+Z,+ Z, OX2TT T4 ps x2THI=3 s 2t i=2 51
QM—A4| Zy+ Zy+ Zy+ Zy | 0X27 15 ps x27H 14 ps px27tI=3 peml x2rtio2 st

Consider the exact seugence associated with 0»Z>2%Z-£2,7,0:
o H24(RP)*; Z)22, H24((RP7)*; Z,) 22, H2 3 ((RPM*; Z) 22,
H?"3((RP")*; Z)LHH2"3((RP")*; Z,) L H2"=2((RP")*; Z) >+,

where 8, is the Bockstein homomorphism. By simple calculations, we have the
following relations for the elements of H2"~3((RP")*; Z,) by (6.1):

Sql(vx2r+ l—4ys) =Ux2"+ 1—3ys, Sql(x2r+ l—3ys) =x2r+ 1__2ys’
vx2r+ l——zys—l =Sql(vx2r+ l—3ys—1) =p2ﬂ2(vx2r+ 1_3ys_1).

These imply that p,H2" 3((RP")*; Z) is Z, generated by vx2""'~2ys~1, Hence
we have

6.4) H2n=3((RP™*; Z)=Z, generated by B,(vx?"*"'~3ys1)

by (6.2) and the above exact sequence.

This shows that p,: H2" 3((RP")*; Z)—H?2"3((RP")*; Z,) is a monomorp-
hism. Furthermore p,H2?" 4((RP")*; Z)=Ker 8, =Ker(Sq': H2" 4((RP"*; Z,)
—H?2=3((RP™*; Z,)), because Sq'=p,f,. On the other hand, we have the
relations:

Sql(vxZ'* 1—5ys)=0’ Sql(x2'*1—4ys)=o’
Sql(vx2'+'—3ys—1)=vx2” l—2ys—1’ Sql(x2'+x_2ys_l)=0.
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Therefore, by (6.3), we have
(6.5) p,H2" 4((RP")*; Z)=Z,+Z,+Z, generated by {vx?"""'=5ys, x2"" =45,
x2"‘“—2ys-l}-

§ 7. Proof of Theorem B

We now prove Theorem B in § 1.

The existence of embeddings of RP” in R?"~2 is shown in [7, Th. 4.1] and
[10, Th. 7.2.2]. To prove that any two embeddings of RP” in R2%~2 are isotopic,
we apply the proposition in § S for M =RP", where the homomorphisms

@i: Hi=Y((RP")*; Z)— H*Y(RP™*; Z,)  for i=2n—-2,2n-3,
I: H2"3((RP™)*; Z,)— H2*""1((RPM)*; Z,)
are defined by ©Oi(a)=Sq?p,a+p,av? and I'(b)=Sq?b+bv2. We see that
©2r-2 js 3 monomorphism by (6.4) and the following relations:

@2n—2(ﬂ2(vx2'+ ‘-—3ys—1)) =Sq2(vx2'+ l-—2ys—1) +ox2t 1—zys—lvz
=px2""'=2y520 (by (6.3)).

Also, the equation I'(vx2"™*'=2ys=1)=px2"*'~2ps and (6.3) imply that I' is an
epimorphism. Consider the homomorphism @': p,H2"4((RP")*; Z)-»>H?2""2
((RP™*; Z,) defined by O@'(a)=Sq%a+av?. Then we have the relations

@'(x2'+ l—zys-—l) =x2"* ‘—Zys’
@'(xzr* l—-4ys) =px2"* ‘-—3ys+ (52)x2"+ ‘—Zys.

These and (6.3), (6.5) show that @ is an epimorphism, and so is ©@2""3=0"p,.
This completes the proof of Theorem B.
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