
HIROSHIMA MATH. J.
3 (1973), 367-386

A Semigroup Treatment of the Hamilton-Jacobi

Equation in One Space Variable

Sadakazu AIZAWA

(Received May 11, 1973)

1. Introduction

This paper has been motivated by a recent paper [2] by M. G. Crandall,

in which the Cauchy problem for the first order quasilinear equation

t(Φi())Xi ί>0,

is treated from the point of view of the theory of semigroups of nonlinear trans-

formations. Crandall chose L 1 ^ " ) as the Banach space associated with the

Cauchy problem for (*) and succeeded in constructing a semigroup of contrac-

tions in L 1 ^ " ) , which provides generalized solutions of the Cauchy problem in

the sense of Kruzkov [6] if the initial conditions lie in Lί(Rn) Π L°°CRΠ)

In this paper we intend to treat the Cauchy problem (hereafter called (CP))

for the Hamilton-Jacobi equation

(DE) Ut+f(ux)=09 - o o < χ < o o , ί>0,

from the same point of view. In our (CP), however, we shall, suggested by Kruz-

kov [6], choose L°°(R) as the Banach space which may be associated with it.

As we shall see, the semigroup approach enables us to treat (CP) under the as-

sumption that / : R->R is merely continuous. Moreover, as an intermediate

step in the development, the existence and uniqueness of certain bounded (pos-

sibly generalized) solutions are established for the equation

(1) U+f(ux) = h, - o o < χ < o o ,

for given ft.

When n = l, there is clearly an intimate relationship between generalized

solutions (cf. [6]) of the Cauchy problem for the quasilinear equation (*) and

the Hamilton-Jacobi equation (DE): If u is a generalized solution of the latter

equation, then v=ux is a generalized solution of the former, and the converse is

true. In this connection it is easy to see that when applied to (CP), CrandalΓs

result can afford a semigroup of contractions on the subspace of L°°(R) consist-

ing of all continuous functions u such that both limw and limu exist and are
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finite. The main object of the present paper is to construct a semigroup associat-
ed with (CP) on the subspace consisting of all bounded and uniformly continuous
functions on R.

We start, in Section 2, with the definition of an operator A in L™(R) which
may be associated with (CP). Section 3 concerns the existence and uniqueness
of certain bounded solutions of (1). Here the solutions are obtained as limits
of solutions of the regularized equation

(2) u+f(ux) — εuxx = h9 — oo<χ<oo,

as ε i 0. Various results concerning (2) are obtained as needed. Section 4 is
devoted to the construction of a semigroup of contractions generated by A through
the generation theorem of Crandall and Liggett [3] and to the study of its prop-
erties relating to (CP).

2. Definition of the operator A.

Throughout the present paper we shall work in the Banach space L 0 0 ^) of
all (real-valued) bounded measurable functions on R=(— oo, oo) with the norm
denoted by IH^.

Wf(R) denotes the subspace of L°°(#) consisting of all measurable functions
whose distribution derivatives of order at most k lie in L^iR). Thus, in partic-
ular, Wf (R) is the subspace of all bounded and Lipschitz continuous functions
onR.

Following Crandall [2] we set:

signor =

Our first task is to define the operator Ao associated with (CP) in L°°(R).

DEFINITION 2.1. Let f&C. Ao is the operator in L°°(R) defined by:
v(=D(A0), W = AOV ifv9 we=W?(R)9 w(x)=f(vx(x)) and

1

0

- 1

if

if

if

r>0

r = 0

r<0.

(2.1) ( s i g n e t * ) - k){U(vx(x))-f(ky\ψx{x) + wx(x)φ(x)}dx>0
JR

for every φ^C^(R) such that φ>0 and every
The next lemma will clarify our definition of the operator Ao.

LEMMA 2.1. Letf&C1 and Ao be given by Definition 2.1. // u e Wξ(R)9

then veD(A0) and Aov=f(vx(x)).
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PROOF. Let /GEC1. If v<=Wf(R), then v, w=f(vx(x)) <=Wf(R). For

and φ^CfiiR), integration by parts shows that

\{Φ'(vx)f{vx)x)φ{x)dx =

Thus, choosing Φ(s) = Φι(s — k)9 where

( -s if s<-l/l

(2.2) Φ<(s)= (//2)s2 + l/2J if |s |<l//

I s ifs>l//

and letting /-»oo, we obtain

(vx(x))xφ(x)}dx =0,
JR

which shows that v^D(A0) and Aov =f(vx(x)). The proof is complete.

REMARK 2.1. Let / : R-*R be continuous and strictly monotone. Then

U G D ( A 0 ) implies that vx is bounded and uniformly continuous on R, since w

=f(vx(x)) is Lipschitz continuous by definition.

We are now in a position to define an operator A in L°°(Λ) which may be

multi-valued for general /.

DEFINITION 2.2. A is the closure of Ao, i.e., v^D(A) and w^Av if there

is a sequence {vk}aD(A0) such that vk-+v, Aov
k^w in L°°(Λ).

PROPOSITION 2.1. Letf:R-+R be continuous and strictly monotone.

Iff(R)=R,then:

(i) D(A) coincides with the subspace of L°°(JR) consisting of all once con-

tinuously differentiable functions u such that both u and its derivative ux are

bounded and uniformly continuous on R.

(ii) A is one-valued and Av=f(vx), v^D(A).

PROOF. This follows immediately from the proof of Proposition 4.2 and

the strict monotonicity of/.

3. The equation u+f(ux) = h.

Our object in this section is to establish the existence and uniqueness of

certain bounded generalized solutions of the equation

(3.1) U+f(ux) = h9 -oo<χ<oo,
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for given h, under the assumption that/: R^R is merely continuous. For the
sake of simplicity, the normalization

(3.2) /(0)=0

will be assumed throughout this section, for this can always be achieved by in-
troducing the new unknown ΰ=u+/(0).

DEFINITION 3.1. Letf^C and Ao be given by Definition 2.1. Let Λε Wf
(R). Then u<=Wf(R) is a generalized solution of (3.1) provided u^D(A0)
and u + Aou=h.

Our main results concerning (3.1) are:

THEOREM 3.1 (Existence). Let f: R-+R be continuous and the normaliza-
tion (3.2) be assumed. Then R(I + A0) = W?(R), i.e., for each h^Wf(R),
there is a generalized solution u of (3A) such that

(3.3) N L < P L , \\ux\L<\\hx\L,

and

(3.4) \\ux(x + y)-ux(x)\\LHn

for every compact interval I and every

REMARK 3.1. Iff:R->R is continuous and strictly monotone, then for
λ ε W<f(R) there is a solution of (3.1) which lies in C^RjΠ W?(R).

PROOF. This follows from Theorem 3.1 and Remark 2.1.

THEOREM 3.2. Let f: R-+R be continuous and u, v^D(A0) satisfy

u+f(ux) = h,
(3.5)

v+f(vx)=g.

Then:
(i) Ao is accretive in L00(R)i i.e., we have for (3.5)

(ii) Ifg>h, then v>u.
(iii) // hx-gx^L1(R) (Note that we do not assume hx, gx^Lί(R)), then
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The following corollaries are direct consequences of Theorem 3.2.

COROLLARY 3.1 (Uniqueness). Under the assumption of Theorem 3.2,

the generalized solution u<=W?(R) of (3.1) is unique for h^W^(R).

COROLLARY 3.2. Let the assumptions of Theorem 3.1 be satisfied and u

e W?(R) be the generalized solution of (3.1). // hx(=Lι(R)9 then ux^L\R)

and WuJ^WhJ,.
As was stated in the introduction, the generalized solution of (3.1) will be

obtained as a limit of solutions of the regularized equation

(3.6) u+f(ux)-εuxx = h, -oo<χ<oo,

as ε 1 0. Consequently, in order to prove Theorems 3.1 and 3.2, it will suffice

to prove the corresponding results for solutions of (3.6). To this end, we shall

borrow a technique from the work [1] of M. M. Belova, in which the existence

and uniqueness of bounded solutions are established for second order equations

of the general form y" —Fix, y, y') under various sets of assumptions on F, but

always under the assumption that F is once continuously differentiate with

respect to the arguments y and y* (cf. in particular, Theorem, p. 467 and Theorem

8, pp. 474-475).

We begin with a lemma due to Belova [1] (see also Kusano [8]) which is a

variant of the maximum principle. We shall give a proof here for the sake of

completeness.

LEMMA 3.1. Let α G l 0 0 ^ ) and ε>0. If υ^C2(R) is bounded from

above and satisfies

Lv = v + a(x)vx — εvxx < 0, — oo < x < oo,

then v<>0 on R.

PROOF. TO prove the lemma by a contradiction, suppose there is a point

x° such that v(x°) > 0. Set

w =(v(x°) - */)cosh k(x - x°),

where η(0<η<v(x0)) and k are positive constants. A simple calculation shows

that we can choose a sufficiently small k in such a way that Lw>0 on R. Then

L(v — w)<0 and hence v — w can not have a positive maximum at finite points

of R. But this contradicts the fact that v — w>0 at x° and v — w-» — oo as |x|-» oo.

The proof is complete.

PROPOSITION 3.1. Let f: R^>R be continuous and w, v^C2(R)n Wf(R)
satisfy
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u+f(ux)-εuxx =
(3.7)

where ε > 0. Ifh,g<= L°°CR), then:

(i) Hu-*L<;p-ffL
(ii) If g>h9 then v>u.

PROOF. We shall only give a proof of the first part (i), since the second part

(ii) can be proved quite similarly.

First step. L e t / G C 1 . Then w—u — v satisfies

Lw = w +f(ux) -f(vx) - εwxx

=w +f'(υx + 0(wx - ux))wx - ewxx

- εwxx = h-g9

where O < 0 = 0 ( x ) < l and α(x) =/ ' ( ! ; ,+ β(ιιJC-i7JC))eL00(Λ), since w ,̂ ϋ

by assumption. Hence an application of Lemma 3.1 yields

since

Second step. Let / G C and X be a constant such that both K^ Wu^ and

Halloo hold. As is well known, we can find a sequence {/J of C 1 functions

satisfying

for every p such that |/?| < K . Then, since

w +/z(w *) ~ ™xx = h +f£μx) -f(ux),

v +fι(vx) - ευxx = g +fj(vx)^f(υx)9

and

\\h-g+Mux)-ttux)-(Mυx)-f(vx))\L^\\h-g\L+2ll,

we have by the result of the first step

and hence, letting /->oo, ||M —ϋH^^ ||ft —flf|L T n u s t n e proof is complete.
Immediate consequences of Proposition 3.1 are:
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COROLLARY 3.3. Let f:R->R be continuous. Then for each /zeL°°(£)

there is at most one solution u^C2(R)Π Wf(R) of (3.6).

COROLLARY 3.4. Under the assumption of Corollary 3.3, let u^C2(R)

(MVf(R) satisfy (3.6). // htΞW°ϊ(R), then | |w x L< H/iJL Moreover, if

the normalization (3.2) is assumed, then ||w||oo^ Plloo
Next we shall prove the

PROPOSITION 3.2 (Existence). Let f:R-+R be continuous and the nor-

malization (3.2) be assumed. Then for each h^Wf(R) there is a solution

uGC2(i?)n Wf(R) of (3.6) such that

(3.8) IM!oo<l|fc|L II^L<II^L.

In proving the proposition, we may assume without loss of generality that

ε = l in (3.6). Our proof below will be based on the following

LEMMA 3.2. Let h^C(R)ΠLco(R). Then a unique solution u^C2(R)

Π L°°(#) of the equation

U — Uxx = h, —oo<x<oo,

is expressed by

u(x) = C

where

C

Moreover, if h^W

ίe
x + C2e-χ-lyex\

2 Jo

f(R),then \\u\UK

{

Xe~sh(s)ds + \-
)o 2

1 Γ~°°
C 2 = - | e'

•̂  J 0

^"χ\ esh(s)ds,
Jo

<ll^llco.

PROOF OF PROPOSITION 3.2. First step. Let f^C1(R)f] Wf(R) and

be defined by

where

= PxL+2||/'L(||Λ|L+||/L),
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Then & is a compact and convex subset of the locally convex, linear topological

space &X{K) whose topology is given by the family of seminorms

p | ( ) | p | x ( ) | , \ \ (m = l, 2,...).

Let Tbe the operator in £ι(R) defined by: u(=D(T) and v = Tu if we &

and v is a solution in C2(R) Π Wf(R) of the equation

v-vxx = h-f(ux), -OO<Λ;<OO,

whose existence is guaranteed by Lemma 3.2. Then, in view of Lemma 3.2, it

is not difficult to show that ΎfF cJ^and Tis continuous. Hence the well known

fixed point theorem of Schauder-Tychonoff applies: there is a fixed point u

= Tu, which provides a solution U G C 2 ( K ) Π W?(R) of (3.6).

The estimate (3.8) follows from Corollary 3.4.

Second step. Let / G C and K be a constant such that K> PJIoo Then

we can find a sequence {ft} of functions in Cί(R) Π Wf(R) such that/z(O) =0 and

\fι(p)~f(p)\<Vl (/ = 1,2,...)

for every p with |p| <iC. By virtue of the result of the first step, there is, for each

/, a solution uι e C2(R) Π Wf(R) of the equation

)-K** = Λ, -oo<χ<oo,

such that

ll«'L^II*L and IlKilL^HΛJL,

from which

Hence the sequence {u1} is precompact in S>1(R) and there is a subsequence

{w/(i)} of {u1} which converges, in g 1(R)9 to a limit u^C1(R). But this implies

that the sequence {u1^} also converges to uxx uniformly on every compact set.

Obviously, the limit u is a solution in C2(R)Π Wf(R) of (3.6) which satisfies (3.8).

Hereby the proof of Proposition 3.2 has been completed.

The next proposition is a refined version of a result of Crandall [2] (Corollary

2.1, p. 121) and is a core in our proof of Theorem 3.1.

PROPOSITION 3.3. Let f:R->R be continuous and u, v^C2(R)ΠWf(R)

satisfy (3.7), where ε>0. If h, g& Wf(R)9 then

(3.9) l|Mχ-^llLi(/)^HΛ,-^llLt(



A Semigroup Treatment of the Hamilton-Jacobi Equation 375

for every compact interval / = [α, 6].

PROOF. First step. Let f^Cι(R)ΠWf(R). Define α, by α, = Φ'j, where

Φt is given by (2.2). Let <pm^C(R) be defined by

ί 1 inside /

(p»M = | 0 outside Im

[ linear elsewhere,

where we have set Im = [a — 1/m, ft + l/m] (m = l, 2, ..). Then w—ux — vx

satisfies

w + (f(ux) -f(υx))x - εwxx = hx- gx.

Multiplying the above by ocι(w)φm and integrating we have

(3.10) ^{ wccMψm + (f(ux) -fivx

since |α z(w)|<l and

Each term on the left-hand side of (3.10) can be estimated from below in the

following manner:

(3.11) \ wocι(w)φmdx> \ wαj(w)dx-M |w|dx = | |w| |Li ( / ) as l^oo

by using the oddness of αz. Integration by parts yields

( (KuJ-fivJUMψndx
JR

= - ( (/ (μx) -f(vx))oc\ (w)wxΨmdx - \ (f(ux) -f(vx)Mw)φ'mdx
JΩi JR

where Ωι = {x^Iί; \ux(x)-vx(x)\ <1//} and we have used the fact that α',(w)=0

outside Ωt. For the first term we note that

Hence, by the bounded convergence theorem,

(3.12) l imsupK (f(ux)-f(vx))oc\(w)wxφmdx <\\f'\\A \wx\dx,
l-*oo I JΩi JΩ

where Ω= C]fit. But ux=vx a.e. on Ω implies wx=(ux — vx)x=0 a.e. on Ω and

the integral on the right is zero. Next, by using (3,7) and Proposition 3.1 (i),
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we have

(3.13) - ( {f(ux)-f(υx))aLlw)φ'mdx>-A\\h-g\\n
JR

since |αj(w)|<l and \ \φ'm\dx=2. Integration by parts again yields
JR

(3.14) -ε\ wxxaiw)ψmdx
JR

=ε\ w2αί(w)^mJx + ε\ wxα,(w)y4dx>ε\ w^vήψ^dx,
JR JR JR

since α'z>0.
Using (3.11)-(3.14) in (3.10) and letting /, m->oo we obtain (3.9).
Second step. Let/ G C and {ft} be a sequence of C1 functions given in the

second step of the proof of Proposition 3.1. Then, by virtue of Corollary 3.3
and what was shown in the second step of the proof of Proposition 3.2, it is easily
seen that the sequences {uι}9 {v1} of solutions in C2(R) Π Wf(R) of the equations

v+fι(vx)-εvxx=g

converge, in ^1(R), to w, v of solutions in C2(R)Γ) Wf(R) of (3.7) respectively.
Now, by the result of the first step,

and hence, letting /->oo, we obtain (3.9). The proof is complete.
An immediate consequence of Proposition 3.3 is:

COROLLARY 3.5. Under the assumption of Proposition 3.3, let u^C2(R)
Π Wf(R) satisfy (3.6), where ε>0. // fte Wf(R)9 then

(3.15) \\ux(x + y)-ux(x)\\LHl)

<\\hx(x^y)-hx(x)\\LHn

for every compact interval I and every

PROOF OF THEOREM 3.1. Choose a sequence {/J^i of C1 functions such
that/z(0) =0 and {ft} converges to/uniformly on compact sets. Given he Wf (R),
let uι^C2(R) Π Wf(R) be the unique solution of the equation

u+fι(ux)-(lll)uxx = h, - oo

guaranteed by Proposition 3f2 and Corollary 3.3, Then the estimates (3.8) and
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(3.15) imply that {u1} is precompact in S>0(R) and {uι

x} precompact in L1(JC(K).

Hence we can find a subsequence {uι(i)} of {u1} and a w e Wf(R) such that u* ( i )

-+u in &°{R) and {ι4(/)} converges a.e. and in L{OC{R) to wx. We denote this

convergence in Wf(R) by -», M I ( 'WM, It is obvious that the limit w enjoys the

properties (3.3) and (3.4).

We shall show that the limit u satisfies (3.1) a.e.. To see this, let φ e C<§(R).

Multiplying the equation satisfied by uι by ψ and integrating we have

=\ hφdx.
JRR

Letting / tend to oo through the subsequence {/(/)} and using the convergences

and fι(i)-+f uniformly on compact sets, we obtain

(u+f(ux))φdx = [ hφdx,
R JR

since \ uι

xφxdx is bounded in / by (3.8). But this implies u+f(ux) = h a.e., since
JR

φ G C%(R) is arbitrary.

It remains to show that u^D(A0) and u + Aou=h. In doing this, we shall

proceed exactly in the same way as in the proof of [2, Corollary 2.2]. First we

note that both u and f(ux) lie in W?(R)9 since f(ux) = h -u e Wf(R) by (3.8).

To prove (2.1), let <p^C§(R) and Φ: R->R have a piecewise continuous second

derivative. Multiply the equation

satisfied a.e. by uι

x by Φ'{uι

x)φ and integrate over K. After some integration by

parts we find

for every /cejR. Assuming Φ / ; > 0 and ^ > 0 , we find that the term involving

Φt;(ux)\uJx\
2φ is nonnegative. Moreover, \ Φ(uι

x)φxxdx is bounded in / by
JR

(3.8). Thus, letting /->oo through the subsequence {/(*')}> we obtain
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for φ^C§(R), φ>0 and k^R. Next choose Φ(s) = Φt(s - k) where Φt is given

by (2.2) and let /-»oo. Then, since

\Uxφ»(s)f(s)ds^sign0(ux- fe)/(fc),

this yields

ί signo(M : c- /e)[(/(Mjc) - / ( * ) ) ? * + (Λ, " «
RR

for every φ^C!§(R) such that ^>>0 and every k^R. Hence, according to

Definition 2.1, u^D(A0) and h — u=Λou. The proof of Theorem 3.1 has been

completed.

Let u: R-+R be measurable. We shall denote by sign u the set of all meas-

urable α: R-+R such that |α(x) |<l a.e. and oc(x)u(x) = \u(x)\ a.e.. Notice that

sign0 we sign u.

LEMMA 3.3. Let {uk} and u be measurable functions on R such that uk^u

in L^S), where S is a measurable subset of R. //α f c e signuk, then there is a

subsequence {αΛ ( / )} and cc^signu (depending, perhaps, on S) such that {α k ( ί )}

converges to α in the weak-star topology on L°°(S).

PROOF. This follows easily from the fact that (L^S))* =L°°(5).

Proceeding in the same way as in the proof of [2, Proposition 2.1] and using

Lemma 3.3, we can prove the following:

LEMMA 3.4. Let f^C and u,υ^D(A0). Then, for each φ^C^R), there

exists an αesign(wx — vx) (depending, perhaps, on φ) such that

(3.16) \ cc{(f(ux)-f(vx))φx + (wx-zx)φ}dx^O,
JR

where we set w=f(ux) and z=f(vx).

PROOF OF THEOREM 3.2. We shall begin with the proof of (iii). Let /

= [α, b] be any compact interval and {φm} be a sequence of piecewise C 1 functions

given in the proof of Proposition 3.3. Using Lemmas 3.3 and 3.4 in the obvious

way, we can find a sequence {am}asign(ux — vx) such that (3.16) holds for every

pair of φ =φm and α = α m . Now let K be a constant such that both K> UwJL

and K> Halloo hold. Then, since

I ( ocm(f(ux)-f(υxWmdx <4 sup \f(p)\,
\JR \P\<:κ

p \

\P\<:κ

we obtain by letting ra->oς> and using Lemma 3.3 again
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\ ot(wx-zx)dx> - 4 sup |/O)|
JI \p\<LK\p\

for some aGsign(ux — υx). But this shows that

\ |Λx~^J^x>^α(^-

\ux-υx\dx-4sup\f(p)\
I \p\<K

and hence, by the arbitrariness of /, ux—vx^L1(R) if hx — gx^Lι(R).
It remains to prove 11"̂  —fx||i < P x —0x||i. To do this, let {fk} be a sequence

of C1 functions such that

for every p such that |p| <K. Choose a function κ^C^(R) such that κ>0 and
κ(s) = ί for | s |^ l . Set ψ{x) = κ{xjϊ) in (3.16), let /^oo and use Lemma 3.3 in
the obvious way to find that there is an α e sign (ux — vx) such that

( φx-zx)dx>-
JR

for every k, since fk(ux)—fk(vx)G^(R) and

α'esignίw^-t J is determined by ψ{x) = κ{xjϊ)). Thus, letting /c->oo yields

oc(wx-zx)dx>O
R

for some <x^sign(ux — vx). But this implies, as before, the estimate IIMJC—UXIII

<\\hx-gx\\i.
Now the proof of (i) and (ii) can be carried out as follows: From (iii) it follows

immediately that u, v^D(A0) are unique generalized solutions of the equations

u + Aou=h, v + Λov=g

respectively. Hence, by what was shown in the proof of Theorem 3.1, M, υ can
be obtained as limits of solutions u\ vι in C2(R) Π Wf(R) of the equations

u +f(ux) - (

v+f(vx)-(lll)vxx=g

as ί->oo through a suitable subsequence {/(i)} Since uι(i)-»u, t>I(l)-»D in Wf(R),
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Proposition 3.1 can be used to prove (i) and (ii). The proof is complete.

4. The semigroup of contractions associated with (CP).

The Cauchy problem (CP) consists of (DE) and the initial condition

(IC) U(X9 0)=W°00, ~oo<χ<oo,

where u° is a given function on R.
It is assumed throughout the section that/: R-+R is merely continuous and

satisfies the normalization (3.2), for this can always be achieved by introducing
the new unknown ΰ=u+f(0)t.

We shall choose L™(R) as the Banach space associated with (CP) and regard
the function u in (DE) as a map: [0, oo)3fi-»u( , t)^Lcc(R). Let A be given
by Definition 2.2. Then (CP) can be rewritten in the abstract form

(ACP) J± + ΛUΞBO, u(0) = u°

(Note that A may be multi-valued for general /) .
In order to apply the abstract theory to (ACP), we shall state the generation

theorem of Crandall and Liggett [3] in a form suitable for our later use. Let
X be a Banach space and A be an operator in X (which is allowed to be multi-
valued). A is said to be accretive in X if

\\(u + λw)-(υ + λz)\\>\\u-v\\

for λ>0, u, v^D(A), w^Au and z^Av, where || || denotes the norm in X. For
λ>0, let Dλ=D(Jλ)=R(I + λA), J^il + λA)-1 and Aλ=λ-\I-Jλ). Set 2)
= U κ > 0 ( Π O<Λ< A ) and define, if ® 2 D(A),

where we have set for

\Av\=lim\\Aλv\\.
λ | 0

The following generation theorem is a combined version of [3, Theorem I]
and [4, Proposition 2.3].

GENERATION THEOREM. Let A be an accretive operator in a Banach

space X. If R(I + λA)z^D(A) for all sufficiently small positive λ, then

(4.1) li
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exists for u°^D(A) and t>0. Moreover, if S(t)u° is defined as the limit in

(4.1), then S(t) is a semigroup of contractions on D(A):

(i) We have S(t): ^(A)-+D(A) for ί>0; S(t)S(τ)=S(t + τ) for t, τ>0;
\\S(t)v-S(t)w\\<\\v-w\\for v, w(=D(A) and t>0; S(0)=I and S(t)v is continuous
in (t, v).

(ii) IfveD(A), then S(t)v is Lipschitz continuous in t on every compact
interval.

(iii) For each ε>0 and u°^D(A), the problem

ί ε"1 (uε(t) - uε(t - ε)) + Auε(t) 3 0, t > 0,
(4.2)

{uε(t)=u°, t<0

has a unique solution uε(t) on [0, oo) and limuε(t) = S(t)u° uniformly in t on
ε l O

compact sets.
We have to verify the hypotheses of the Generation Theorem for the A of

Definition 2.2. First we make the following:

REMARK 4.1. Ifu^D(A) and w^Au, then both u and w are bounded and
uniformly continuous functions on R.

PROOF. This is obvious, since A is the closure of Ao and v^D(A0) implies
υ,A0ΌeWf(R).

From Theorem 3.2 we easily have:

PROPOSITION 4.1. Let f.R^R be continuous. If u, v^D(A)9

and z&Av satisfy

u + λw = h, v + λz=g,

where λ>0, then:
(i) A is accretive in L°°(Λ), i.e., we have

(ii) // g>h, then v>u.
In what follows, BU(R) denotes the closed linear subspace of L°°(JR) consist-

ing of all bounded and uniformly continuous functions on R.
Now we shall give another definition of generalized solutions for (3.1).

DEFINITION 4.1. Let h <=BU(R). Thenu<=BU(R) is a generalized solution
of (3.1) provided u^D(A) and h^u + Au.

It follows from Theorem 3.1 that R(I + λA) =BU(R) for λ>0, since R(I + λA0)
= Wf(R) is dense in BU(R) and A is the closure of Ao (Note that R(I + λA) is
closed for λ>0 when A is closed and accretive). Clearly, we have D(A)czBU(R).
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Therefore we have proved the

THEOREM 4.1. Letf: R-+R be continuous. Then the operator A of Defini-
tion 2.2 satisfies the assumptions of the Generation Theorem. In particular,
u=(I + A)~ίh is the unique generalized solution of (3A) for h^BU(R).

COROLLARY 4.1. Let f: R-+R be continuous and strictly monotone. If
f(R)=R, then u=(I + A)-ιh is the unique solution in C1(R)Π Wf(R) of (3.1)
for htΞBU(R).

With the next proposition the construction of our semigroup is complete.

PROPOSITION 4.2. ///: R^R is continuous, then D(A)=BU(R).

PROOF. It suffices to prove that C2(R) n Wf(R) c D(A), since C2(R) Π W<ξ(R)
is dense in BU(R). Let u e C2(R) Π Wξ(R) and {/z} be a sequence of C ι functions
which converges to / uniformly on compact sets. Set

w +/(«*) = K u +//0O = K

Since h&BU(R) and ft,e Wf, it then follows from Theorems 4.1 and 3.1 that
there are a unique v e D(A) such that v + w = /ι for some w e y4t; and a unique ι?* e
Z)(^0)suchthatί;/4-^0ι;

/=/z/. By Proposition 4.1 (i) wehave H ^ - ^ L ^ I I ^ - ^ L
and so υι-+υ in L°°(Λ) as /->oo, since hl — h=f£ux)—f(ux)-+0 in L°°(R). Now,
let / be any compact interval. By using what was shown in the proof of Theorem
3.1 it is seen that for each /, there is an integer k(ϊ) such that k(l) > I and the unique
solution vk(ι)<EC2(R)n Wf(R) of the equation

satisfies ||i?kί l)-t?I | |Lββ(/)<l/ί. But then Proposition 3.2 (i) yields that ||t;k(/)-M||00

(̂l/fc(0)l|Wjcxlloo» s i n c e u<=C2(R)Γ) Wf(R) satisfies the equation

u +fι(ux) - (l/k(l))uxx = ht- (l/k(l))uxx.

Hence the sequence {vkiι)}f=0 converges to u as well as to v uniformly on / so
that, by the arbitrariness of /, we have u=v on R. Consequently, w =f(ux), which
shows that MGD(A) and f(ux)^Au. The proof is complete.

According to Theorem 4.1, Proposition 4.2 and the Generation Theorem,
a semigroup of contractions S(t) on BU(R) is determined by the operator A.
Concerning the properties of this semigroup, we have first the

THEOREM 4.2. Let f: R-+R be continuous and S(f) be the semigroup of
contractions on BU(R) obtained from A through the Generation Theorem. Let
u, v<=BU(R) and t>0. Then:

(i) Ify£ΞR,then
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sup| S(t)v(x + y)- S(t)v(x)\ < sup|φc + y)- v(x)\.
xeR xeR

Moreover, if v^ Wf(R), then S(t)υe Wf(R) and

\\S(t)v\L<\\υ\\^ \\(S(t)v)x\L<\\v.
xlloo

(Note that the normalization (3.2) is assumed),
(ii) Ifv>u, then S(t)v > S(t)u.

PROOF. The solution uε(t) of (4.2) is given by Mε(0
where [ί/ε] is the greatest integer in t/ε. Since limuε(t) = S(t)u° uniformly in t

ε 4 0

on compact sets, the proofs of (i) and (ii) follow immediately from Proposition
4.1 (i) and (ii). The proof is complete.

Kruzkov [6] treats (CP) in the case where/: R-+R is continuously differenti-
able and u° is a Lipschitz continuous (and not necessarily bounded) function
on R, and establishes the existence and uniqueness of certain generalized solutions.
A Lipschitz continuous function u(x9 t) on R x [0, oo) is called a generalized solu-
tion of (CP) if: 1) u satisfies (DE) a.e. as well as (IC); 2) for every φ(x, t)^C<§(R
x(0, T)) such that φ>0 and every k^R and Γ>0, we have

OJR

where the derivative ux is continuous in x in the L1-norm on every compact interval,
uniformly with respect to ίe[0, T]. Below we shall show that the semigroup
5(0 obtained above provides a generalized solution S(t)u° of (CP) in the sense
of Kruzkov if u° lies in Wf(R) and its derivative w£ is continuous in the L1-norm
on R. I f / e C 1 , the hyperbolic character of (CP) and Theorem 4.3 below can
be used in the usual way to deduce the existence of generalized solutions
of Kruzkov's type for Lipschitz continuous (and not necessarily bounded) func-
tions u°.

A measurable function v on R is said to be continuous in the I^-norm on
R if there is a positive number δ depending on v such that
for every y with \y\<δ and

lim ( \v(x + y)-v(x)\dx=0.
\v\-+OjR\y\-

Notice that u e L 1 ^ ) is continuous in the ί^-norm on R.

THEOREM 4.3. Let f: R^>R be continuous and S(t) be the semigroup of
contractions on BU(R) obtained from A through the Generation Theorem.
Let i e Wf(R). If the derivative vx is continuous in the L1-norm on R, then:

(i) // |)>|<<5, where δ is a positive number depending on v9 then
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v)x(x + y)-(S(t)v)x(x)\dx<[ \Vχ(x + y)-vx(x)\dx
JR

for every t>0.
(ii) S(f)v(x) is Lίpschitz continuous on Rx [0, oo) and satisfies (DE) a.e..

(iii) We have

\T

Q\R{\(S(t)v(x))x -k\φt + signo((S(t)v(x))x - k)

X LMS(t)v(x))x)-f(k)^φx}dxdt>0

for every <p(x, t)^C§(Rx(0, T)) such that φ>0 and every k<=R and T>0.

PROOF. Let 17 e Wf(R) and uε(t) satisfy

(
(4.3)

[uε(t)=v, t<0.

Then uB(t)=(I + εA0)-^e^1v for *^0 and, by Theorem 3.2 (i),

(4.4) \\uε(t)\L<\\v\L, ll(wmiloo<ikL

for t >0. Next we note that W? (R)aD(A). Indeed, if t?e W?(R), then u =Jλv
satisfies u+λAou=v and so Aλv=λ~1(I — Jλ)v=Aou=f(ux) for λ>0 (cf. Defi-
nition 2.1). Hence we have ||^4λι;||00<

suPlX(.p)l f° r λ>0, which implies v^D(A).
Therefore, according to the Generation Theorem (ii), S(t)v is Lipschitz continuous
in t on compact intervals.

Now, let vx be continuous in the Z^-norm on R and uε(x9 t)=uε(t)(x). It
then follows from Theorem 3.2 (iii) that uε

x(x + y, t) — uε

x(x, ί ^ I ^ W and

(4.5) ( \ux(x + y, t)-uε

x(x, t)\dx<[ \vx(x + y)-vx(x)\dx
JR JR

for every t >0 and every y with |j;| <δ. For each fixed t >0, the sequence {(uε(t))x}
must converge in L\OC(R) to (S(t)v)x as ε | 0, since uε(t)^S(t)υe Wf(R) in L°°(R)
as ε I 0 and {(uB(t))x] is precompact in L\OC(R) by (4.4) and (4.5). Thus, letting
ε i 0 in (4.5), we easily obtain (i) for ί>0.

By Definition 2.1, uε(t) satisfies the equation

(4.6) ε" V ( f ) - uε{t - ε)) +f((uε(t))x) =0

for t > 0. Let T > 0. Since S(t)v is Lipschitz continuous for 0 < t < T and S(t)v e
0^(1*) for every ί >0, S(ί)Kx) is (totally) differentiate a.e. onRx [0, T]. More-
over, by what was proved above, {(uε(t))x} converges in L\0C(R) to(S(t)v)xass I 0
for every t >0 so that, by the bounded convergence theorem, we find that (ue(t))x->
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(S(t)v)x in L/oc (R x [0, T]) as ε j 0. Therefore we can find a subsequence {ε(/)}
such that {(uε(ί)(0)*} converges a.e. and in L}oc (R x [0, T]) to (S(t)v)x as ε(*) i 0.
Multiply (4.6) by φ e C°§(R x (0, T)) and integrate over R x [0, T]. Integrating
by parts and letting ε 4 0 through the subsequence {ε(i)} yield

{ " ( s ( t ) υ ) ψ t

which can be rewritten as

But this implies that S(t)v(x) satisfies (DE) a.e. on Rx(0, T). Since T>0 is
arbitrary, S(t)υ(x) satisfies (DE) a.e. on JRX(0, OO), which in turn shows that
S(t)v(x) is Lipschitz continuous on #x[0 , oo) by Theorem 4.2 (i). The proof
of (ii) is complete.

It remains to prove (iii). To do so, we shall follow the proof of [2, Theorem
1.2 (ii)]. By Definition (2.1),

(4.7) [ {signo(«S(x, 0-k)lf(ui(x9 t))-f(k) ]φx(x, t)

+ ε-χ(uε

x(x, t-ε)-uε

x(x, t))signo(uε

x(x9 t)-k)φ(x9 t)}dx>0

for every <p(x9 t) G C ° § ( ^ X ( 0 , T)) such that ^ > 0 and every k<=R. Let hε(x, i)
=(uε

x(x, t)-k)signo(uε

x(x9 t)-k). Integrating (4.7) over 0^t<T we have

(4.8) \T\ {signo(uj(x, t)-k)[f(u%(x, t))-f(k)-]φx(x, t)
JOJR

+ ε~1(hε(x, t-ε)-hε(x, t))φ(x, t)}dxdt>0,

since

(i4(x, t-ε)-uε

x(x, ί))signo(Mj(x, t)-k)<hε(x, t-ε)-hε(x, t).

The second integral tends, as is easily verified, to

T[ \(S(t)v(x))χ-k\φt(x,t)dxdt
OJR

as ε i 0, since uε

x(x, t)-+(S(t)v(x))x in L}OC(R x [0, T]). Hence the inequality (iii)
is obtained by letting ε J, 0 in (4.8). The proof of Theorem 4.3 has been completed.

REMARK 4.2. If v e Wf(R), we have seen above that S(t)v(x) is Lipschitz
continuous on Rx [0, T] for every T>0. Thus S(t)υ(x) is (totally) differentiate
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a.e. onRx (0, oo). It is most probable that the semigroup S(t) provides a general-
ized solution S(t)v of (CP) for DG Wf(R). However, we have not as yet succeeded
in proving this conjecture without assuming the continuity of vx in the L1-norm
on R.
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