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§1. Introduction and the results

Denote by & the class of all probability distributions f in R4 such that
S|x|2f(dx)< oo and \(x;— p;)*f(dx)>0(1 <i<d), where p=(uy, ..., 4;) is the mean
vector of f. For each f € 2, denote by g, the Gaussian distribution with the same

mean vector and variance matrix as those of f. We introduce a functional e
on Z by

e[f1=infE{X—-Y|?}, feo,

where the infimum is taken over all pairs of R4-valued random variables X and Y
defined on a probability space (2, &, P) and distributed according to f and g,
respectively. We also write e[X] for e[fy], where fy is the probability dis-
tribution of a random variable X.

In the one dimensional case, the functional ¢ was introduced and its basic
properties were studied in [4] with an application to Kac’s one-dimensional
model of a Maxwellian gas. The purpose of this paper is to extend some results
in [4] to the multi-dimensional case, that is, we will prove the following theorems.

THEOREM 1. Let X and Y be random variables with probability distribu-
tions fe P and g, respectively, and assume that e[f]=E{|X—Y|2}. Then,
X is equal to some Borel function of Y almost surely.

THEOREM 2. Let X, and X, be independent random variables with pro-
bability distributions belonging to 2. Then,

e[ X +X,]<e[X,]+e[X,]
unless both X, and X, are Gaussian. In other words, the functional equation

e[fixfol=e[fi]1+e[f2], fi, €2

gives a characterization of Gaussian distributions.
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§2. Proof of the theorems

The proof of Theorem 1 will be given in a series of lemmas. In what follows,
<-, > denotes the usual inner product in RY.

LeEMMA 1. From the same assumption as in Theorem 1, it follows that
<X(w)—X(w"), Y(w)— Y(w')>=0
for almost all (w, ') with respect to PQP.

Proof. In proving this lemma, we may assume that the basic probability
space (Q, &, P) is chosen as follows: Q is the unit interval [0, 1), & is the class
of Borel sets of Q and P is the Lebesgue measure in Q. Suppose the conclusion
of the lemma is false. Then, there exists £>0 such that the set

A={(0, 0)EQxQ: <X(0)—X(e), Y(w)—Y(')> < —¢}

has strictly positive PQ P-measure. Now for integers n, N=1 and for any lattice
point m=(m,, ..., m;))€Z¢, we set

Az =11 [m277, (m,+1)277)

X,(w)=m2"" for weX '(A})

Y (w)=m2™" for weY 1(An)
~ <X"((D)—X”((D'), Yn(w)_ Y,,((D')> <-—-é
A, y=1{(0, 0)EQ X Q: .
|Xn(@)], [ X (@), |Y(@)], | Y (@) <N

Then, there exists N such that PQ P(4, y)>0 for all sufficiently large n. Fixing
such an N, we choose an n so that PQP(4, y)>0 and

2.1) 277N /d+272m2d < g
Since
An=U@X 1 (A5) N Y 1(A5 ) x (X~ (Ap) N Y1 (An%)
where the union is taken over all quartets (m,, m}, m,, m5) satisfying
<m27"—mj{27", m,27"—m5H27 "> < —¢
2.2)

Im,27"|, [m7277], [m,27"|, [m527"[ <N,

there exist m,, m}, m,, m, € Z¢ (satisfying (2.2)) such that
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P(A)>0, A=X"1(A% )N Y~ 1(AL),
P(A)>0, A/=X"1(Ap) N Y N (AR)).
By (2.1) and (2.2), we see that
(23) <x=x',y—y'><0 forany xe€AL,, x'EAq;, yEAL,, y' EAq;.

Next, we take an irrational number A and denote by T the (ergodic) Weyl
automorphism we Q—-w+ A (mod. 1). Then there exists an integer k such that
P(ANT*A4)>0. We set U=T*, B=ANU"14’, B=UB. Since BNB' =¢
and U: B— B’ is measure-preserving, we can define a new random variable X*
with probability distribution f by

X(U(w)) for weB
X"(w)JX(U‘l(w)) for weB
X(0) for w&BUB'.
From (2.3), we see that for o€ B
|X(U(w))—Y(0)|* + | X(0) - Y(U(w))|?
<|X(0)—Y(w)|?* +|X(U(w)) - Y(U(w))?,

and this inequality combined with the fact that U is measure-preserving gives us
E{|X*—Y|?}<E{|X—Y|?}. This is a contradiction, and the proof is finished.

LEMMA 2. Let X and Y be R4%-valued random variables defined on a pro-
bability space (2, #, P), and assume that Y has a non-degenerate Gaussian
distribution g. If

<X(w)—X(@), Y()—Y(w)>=0

holds for almost all (w, ') with respect to PQP, then there exist a regular
conditional probability distribution P,(") of X given Y and a set A(CRY) of
Lebesgue measure 0 such that P,QP,(I', ,)=1 holds for all y, y’' & A, where

r,,={(x, x)eR*: <x—x', y—y'>=0}.

Proor. Let A% and Y, be the same as in the proof of the preceding lemma,
and let P{V(-) be a regular conditional probability distribution of X given Y,;
it is given by

P =P{X~1(I') N Y~1(A%)}/g(AR),
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for 'e #(RY), ye An,. If we set
v, = YEPPEx)

for a bounded continuous function ¥, then {¥,(y), #,, g} is a martingale, where
4, is the o-field generated by {AX, meZ4}. Therefore, by the convergence
theorem of martingales the set

B,={yeR?: lim ¥,(y) exists}

has full g-measure. Take a coutable family {y,},»; which is dense in Cy(RY),
the space of real valued continuous functions on R? vanishing at infinity, and let
B be the intersection of all B,,, k=1. Then g(B)=1. Moreover, it is easy
to see that for each ye B the limit L,(Y) of ¥,(y) as n— oo exists.for any y € C,
(R4) and defines a unique measure P(*), that is,

lim (W(P§(dx) = (WP, (d0), e ColR).

Now we define P(-) for y & B to be an arbitrary probability measure on R and
put A=B<U{y: P(R%)+#1}. We also redefine P,(-) for y such that P(R%)+1
to be an arbitrary probability measure. Then g(4)=0 and P,(') is a regular con-
ditional probability distribution of X given Y. To show that A and {P,(-)} have
the desired property, we first notice that

<X(w)—X(), V(@)= Y (0)>z —/d27"*1| X () — X()|
holds for almost all (w, ®’) with respect to P®QP and hence
(2.4) PR PW(Im.)=1
for almost all (y, y’) with respect to g®g, where
rm.={(x, x)eR?: <x—x', y—y'>=—/d27"1|x—x'|}.

But, since P{")(") is constant on each A7, the equality (2.4) holds for all (y, y).
Because '), L ', as n 1 oo, we have PW® P{(I'"))=1 for n=n,; letting
nt oo and using the facts that P{» converges to P, for y& A and that F;:";? is
closed, we obtain P,QP,(I' (,','3,))=1 for y, y’ & A. Since n, is arbitrary, the
lemma is proved.

By definition a set valued function S: y€ R4—S(y)c R¢ is said to be mono-
tone, if there exists a set A(c R?) of Lebesgue measure 0 such that the inequality

<x—=x',y—y'>=0 for xe&S(y), x'S(y)

holds whenever y, y' & A4.
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LeMMA 3. Let S: yeR‘—S(y)cR? be monotone. Then, S(y) consists
of a single point for almost all y.

Proor. First we consider the case d =1, and let I( y) be the smallest closed
interval containing S(y). Then, the monotone property of S implies that I( y)
and I(y’) are non-overlapping if y#y’, y, ' & A (a null set in the definition of
monotonicity). Therefore, I(y) consists of a single point for almost all y, and
hence so does S(y). Next, we consider the case d>1. Given k(1<k<d) and
z=(zy, ..., Z4_1)ER?41, we define a set valued function Sz on R! by

EERY: (Wi, oy Wi, &, Wiy o, W ) ES(Y)
Si(m) =

for some w=(wy, ..., w;_;)ERA1
where y=(z,, ..%, Zx—15 N Zs ---» Z4—1). We put
Ai={NER : (Zy, ..oy Zk—1, Ny Zgs «vvs Zg—1) E A}
B,={zeR4"': A is a null set}.

Then, by Fubini’s theorem B§ and A7 for each z< B, are null sets, and from the
monotone property of S it follows that Sz is monotone for each zeB,. So,
the result for the case d =1 implies that, for each z& B, Si(n) is a single point
for almost all 5. Let D, be the set of all y = R? such that the projection to the k-th
coordinate reduces S(y) to a single point, and put D=ND,. Then, D¢ is a null
set, and S(y) is a single point for each ye D, as was to be proved.

The proof of Theorem 1 is now completed as follows. From the first two
lemmas, it follows that there exist a null set 4 and a regular conditional probability
distribution P () of X given Y with the property stated in Lemma 2. If we define
S(y), yER4, as the smallest closed set of full P,-measure, then S(y)xS(y")c
r,, provided y, y' & A, or what is the same, the mapping S: yeR?—>S(y) is
monotone. Therefore, by Lemma 3 S(y) is a single point for almost all y; this
means that X is equal to some Borel function of Y almost surely.

We give the proof of Theorem 2. We remark that Theorem 1 implies the
following: if f€ 2 and Y is g -distributed, then there exists some Borel function
¢ from R4 into itself such that e[ f]=E{|o(Y)—Y|?}, since there exists some
pair of random variables (with distributions f and g,) which gives the infimum
value e[ f]. Now we take independent Gaussian random variables Y; and Y,
whose mean vectors and variance matrices are the same as those of X; and X,
respectively. Then by the above remark, there exist Borel functions ¢, and ¢,
such that e[X,]1=E{|¢,;(Y;)—Y;|?} and e[X,]=E{|p,(Y,)—Y,|2}. We have

2.5) e[X 1+ e[X,1=E{l(¢.1(Y) + 02(Y2)) - (Y; + 1)|*}.



80 Hiroshi MuraTa and Hiroshi TANAKA

Since ¢;(Y;)+¢,(Y,) has the same distribution as that of X, +X, and Y, + Y,
has the same mean vector and variance matrix as those of X, + X,, the right hand
side of (2.5) (and hence e[X,]+e[X,]) dominates e[X,+X,]. Next, we
suppose that e[ X;]+e[X,]=e¢[X;+X,]. Then, by Theorem 1 there exists a
Borel function ¢ such that

501(Y1)+€02(Y2)=§D(Y1 + Yz) a.s.

This equation implies that ¢,, ¢, and ¢ must be linear and hence X, and X, must
have Gaussian distributions.

§3. Applications

1. Let X, X,, ... be Ré-valued independent random variables with common
distribution f(€ £) of mean vector 0. Then, by the same arguments as in [4],
we can prove that e[n=*/2(X,;+ --- +X,)]—0as n— oo and hence the probability
distribution of n=1/2(X,; + --- +X,) converges to g, as n—co; this is the well-
known central limit theorem.

2. Let X, and X, be real-valued independent random variables, and assume
that

X,=X,cos0+X,sinf, X,=—X,sin0+X,cosb

are independent for some 6 which is not an integral multiple of n/2. Then, X,
and X, are Gaussian. This is known as a theorem of M. Kac [3]. There are
several proofs (for example, see [1], [2]); here we give a proof based upon Theorem
2 assuming that the probability distributions of X; and X, are in 2.

By Theorem 2, we have

e[X,1<e[X,]cos? 0+ e[X,]sin20,
G.1) {

e[X,]1<e[X,]sin20+ e[ X,]cos26.

Let

X, cosf sinf
X= , A= .
X, —sinf cos6
Then we can prove that e[AX]=e[X], e[AX]=e[X,]+¢[X,] and e[X]=
e[X,]+e[X,]; here we have used the orthogonality of the matrix A4 for the

first equality and the independence of the components for the last two equalities.
Therefore (3.1) holds with “ =", and hence X; and X, are Gaussian by Theorem 2.
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