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§ 1. Introduction and the results

Denote by &> the class of all probability distributions / in Rd such that

\|x|2/(dx)<oo and \(xi-μi)
2f(dx)>O(l^i^d), where μ=(μ l 5 ...,μj) is the mean

vector off. For each/e ^ , denote by gf the Gaussian distribution with the same

mean vector and variance matrix as those of/. We introduce a functional e

on 0> by

where the inίimum is taken over all pairs of Kd-valued random variables X and Y
defined on a probability space (Ω, IF, P) and distributed according to / and gf

respectively. We also write e[X] for e[/ x ] , where fx is the probability dis-
tribution of a random variable X.

In the one dimensional case, the functional e was introduced and its basic
properties were studied in [4] with an application to Kac's one-dimensional
model of a Maxwellian gas. The purpose of this paper is to extend some results
in [4] to the multi-dimensional case, that is, we will prove the following theorems.

THEOREM 1. Let X and Y be random variables with probability distribu-
tions f^0> and gf respectively, and assume that e[/]=£{|X— Y\2}. Then,
X is equal to some Borel function of Y almost surely.

THEOREM 2. Let Xx and X2 be independent random variables with pro-
bability distributions belonging to 0>. Then,

unless both Xt and X2 are Gaussian. In other words, the functional equation

gives a characterization of Gaussian distributions.
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§ 2. Proof of the theorems

The proof of Theorem 1 will be given in a series of lemmas. In what follows,

< , > denotes the usual inner product in Rd.

LEMMA 1. From the same assumption as in Theorem 1, it follows that

< X(ω) - X(ω% Y(ω) - Y(ω') > ^ 0

for almost all (ω, ω') with respect to P(g)P.

PROOF. In proving this lemma, we may assume that the basic probability

space (Ω, J5", P) is chosen as follows: Ω is the unit interval [0, 1), ίF is the class

of Borel sets of Ω and P is the Lebesgue measure in Ω. Suppose the conclusion

of the lemma is false. Then, there exists ε>0 such that the set

A = {(ω, CO')GΩXΩ: < X(ω) - X(ω'), Y(ω) - Y(ω') >< - ε}

has strictly positive P(g)P-measure. Now for integers n, N^l and for any lattice

point m=(m l 5 ..., md)^Zd, we set

Π [nf,2-», (m

) = m2-n for

for ^ ; )

ί < n(ω) - Xn(ω% Yn(ω) - Yn(ω') >< - ε)
AntN= (ω, ω ' ) e Ω x Ω : }.

I \Xn(ω)\, \Xn(ω% \Yn(ω)l \Yn(ω>)\<N j

Then, there exists N such that P(g)P(^ / l N)>0 for all sufficiently large n. Fixing

such an N, we choose an n so that P(x)P(ΆntN)>0 and

(2.1) 2~n+3NjI+2-2n+2d<ε.

Since

ΆntN= {J(χ-HΛ»m,) n Y~HAn

m 2)) x (x-HΛty π Y-^Λ^Ϋ

where the union is taken over all quartets (m l s mi, m2, m'2) satisfying

f 1 1 , 2 2
(2.2)

l |m i2-«|, |ml2-»|, |m22-»|, \m'22-»\<N,

there exist mί9 mi, m2, m'2^Zd (satisfying (2.2)) such that
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P(A)>09 Λ = XΉΛn

mι) Π Y-HΛn

m2)9

By (2.1) and (2.2), we see that

(2.3) <x-x'f y-y'xθ for any ψ ^

Next, we take an irrational number λ and denote by T the (ergodic) Weyl
automorphism ω^Ω->ω + λ (mod. 1). Then there exists an integer k such that
P(ApιT-kA')>0. We set U = T\ B=Af)U-1A', B' = UB. Since BpιB'=φ
and U: B^B' is measure-preserving, we can define a new random variable X*
with probability distribution / by

(X(U(ω)) for

X"(ω)J]X(U-1(ω)) for

[X(ω) for

From (2.3), we see that forωG^

\X(U(ω))~ Y(ω)\2 + \X(ω)-Y(U(ω))\2

< \X(ω)- Y(ω)\2 + \X(U(ω))- Y{U(ω))\\

and this inequality combined with the fact that U is measure-preserving gives us
E{\X*-Y\2}<E{\X-Y\2}. This is a contradiction, and the proof is finished.

LEMMA 2. Let X and Y be Rd-valued random variables defined on a pro-
bability space (Ω, «̂ r, P), and assume that Y has a non-degenerate Gaussian
distribution g. If

< X(ω) - X(ω'), Y(ω) - Y(ω') > ^ 0

holds for almost all (ω, ω') with respect to P0P, then there exist a regular
conditional probability distribution Py( ) of X given Y and a set i4(cRd) of
Lebesgue measure 0 such that Py®Py(Γyy) = l holds for all y, y'ξA, where

PROOF. Let A!^ and Yn be the same as in the proof of the preceding lemma,
and let Py

n)(') be a regular conditional probability distribution of X given Yn;
it is given by
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for Γ<=@(Rd), y*ΞΛn

m. If we set

Ψn(y) = [ Ψ(x)P(

y

n\dx)
JRd

for a bounded continuous function \p, then {Ψn(y), @}w g} is a martingale, where

@n is the σ-field generated by {Λ^, m e Z d } . Therefore, by the convergence

theorem of martingales the set

Bφ = {y e Rd: lim Ψn( y) exists}

has full ^-measure. Take a coutable family {ψk}k^ί which is dense in C0(Rd),

the space of real valued continuous functions on Rd vanishing at infinity, and let

B be the intersection of all Bψki fc;>l. Then g(B) = l. Moreover, it is easy

to see that for each y^B the limit Ly(φ) of Ψn(y) asn->oo exists for any

(Rd) and defines a unique measure Py('), that is,

lim
n-+co

Now we define Py( ) for y ^ B to be an arbitrary probability measure on Rd and

put A=Bcu{y: Py(Rd)Φl}. We also redefine Py( ) for y such that P y ( .R d )^l

to be an arbitrary probability measure. Then g(A)=0 and Py(-) is a regular con-

ditional probability distribution of X given Y. To show that 4̂ and {Py(')} have

the desired property, we first notice that

<X(ώ)-X(ω'\ Yn(ω)- Yn(ω')> ^ -J

holds for almost all (ω, ω') with respect to P(g)P and hence

(2.4) P ^ ) ® P ^ ) ( Γ ^ ) = 1

for almost all (y, y') with respect to g(x)g9 where

But, since P(

y

n)(') is constant on each Λ^, the equality (2.4) holds for all (y, y').

Because Γ < ^ 1 Γ y § / a s n f o o , we have Py

n)®Py

t!)(Γ<

y

n

)°y!) = 1 for n ^ n 0 ; letting

n T °° and using the facts that Py

n) converges to Py for y^Λ and that Γy"f, is

closed, we obtain Py®Py(Γy

n°),)=l for j ; , y'^^4. Since n 0 is arbitrary, the

lemma is proved.

By definition a set valued function S: y^Rd^S(y)czRd is said to be mono-

tone, if there exists a set A(<zRd) of Lebesgue measure 0 such that the inequality

<x-x\ y-y'>^0 for

holds whenever y, j ; '
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LEMMA 3. Let S: y^Rd-+S(y)aRd be monotone. Then, S(y) consists
of a single point for almost all y.

PROOF. First we consider the case d = l, and let I(y) be the smallest closed
interval containing S(y). Then, the monotone property of S implies that I(y)
and I(y') are non-overlapping if yφy', y, y' ^ A (a null set in the definition of
monotonicity). Therefore, /(y) consists of a single point for almost all y, and
hence so does S(y). Next, we consider the case d>l. Given k(l<,k^d) and
z—{zu ..., zd_ 1)eΛd- 1, we define a set valued function S\ on R1 by

[ for some w=(w1, ..., W ^ . J G J R ^ " 1 J

where y=(zl9 ./., zk-l9 η9 zk9 ..., zd-t). We put

i4ί = {ι/eΛ1: (zx, ...9zk-l9 η, zk9 ...9 zd_x)<ΞA}

Bk = {z^Rd~ί: A\ is a null set}.

Then, by Fubini's theorem B% and A\ for each ZGB k are null sets, and from the
monotone property of S it follows that S| is monotone for each z^Bk. So,
the result for the case d = 1 implies that, for each z e Bk9 S^(η) is a single point
for almost all η. Let Dk be the set of all y^Rd such that the projection to the /c-th
coordinate reduces S( y) to a single point, and put D= Γ\Dk. Then, Dc is a null
set, and S(j ) is a single point for each y^D9 as was to be proved.

The proof of Theorem 1 is now completed as follows. From the first two
lemmas, it follows that there exist a null set A and a regular conditional probability
distribution Py(-) of X given Y with the property stated in Lemma 2. If we define
S( y)9 y e Rd

9 as the smallest closed set of full P^-measure, then S( y) x S( y') c
Γyty provided y9 >';^^4, or what is the same, the mapping S: y^Rd^S(y) is
monotone. Therefore, by Lemma 3 S(y) is a single point for almost all y; this
means that X is equal to some Borel function of Y almost surely.

We give the proof of Theorem 2. We remark that Theorem 1 implies the
following: if / e ^ * and Yis ^^.-distributed, then there exists some Borel function
ψ from Rd into itself such that e[/]=E{|^(Y)— Y\2}, since there exists some
pair of random variables (with distributions / and gf) which gives the infimum
value e[/]. Now we take independent Gaussian random variables Yx and Y2

whose mean vectors and variance matrices are the same as those of Xx and X2

respectively. Then by the above remark, there exist Bόrel functions φί and <p2

such that *LXί]=E{\φ1(Yί)-Y1\
2} and e[X 2 ]=£{ |^ 2 (7 2 )-7 2 | 2 } . We have

(2.5) e[x 1 ] + e[z 2 ]
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Since ^1(^1)4-^2(^2) n a s t n e same distribution as that of Xt+X2 and
has the same mean vector and variance matrix as those of Xί + X2, the right hand
side of (2.5) (and hence e[-XΊ] + e[X2]) dominates e [ X 1 + Z 2 ] . Next, we
suppose that e[Z1] + e [ J ί 2 ] = e [ Z 1 + Z 2 ] . Then, by Theorem 1 there exists a
Borel function ψ such that

) + ( r 2 ) = ^ ( y i + y2) a.s.

This equation implies that φί9 φ2 and φ must be linear and hence Xt and X2 must
have Gaussian distributions.

§ 3. Applications

1. Let Xί9 Xl9 ... be Λd-valued independent random variables with common
distribution/(G^) of mean vector 0. Then, by the same arguments as in [4],
we can prove that e[n" 1 / 2 (Z 1 + ••• +ZM)]->0asn-*oo and hence the probability
distribution of n~1/2(Xί + ••• +Xn) converges to gf as n-*oo; this is the well-
known central limit theorem.

2. Let X1 and X2 be real-valued independent random variables, and assume
that

Xx =Xt cos Θ + X2 sin 0, X2 = -X1 sin Θ + X2 cos 0

are independent for some 0 which is not an integral multiple of π/2. Then, Xx

and X2 are Gaussian. This is known as a theorem of M. Kac [3]. There are
several proofs (for example, see [1], [2]); here we give a proof based upon Theorem
2 assuming that the probability distributions of Xx and X2 are in &>.

By Theorem 2, we have

ίeCXJ ^ e[XJcos2 0 + e[Z2]sin2 0,
(3.1)

le[^ 2 ] ^ eCXJsin2 0 + c[Z2]cos2 0.

Let

( cos 0 sin 0\
-

— sin 0 cos 0/

Then we can prove that e[ylX] = e[X], e [ i l ] = e [ ί 1 ] + e [ ί 2 ] and e[X] =
eL^i] + e [ ^ 2 ] ; n e r e w e have used the orthogonality of the matrix A for the
first equality and the independence of the components for the last two equalities.
Therefore (3.1) holds with " = " , and hence Xγ and X2 are Gaussian by Theorem 2.
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