On Characterizations of Dedekind Domains

Toshiko Koyama^{*}), Mieo NISHI^{**}) and Hiroshi YanaGihara^{**}) (Received August 29, 1973)

Introduction

Let R be a commutative ring with unit element and M be an R-module. We consider the following two properties on M.

 $(P)_R$: If $M = N_1 + N_2$ where N_1 and N_2 are R-submodules of M, then $N_1 = M$ or $N_2 = M$.

 $(Q)_R$: if N_1 and N_2 are *R*-submodules of *M*, then $N_1 \supset N_2$ or $N_2 \supset N_1$. Clearly, the property $(Q)_R$ implies the property $(P)_R$ and the property $(P)_R$ implies that *M* is indecomposable.

In the case that R is a Dedekind domain, we shall exhibit all R-modules which satisfy $(P)_R$ and at once see that they satisfy also $(Q)_R$.

If we restrict ourselves to abelian groups, those groups which satisfy $(P)_z$ are subgroups of $Z(p^{\infty})$ for some prime p. In fact, this result came first and then it has been generalized to modules over a Dedekind domain R.

Next, suppose R to be a noetherian integral domain such that if $(P)_R$ is satisfied by an R-module M then so is $(Q)_R$. We shall show R must be a Dedekind domain if R_p is analytically irreducible for any maximal ideal p. This gives us a new characterization of Dedekind domains.

Finally, in § 2, we shall discuss a relation between the notion of purity and that of essentiality and get another characterization of Dedekind domains.

§1. In the following we denote by $E_R(M)$ the injective envelope of an *R*-module *M*. First we determine all *R*-modules which satisfy the property $(P)_R$, or equivalently the property $(Q)_R$, when *R* is a Dedekind domain.

THEOREM 1. Let R be a Dedekind domain, K be its quotient field and M be an R-module. Then the following statements are equivalent:

- (1) M has $(P)_R$.
- (2) M has $(Q)_R$.

(3) If R is not a discrete valuation ring, then M is isomorphic to a submodule of $E_R(R|\mathfrak{p})$ for some maximal ideal \mathfrak{p} in R. If R is a discrete valuation ring, M is isomorphic to R, K or a submodule of $E_R(R|\mathfrak{p})$ for some maximal ideal \mathfrak{p} .

PROOF. It follows immediately that $(3) \Rightarrow (2) \Rightarrow (1)$. To show $(1) \Rightarrow (3)$, we classify *M* into two cases; divisible or not divisible. In each case, *M* is either torsion or torsion-free.

Suppose for any maximal ideal \mathfrak{p} of R, $\mathfrak{p}M = M$, that is, M is a divisible R-module. Then provided that M has $(P)_R$, M is either torsion or torsion-free. In fact since any divisible module over a Dedekind domain is injective, the torsion part of a divisible R-module is a direct summand of it. If M is a divisible torsion module and satisfies $(P)_R$, then M is an indecomposable and injective R-module and hence it is isomorphic to $E_R(R/\mathfrak{p})$ for some maximal ideal \mathfrak{p} of R by Proposition 3.1 in [2]. If M is torsion-free, M must be a 1-dimensional vector space over K, that is, $M \cong K$. If R is not a discrete valuation ring, we see $K = R_\mathfrak{p} + R_\mathfrak{q}$, where \mathfrak{p} and \mathfrak{q} are two defferent maximal ideals of R. Since $R_\mathfrak{p} \neq K$ and $R_\mathfrak{q} \neq K$, no torsion-free divisible modules have $(P)_R$ in this case.

Next suppose $\mathfrak{p}M \neq M$ for some maximal ideal \mathfrak{p} . Then clearly $M/\mathfrak{p}M$ has $(P)_R$ and $(P)_{R/\mathfrak{p}}$. On the other hand $M/\mathfrak{p}M$ is a vector space over R/\mathfrak{p} . Hence $\dim_{R/\mathfrak{p}}M/\mathfrak{p}M=1$, i.e. $M=Rx+\mathfrak{p}M$ for some x in M. Again making use of $(P)_R$ attached to M, we get M=Rx, since $\mathfrak{p}M\neq M$. If x is a torsion element, the order ideal 0(x) of x must be primary. In fact, if otherwise, M=R/0(x) is decomposable by Chinese remainder theorem. This contradicts the assumption that M has $(P)_R$. Therefore $M\cong R/\mathfrak{p}^n$ for some maximal ideal \mathfrak{p} in R. If x is torsion-free, then $M\cong R$. If R is not a discrete valuation ring, for two different maximal ideals \mathfrak{p} and $\mathfrak{q}, R=\mathfrak{p}+\mathfrak{q}$ holds. Hence, if R is not a discrete valuation ring, no torsion-free modules, divisible or not divisible, satisfy $(P)_R$. We have just covered all cases and our assertion has been proved.

Next we give a characterization of Dedekind domains in terms of $(P)_R$ and $(Q)_R$. For this purpose the following lemmas are necessary.

LEMMA 1. Let R be a noetherian integral domain and \mathfrak{p} be a maximal ideal of R. Let $\overline{R}_{\mathfrak{p}}$ be the $\mathfrak{p}R_{\mathfrak{p}}$ -adic completion of the quotient ring $R_{\mathfrak{p}}$ of R. Then $E_R(R/\mathfrak{p})$ has a natural structure as an $\overline{R}_{\mathfrak{p}}$ -module and any R-submodule of $E_R(R/\mathfrak{p})$ is an $\overline{R}_{\mathfrak{p}}$ -submodule.

PROOF. It is well known that $E_R(R/p)$ is an \overline{R}_p -module in a natural way (cf. e.g., Theorem 3.6 in [2]). Let M be an R-submodule of $E_R(R/p)$ and x be an element of M. Then there exists an integer i such that $p^i x = 0$ by Theorem 3.4 in [2]. If s is an element of R not contained in p, there exist a and b in Rsuch that as+bc=1 for some c in p^i . If we put y=ax, we see x=sy and hence $x/s=y \in M$. From this it follows easily that M is an \overline{R}_p -module.

LEMMA 2. Let R and p be the same as in Lemma 1. Assume that R_p is analytically irreducible. Then $E_R(R/p)$ has the property $(P)_R$.

PROOF. By our assumption, $\overline{R}_{\mathfrak{p}}$ is also an integral domain. If $E_R(R/\mathfrak{p})$ has not $(P)_R$, there exist two proper *R*-submodules *M* and *N* of $E_R(R/\mathfrak{p})$ such that $E_R(R/\mathfrak{p})=M+N$. By Lemma 1, *M* and *N* are also $\overline{R}_{\mathfrak{p}}$ -submodules of $E_R(R/\mathfrak{p})$. Let \mathfrak{a} and \mathfrak{b} be the ideals of $\overline{R}_{\mathfrak{p}}$ corresponding to *M* and *N* in the sense of Theorem 4.2 in [2] respectively. Then by this theorem \mathfrak{a} and \mathfrak{b} are non-zero ideals and $\mathfrak{a} \cap \mathfrak{b} = (0)$. But this contradicts the assumption that $\overline{R}_{\mathfrak{p}}$ is an integral domain. This proves our lemma.

LEMMA 3. Let R be a noetherian integral domain which is not a Dedekind domain. Then there exists a maximal ideal \mathfrak{p} such that $E_R(R/\mathfrak{p})$ does not satisfy $(Q)_R$.

PROOF. There is a maximal ideal p such that R_{p} is not a discrete valuation ring, because, if otherwise, R must be a Dedekind domain. Then \overline{R}_{p} is not a discrete valuation ring. Therefore there exist two ideals a and b of \overline{R}_{p} that neither one of them contains the other. From Theorem 4.2 of [2], it follows that there are two \overline{R}_{p} -submodules of $E_{R}(R/p)$ such that neither one of them contains the other. These \overline{R}_{p} -submodules are clearly R-submodules. This means that $E_{R}(R/p)$ does not satisfy $(Q)_{R}$.

The following theorem is an immediate consequence of Lemmas 2 and 3.

THEOREM 2. Let R be a noetherian integral domain such that $R_{\mathfrak{p}}$ is analytically irreducible for any maximal ideal \mathfrak{p} of R. Assume that any R-module with $(P)_R$ satisfies $(Q)_R$. Then R is a Dedekind domain.

§2. Let M be an R-module and N its submodule. When $rN = N \cap rM$ for every $r \in R$, N is said to be pure in M. We denote by 0(x) the order ideal of $x \in M$ and by $0(\bar{x})$ the order ideal of x modulo N, namely $0(\bar{x}) = N$: $x = \{r \in R; rx \in N\}$; we observe that $0(\bar{x})$ does not depend on the choice of a representative of the coset x + N. We can readily see that the above definition of purity is equivalent to saying that, for any x in M, $0(\bar{x})$ is the set-theoretical union of 0(x + n), $n \in N$. Thus we give the first definition of purity as follows:

(P1) For any x in M, $0(\bar{x}) = \bigcup 0(y)$, where in the right hand side the union means the set-theoretical one and y runs over elements of the coset $\bar{x} = x + N$.

Now it is natural to introduce the second definition of purity in a stronger form¹:

(P2) For any x in M, $0(\bar{x})=0(x)$ for some representative x of the coset \bar{x} . If R is a Dedekind domain, then (P2) follows from (P1) (Kaplansky [1], Lem-

¹⁾ This definition is suggested by Kaplansky in [1].

ma 4), namely two definitions coincide. In what follows, we shall show the converse, i.e. an integral domain R for which (P1) means (P2) must be a Dedekind domain.

First we remark that the notion of essentiality is opposite to that of purity.

LEMMA 4. M is essential over a submodule N if and only if $0(\bar{x}) \ge 0(x)$ for every $x \ne 0$ in M.

PROOF. M is essential over a submodule N if and only if $N \cap Rx \neq 0$ for every non-zero element x of M. Our assertion follows immediately from this fact.

COROLLAY. Let N be a pure submodule of M in the sense of (P2). If M is essential over N, then M = N.

Let now R be an integral domain for which two definitions (P1) and (P2) coincide. Let M be any divisible module over R. Then it is easy to see that M is pure in the sense of (P1) in the injective envelope $E_R(M)$ of M; and therefore pure in the sense of (P2). The corollary to Lemma 4 implies that $M = E_R(M)$, namely M is injective. A domain R is a Dedekind domain if and only if every divisible module is injective, and therefore we can obtain the following

THEOREM 3. Let R be an integral domain. Then R is a Dedekind domain if and only if the definitions (P1) and (P2) coincide.

References

- I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Am. Math. Soc. 72 (1952) 327–340.
- [2] E. Matlis, Injective modules over Noetherian rings, Pacific Jour. of Math. 8 (1958) 511– 528.

)Department of Mathematics, Faculity of Science, Ochanomizu University and *)Department of Mathematics, Faculty of Science, Hiroshima University

74