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Introduction

Let R be a commutative ring with unit element and M be an ^-module.

We consider the following two properties on M.

(P)R: If M = Nί + N2 where Nx and N2 are jR-submodules of M, then

Nί=M or N2=M.

(Q)R: if Nt and N2 are i^-submodules of M, then NinN2 or N2Z)N1.

Clearly, the property (Q)R implies the property (P)R and the property (P)R implies

that M is indecomposable.

In the case that R is a Dedekind domain, we shall exhibit all ^-modules

which satisfy (P)R and at once see that they satisfy also (β)Λ .

If we restrict ourselves to abelian groups, those groups which satisfy (P)z

are subgroups of Z(p°°) for some prime p. In fact, this result came first and then

it has been generalized to modules over a Dedekind domain R.

Next, suppose R to be a noetherian integral domain such that if (P)R is

satisfied by an i^-module M then so is (Q)R. We shall show R must be a Dedekind

domain if Rp is analytically irreducible for any maximal ideal p. This gives

us a new characterization of Dedekind domains.

Finally, in § 2, we shall discuss a relation between the notion of purity and

that of essentiality and get another characterization of Dedekind domains.

§ 1. In the following we denote by ER{M) the injective envelope of an .R-module

M. First we determine all JR-modules which satisfy the property (P)R, or equiv-

alently the property (Q)R, when R is a Dedekind domain.

THEOREM 1. Let R be a Dedekind domain, K be its quotient field and

M be an R-module. Then the following statements are equivalent:

(1) Mhas(P)R.

(2) Mhas(Q)R.

(3) // R is not a discrete valuation ring, then M is isomorphic to a

submodule of ER(R/p) for some maximal ideal p in R. If R is a discrete

valuation ring, M is isomorphic to R, K or a submodule of ER(R/φ) for some

maximal ideal p.
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PROOF. It follows immediately that (3)φ(2)^>(l). To show (1)^(3), we
classify M into two cases; divisible or not divisible. In each case, M is either
torsion or torsion-free.

Suppose for any maximal ideal p of R, pM=M, that is, M i s a divisible
jR-module. Then provided that M has (P)R, M is either torsion or torsion-free.
In fact since any divisible module over a Dedekind domain is injective, the torsion
part of a divisible ^-module is a direct summand of it. If M is a divisible torsion
module and satisfies (P)R9 then M is an indecomposable and injective ^-module
and hence it is isomorphic to ER(R/p) for some maximal ideal p of R by Proposi-
tion 3.1 in [2]. If M is torsion-free, M must be a 1-dimensional vector space
over K, that is, M^K. If R is not a discrete valuation ring, we see K=Rp +
Rq, where p and q are two deίferent maximal ideals of R. Since Rp*?K and
Rq^K, no torsion-free divisible modules have (P)R in this case.

Next suppose pM^M for some maximal ideal p. Then clearly MjpM
has (P)R and (P)R/P. On the other hand MjpM is a vector space over R/p.
Hence dimR/t)M/pM=l, i.e. M=Rx + pM for some x in M. Again making
use of (P)R attached to M, we get M=Rx, since pM^M. If x is a torsion ele-
ment* the order ideal 0(x) of x must be primary. In fact, if otherwise, M =
R/0(x) is decomposable by Chinese remainder theorem. This contradicts the
assumption that M has (P)R. Therefore M^R/pn for some maximal ideal p
in R. If x is torsion-free, then M = R. If R is not a discrete valuation ring, for
two different maximal ideals p and q, # = p + q holds. Hence, if R is not a
discrete valuation ring, no torsion-free modules, divisible or not divisible, satisfy
(P)R. We have just covered all cases and our assertion has been proved.

Next we give a characterization of Dedekind domains in terms of (P)R and
(Q)R- For this purpose the following lemmas are necessary.

LEMMA 1. Let R be a noetherian integral domain and p be a maximal
ideal of R. Let Rp be the pRp-adic completion of the quotient ring Rp of R.
Then ER(R/p) has a natural structure as an Rp-module and any R-submodule
of ER(R/p) is an Rp-submodule.

PROOF. It is well known that ER(R/p) is an Rp-module in a natural way
(cf. e.g., Theorem 3.6 in [2]). Let M be an Λ-submodule of ER(R/ρ) and x be
an element of M. Then there exists an integer i such that p ί x=0 by Theorem
3.4 in [2]. If s is an element of R not contained in p, there exist a and b in R
such that as + be = 1 for some c in p\ If we put y =ax, we see x = sy and hence
x/s = ye.M. From this it follows easily that M is an Rp-module.

LEMMA 2. Let R and p be the same as in Lemma 1. Assume that Rp is
analytically irreducible. Then ER(R/p) has the property (P)R.



On Characterizations of Dedekind Domains 73

PROOF. By our assumption, Rp is also an integral domain. If ER(R/p)
has not (P)Λ, there exist two proper P-submodules M and N of ER(R/p) such
that ER(R/p)=M + N. By Lemma 1, M and N are also ^-submodules of
ER(R/p). Let α and b be the ideals of Rp corresponding to M and N in the
sense of Theorem 4.2 in [2] respectively. Then by this theorem α and b are
non-zero ideals and α Π b =(0). But this contradicts the assumption that Rp is an
integral domain. This proves our lemma.

LEMMA 3. Let R be a noetherίan integral domain which is not a Dedekind

domain. Then there exists a maximal ideal p such that ER(R/p) does not satisfy

(Q)R.

PROOF. There is a maximal ideal p such that Rp is not a discrete valuation
ring, because, if otherwise, R must be a Dedekind domain. Then Rp is not a
discrete valuation ring. Therefore there exist two ideals α and b of Rp that
neither one of them contains the other. From Theorem 4.2 of [2], it follows
that there are two j^-submodules of ER(R/p) such that neither one of them
contains the other. These .R^-submodules are clearly P-submodules. This
means that ER(R/p) does not satisfy (Q)R.

The following theorem is an immediate consequence of Lemmas 2 and 3.

THEOREM 2. Let Rbe a noetherian integral domain such that Rp is analyti-
cally irreducible for any maximal ideal p of R. Assume that any R-module
with (P)R satisfies (Q)R. Then R is a Dedekind domain.

§2. Let M be an .R-module and N its submodule. When rN=Nf]rM for
every rejR, N is said to be pure in M. We denote by 0(x) the order ideal of
X G M and by 0(5c) the order ideal of x modulo N, namely 0(x)=N: x = {r^R;
rx^N}; we observe that 0(3c) does not depend on the choice of a representative
of the coset x + N. We can readily see that the above definition of purity is
equivalent to saying that, for any x in M, 0(5c) is the set-theoretical union of 0(x +
n), n^N. Thus we give the first definition of purity as follows:

(PI) For any x in M, 0(x) = U 0(y), where in the right hand side the union
means the set-theoretical one and y runs over elements of the coset

Now it is natural to introduce the second definition of purity in a stronger
form1}:

(P2) For any x in M, 0(x)=0(x) for some representative Λ; of the coset x.
If R is a Dedekind domain, then (P2) follows from (PI) (Kaplansky [1], Lem-

1) This definition is suggested by Kaplansky in [1].
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ma 4), namely two definitions coincide. In what follows, we shall show the con-
verse, i.e. an integral domain R for which (PI) means (P2) must be a Dedekind
domain.

First we remark that the notion of essentiality is opposite to that of purity.

LEMMA 4. M is essential over a submodule N if and only if 0(x)^0(x)
for every xΦO in M.

PROOF. M is essential over a submodule N if and only if NπRx^O for
every non-zero element x of M. Our assertion follows immediately from this
fact.

COROLLAY. Let N be a pure submodule of M in the sense of (P2). If
M is essential over N, then M=N.

Let now R be an integral domain for which two definitions (PI) and (P2)
coincide. Let M be any divisible module over R. Then it is easy to see that
M is pure in the sense of (PI) in the injective envelope ER(M) of M; and therefore
pure in the sense of (P2). The corollary to Lemma 4 implies that M=ER(M),
namely M is injective. A domain R is a Dedekind domain if and only if every
divisible module is injective, and therefore we can obtain the following

THEOREM 3. Let R be an integral domain. Then R is a Dedekind domain
if and only if the definitions (PI) and (P2) coincide.
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