On the KO-Ring of $\mathbf{S}^{4 n+3} / H_{m}$

Kensô Fujir
(Recieved January 19, 1974)

§1. Introduction

The purpose of this note is to study the $K O$-ring $K O\left(N^{n}(m)\right)$ of real vector bundles over the $(4 n+3)$-dimensional quotient manifold

$$
N^{n}(m)=S^{4 n+3} / H_{m} \quad(m \geqq 2),
$$

whose K-ring $K\left(N^{n}(m)\right)$ of complex vector bundles is studied in the previous note [3]. Here, H_{m} is the generalized quaternion group generated by two elements x and y with the two relations

$$
x^{2 m-1}=y^{2} \quad \text { and } \quad x y x=y,
$$

that is, H_{m} is the subgroup of the unit sphere S^{3} in the quaternion field \boldsymbol{H} generated by the two elements

$$
x=\exp \left(\pi i / 2^{m-1}\right) \quad \text { and } \quad y=j,
$$

and the action of H_{m} on the unit sphere $S^{4 n+3}$ in the quaternion $(n+1)$-space \boldsymbol{H}^{n+1} is given by the diagonal action.

Consider the real line bundles

$$
\alpha_{0}^{\prime}, \quad \beta_{0}^{\prime} \in K O\left(N^{n}(m)\right)
$$

whose first Stiefel-Whitney classes generate the cohomology group $H^{1}\left(N^{n}(m) ; Z_{2}\right)$ $=Z_{2} \oplus Z_{2}$, and the real restriction

$$
\delta_{0}^{\prime}=r \pi^{\prime} \lambda \in K O\left(N^{n}(m)\right)
$$

of the induced bundle $\pi^{\prime} \lambda$, where λ is the canonical complex plane bundle over the quaternion projective space $H P^{n}=S^{4 n+3} / S^{3}$ and $\pi: N^{n}(m) \rightarrow H P^{n}$ is the natural projection. Also, it is proved by B. J. Sanderson [7] that the complexification $c: K O\left(H P^{n}\right) \rightarrow K\left(H P^{n}\right)$ is monomorphic and $(\lambda-2)^{2} \in c K O\left(H P^{n}\right)$, and so we can consider the element

$$
x_{0}=\pi^{\prime} c^{-1}\left((\lambda-2)^{2}\right) \in K O\left(N^{n}(m)\right)
$$

Then we have the following

Theorem 1.1. The reduced KO-ring $\widetilde{\operatorname{KO}_{(}}\left(N^{n}(m)\right)(m \geqq 2)$ is generated multiplicatively by the four elements

$$
\alpha_{0}=\alpha_{0}^{\prime}-1, \quad \beta_{0}=\beta_{0}^{\prime}-1, \quad \delta_{0}=\delta_{0}^{\prime}-4 \quad \text { and } \quad x_{0} .
$$

This theorem shows that the natural ring homomorphism

$$
\xi: \widetilde{R O}\left(H_{m}\right) \longrightarrow \widetilde{K O}\left(N^{n}(m)\right)
$$

is an epimorphism, where $\widetilde{R O}\left(H_{m}\right)$ is the reduced orthogonal representation ring of H_{m}. Since the kernel of this homomorphism ξ is determined by D. Pitt [6, Th. 2.5], we have the following

Corollary 1.2. The above ξ induces the ring isomorphism

$$
\widetilde{K O}\left(N^{n}(m)\right) \cong \begin{cases}\widetilde{R O}\left(H_{m}\right) / c^{-1}\left(\left(\chi_{4}-2\right)^{n+1}\right) R O\left(H_{m}\right) & \text { if } n \text { is odd } \\ \widetilde{R O}\left(H_{m}\right) / c^{-1}\left(\left(\chi_{4}-2\right)^{n+1} c^{\prime} R S p\left(H_{m}\right)\right) & \text { if } n \text { is even } .\end{cases}
$$

Here, $\chi_{4} \in R\left(H_{m}\right)$ is the complexification of the symplectic representation given by the inclusion $H_{m} \subset S^{3}=S p(1)$, and the monomorphisms $c: R O\left(H_{m}\right)$ $\rightarrow R\left(H_{m}\right), c^{\prime}: R S p\left(H_{m}\right) \rightarrow R\left(H_{m}\right)$ are the complexifications, where $R\left(H_{m}\right)$ is the (unitary) representation ring and $R S p\left(H_{m}\right)$ is the symplectic representation group of H_{m}.

For the case $m=2, H_{2}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is the quaternion group and we have

Theorem 1.3. As an abelian group,

$$
\widetilde{K O}\left(N^{n}(2)\right)= \begin{cases}Z_{2^{n+1}} \oplus Z_{2^{n+1}} \oplus Z_{2^{2 n+1}} \oplus Z_{2^{n-1}} & \text { if } n \text { is odd }, \\ Z_{2^{n+2}} \oplus Z_{2^{n+2}} \oplus Z_{2^{2 n}} \oplus Z_{2^{n}} & \text { if } n \text { is even } .\end{cases}
$$

If n is odd, the direct summands are generated by

$$
\alpha_{0}, \quad \beta_{0}, \quad \delta_{0}, \quad \text { and } \quad x_{0}+\left(2+2^{n}\right) \delta_{0}
$$

respectively, and the last summand does not appear in the case $n=1$. If n is even, the direct summands are generated by

$$
\alpha_{0}, \quad \beta_{0}, \quad \delta_{0}, \quad \text { and } x_{0}+2 \delta_{0}
$$

respectively, and the last two summands do not appear in the case $n=0$. The multiplicative structure of $\widetilde{K O}\left(N^{n}(2)\right)$ is given by

$$
\alpha_{0}^{2}=-2 \alpha_{0}, \quad \beta_{0}^{2}=-2 \beta_{0}, \quad \delta_{0}^{2}=4 x_{0}, \quad \alpha_{0} \delta_{0}=-4 \alpha_{0}, \quad \beta_{0} \delta_{0}=-4 \beta_{0}
$$

$$
\begin{array}{lll}
\alpha_{0} \beta_{0}=-2 \alpha_{0}-2 \beta_{0}+x_{0}+2 \delta_{0}, \quad \alpha_{0} x_{0}=4 \alpha_{0}, \quad \beta_{0} x_{0}=4 \beta_{0}, \\
x_{0}^{m+1}=0 \quad \text { if } n=2 m+1, \quad \delta_{0} x_{0}^{m}=x_{0}^{m+1}=0 \quad \text { if } n=2 m .
\end{array}
$$

In $\S 2$, we recall the cell structure and the cohomology groups of $N^{n}(m)$. In §3, we consider the orthogonal representation ring $R O\left(H_{m}\right)$, which is determined by D. Pitt [6], and represent the elements $\alpha_{0}, \beta_{0}, \delta_{0}$ and x_{0} in Theorem 1.1 as the ξ-images. Also, we study some relations between these elements and the known elements of $K O\left(L^{2 n+1}\left(Z_{4}\right)\right.$) of [5], where $L^{2 n+1}\left(Z_{4}\right)=S^{4 n+3} / Z_{4}$ is the lens space. Using these results we prove Theorem 1.1 in $\S 4$ by the induction on the skeletons on $N^{n}(m)$. Finally, Theorem 1.3 is proved in $\S 5$ by using Corollary 1.2.

The author wishes to express his gratitude to Professors M. Sugawara and T. Kobayashi for their valuable suggestions and reading this manuscript carefully.

§2. Cohomology grougs of $N^{n}(m)$

The generalized quaternion group $H_{m}(m \geqq 2)$ is the subgroup of the unit sphere S^{3} in the quaternion field \boldsymbol{H}, generated by the two elements

$$
x=\exp \left(\pi i / 2^{m-1}\right) \quad \text { and } \quad y=j
$$

In this note, we consider the diagonal action of H_{m} on the unit sphere $S^{4 n+3}$ in the quaternion $(n+1)$-space \boldsymbol{H}^{n+1}, given by

$$
q\left(q_{1}, \ldots, q_{n+1}\right)=\left(q q_{1}, \ldots, q q_{n+1}\right)
$$

for $q \in H_{m}$ and $\left(q_{1}, \ldots, q_{n+1}\right) \in S^{4 n+3}$, and the quotient $(4 n+3)$-manifold

$$
N^{n}(m)=S^{4 n+3} / H_{m}
$$

This manifold has the $C W$-decomposition $\left\{e^{4 k+s}, e_{1}^{4 k+t}, e_{2}^{4 k+t} ; 0 \leqq k \leqq n, s=0\right.$, $3, t=1,2\}$ with the boundary formulas:

$$
\begin{aligned}
& \partial e^{4 k}=2^{m+1} e_{1}^{4 k-1}, \quad \partial e_{1}^{4 k+1}=\partial e_{2}^{4 k+1}=0 \\
& \partial e_{1}^{4 k+2}=2^{m-1} e_{1}^{4 k+1}-2 e_{2}^{4+1}, \quad \partial e_{2}^{4 k+2}=2 e_{1}^{4 k+1}, \quad \partial e^{4 k+3}=0 .
\end{aligned}
$$

(cf. [3, Lemma 2.1]). Also, the cohomology groups of $N^{n}(m)$ are given by

$$
H^{k}\left(N^{n}(m) ; Z\right)= \begin{cases}Z & \text { for } k=0,4 n+3 \\ Z_{2^{m+1}} & \text { for } k \equiv 0(4), 0<k<4 n+3 \\ Z_{2} \oplus Z_{2} & \text { for } k \equiv 2(4), 0<k<4 n+4, \\ 0 & \text { otherwise }\end{cases}
$$

$$
H^{k}\left(N^{n}(m) ; Z_{2}\right)= \begin{cases}Z_{2} \oplus Z_{2} & \text { for } k \leqq 1,2(4), 0<k<4 n+3 \\ Z_{2} & \text { for } k \leqq 0,3(4), 0 \leqq k \leqq 4 n+3, \\ 0 & \text { otherwise }\end{cases}
$$

(cf. [3, Prop. 2.2]).
Let $0 \longrightarrow Z \xrightarrow{\times 2} Z \xrightarrow{j} Z_{2} \longrightarrow 0$ be the exact coefficient sequence, and $H^{1}\left(N^{n}(m) ; Z_{2}\right) \xrightarrow{\Delta} H^{2}\left(N^{n}(m) ; Z\right) \xrightarrow{\times 2} H^{2}\left(N^{n}(m) ; Z\right) \xrightarrow{j_{*}} H^{2}\left(N^{n}(m) ; Z_{2}\right)$ be the associated exact sequence. Then we have easily the following

Lemma 2.1. Δ and j_{*} are isomorphic.
Now, let a and b be generators of

$$
H^{1}\left(N^{n}(m) ; Z_{2}\right)=Z_{2} \oplus Z_{2},
$$

and let α_{0}^{\prime} and β_{0}^{\prime} (resp. α^{\prime} and β^{\prime}) be the real (resp. complex) line bundles over $N^{n}(m)$, whose first Stiefel-Whitney (resp. Chern) classes are given by

$$
\begin{array}{ll}
w_{1}\left(\alpha_{0}^{\prime}\right)=a, & w_{1}\left(\beta_{0}^{\prime}\right)=b, \\
c_{1}\left(\alpha^{\prime}\right)=\Delta a, & c_{1}\left(\beta^{\prime}\right)=\Delta b . \tag{2.2}
\end{array}
$$

Denote their stable classes by

$$
\begin{array}{ll}
\alpha_{0}=\alpha_{0}^{\prime}-1, & \beta_{0}=\beta_{0}^{\prime}-1 \in \widetilde{K O}\left(N^{n}(m)\right), \\
\alpha=\alpha^{\prime}-1, & \beta=\beta^{\prime}-1 \in \widetilde{K}\left(N^{n}(m)\right) . \tag{2.3}
\end{array}
$$

The K - and $K O$-rings of the quaternion projective space $H P^{n}$ are known as follows.
(B. J. Sanderson [7, Th. 3.11, 3.12])

$$
\begin{equation*}
K\left(H P^{n}\right)=Z[z] /\left\langle z^{n+1}\right\rangle, \tag{2.4}
\end{equation*}
$$

where $z=\lambda-2$ is the stable class of the canonical complex plane bundle λ over $H P^{n}$. Also, the complexification

$$
c: K O\left(H P^{n}\right) \longrightarrow K\left(H P^{n}\right)
$$

is monomorphic, and the ring $K O\left(H P^{n}\right)$ is generated by the two elements

$$
z_{0}=r z=c^{-1}(2 z) \text { and } x=c^{-1}\left(z^{2}\right),
$$

where r is the real restriction.
Using these results and the induced homomorphisms of the natural projection

$$
\begin{equation*}
\pi: N^{n}(m)=S^{4 n+3} / H_{m} \longrightarrow S^{4 n+3} / S^{3}=H P^{n} \tag{2.5}
\end{equation*}
$$

we consider the following elements:

$$
\begin{align*}
& \delta=\pi^{\prime} z \in \widetilde{K}\left(N^{n}(m)\right), \\
& \delta_{0}=r \delta=\pi^{\prime} z_{0}, \quad x_{0}=\pi^{\prime} x \in \widetilde{K O}\left(N^{n}(m)\right) . \tag{2.6}
\end{align*}
$$

Lemma 2.7. For the complexification $c: \widetilde{K_{O}}\left(N^{n}(m)\right) \rightarrow \widetilde{K}\left(N^{n}(m)\right)$,

$$
c\left(\alpha_{0}\right)=\alpha, c\left(\beta_{0}\right)=\beta, c\left(\delta_{0}\right)=2 \delta, c\left(x_{0}\right)=\delta^{2} .
$$

Proof. The total Stiefel-Whitney class of α_{0}^{\prime} is $w\left(\alpha_{0}^{\prime}\right)=1+a$, by definition. Therefore,

$$
w\left(r c \alpha_{0}^{\prime}\right)=w\left(2 \alpha_{0}^{\prime}\right)=\left(w\left(\alpha_{0}^{\prime}\right)\right)^{2}=1+a^{2}=1+S q^{1} a=1+j_{*} \Delta a=1+j_{*} c_{1}\left(\alpha^{\prime}\right)
$$

On the other hand, it is well known that $w_{2}\left(r c \alpha_{0}^{\prime}\right)=j_{*} c_{1}\left(c \alpha_{0}^{\prime}\right)$, and we have $c_{1}\left(\alpha^{\prime}\right)$ $=c_{1}\left(c \alpha_{0}^{\prime}\right)$ by Lemma 2.1, and so $\alpha^{\prime}=c \alpha_{0}^{\prime}$. In the same way, we have the second equality. The last two equalities follow immediately by definition. q.e.d.

§3. Representation rings

We denote the unitary (resp. orthogonal) representation ring of the group G by $R(G)$ (resp. $R O(G)$), and the symplectic representation group by $R S p(G)$. By the natural inclusions $O(n) \subset U(n), U(n) \subset O(2 n), S p(n) \subset U(2 n)$ and $U(n)$ $\subset S p(n)$, the following group homomorphisms are defined:

$$
R O(G) \underset{c}{\stackrel{r}{\leftrightarrows}} R(G) \underset{n}{\stackrel{c^{\prime}}{\leftrightarrows}} R S p(G)
$$

The following facts (3.1) and (3.2) are well known (cf., e.g. [2]).
(3.1) These representation groups are free, and c is a ring homomorphism. Also

$$
r c=2, \quad h c^{\prime}=2, \quad c r=1+t=c^{\prime} h,
$$

(t denotes the conjugation), and c and c^{\prime} are monomorphic.
(3.2) We have the commutative diagrams

where the horizontal pairings are defined by tensoring over \boldsymbol{R} or \boldsymbol{H}.

For the later purposes, we use the following facts for the representation rings or groups of H_{m}, S^{3} and Z_{4}.

The generalized quaternion group H_{m} has three non-trivial representations of degree 1 :

$$
\left\{\begin{array} { l }
{ \chi _ { 1 } (x) = 1 } \\
{ \chi _ { 1 } (y) = - 1 , }
\end{array} \left\{\begin{array} { l }
{ \chi _ { 2 } (x) = - 1 } \\
{ \chi _ { 2 } (y) = 1 , }
\end{array} \left\{\begin{array}{l}
\chi_{3}(x)=-1 \\
\chi_{3}(y)=-1,
\end{array}\right.\right.\right.
$$

and $2^{m-1}-1$ representations of degree 2 :

$$
\chi_{i+3}(x)=\left(\begin{array}{cc}
x^{i} & 0 \\
0 & x^{-i}
\end{array}\right), \quad \chi_{i+3}(y)=\left(\begin{array}{cc}
0 & (-1)^{i} \\
1 & 0
\end{array}\right)
$$

for $i=1,2, \ldots, 2^{m-1}-1$.
Lemma 3.3. (cf. [3, Prop. 3.1, 3.3]) $R\left(H_{m}\right)$ is generated by $\chi_{j}(j=0,1, \ldots$, $\left.2^{m-1}+2\right)\left(\chi_{0}=1\right)$ as a free Z-module, and by $1, \chi_{1}, \chi_{2}$ and χ_{4} as a ring. The multiplicative structure is given by

$$
\left.\left.\begin{array}{c}
\chi_{i} \chi_{j}=\chi_{j} \chi_{i}, \quad \chi_{1}^{2}=\chi_{2}^{2}=1, \\
\chi_{3}=\chi_{1} \chi_{2}, \quad \chi_{1} \chi_{4}=\chi_{4}, \quad \chi_{2} \chi_{4}=\chi_{2^{m-1+2}}
\end{array}\right\} \begin{array}{lll}
1+\chi_{1}+\chi_{2}+\chi_{3} & \text { for } & m=2, \\
1+\chi_{1}+\chi_{5} & \text { for } & m \geqq 3,
\end{array}\right\}
$$

Lemma 3.4. (cf. [6, Prop. 1.5]) By the monomorphism

$$
c: R O\left(H_{m}\right) \longrightarrow R\left(H_{m}\right),
$$

$R O\left(H_{m}\right)$ may be considered as the subring of $R\left(H_{m}\right)$, generated by $1, \chi_{1}, \chi_{2}$, $\chi_{3}, 2 \chi_{2 i+2}$ and $\chi_{2 i+3}(i \geqq 1)$.

Lemma 3.5. (cf. [6, Prop. 1.6]) By the monomorphism

$$
c^{\prime}: R S p\left(H_{m}\right) \longrightarrow R\left(H_{m}\right),
$$

$R S p\left(H_{m}\right)$ may be considered as the free abelian subgroup of $R\left(H_{m}\right)$, generated by $2,2 \chi_{1}, 2 \chi_{2}, 2 \chi_{3}, 2 \chi_{2 i+3}$ and $\chi_{2 i+2}(i \geqq 1)$.

Lemma 3.6. (cf. [4, Ch. 13, Th. 3.1])

$$
R\left(S^{3}\right)=Z[\chi],
$$

where χ is the c^{\prime}-image $c^{\prime} \chi$ of the identity symplectic representation $\chi: S^{3}=S p(1)$.
Lemma 3.7. For the monomorphism $c: R O\left(S^{3}\right) \rightarrow R\left(S^{3}\right)$, we have

$$
2 \chi^{i}, \quad \chi^{2 i} \in \operatorname{Im} c, \quad \text { for any } i \geqq 1 .
$$

Proof. Since $\chi \in R\left(S^{3}\right)$ is self-conjugate, we have $2 \chi^{i}=\operatorname{cr}\left(\chi^{i}\right) \in \operatorname{Im} c$. By the commutative diagram

of (3.2), we have $\chi^{2}=c\left(\chi^{2}\right)$, where $\chi^{2} \in R O\left(S^{3}\right)$ is the image of $\chi \otimes \chi \in R S p\left(S^{3}\right)$ $\otimes_{z} R S p\left(S^{3}\right)$.
q.e.d.

It is clear that $\chi_{4} \in R\left(H_{m}\right)$ is the c^{\prime}-image of the symplectic representation of H_{m} given by the inclusion $H_{m} \subset S^{3}=S p(1)$, and we have

Lemma 3.8.

$$
i(\chi)=\chi_{4},
$$

where $i: H_{m} \subset S^{3}$ is the inclusion.
For an n-dimensional representation ω of H_{m}, the n-plane bundle $\xi(\omega)$ is induced from the principal H_{m}-bundle $\xi: S^{4 n+3} \rightarrow N^{n}(m)$ by the group homomorphism $\omega: H_{m} \rightarrow G L(n, \boldsymbol{R})$, and we have a ring homomorphism

$$
\begin{equation*}
\xi: R O\left(H_{m}\right) \longrightarrow K O\left(N^{n}(m)\right) \tag{3.9}
\end{equation*}
$$

Lemma 3.10. The elements α_{0} and β_{0} of (2.3) may be so taken

$$
\xi c^{-1}\left(\chi_{1}-1\right)=\alpha_{0}, \quad \xi c^{-1}\left(\chi_{2}-1\right)=\beta_{0} .
$$

Also, for the elements δ_{0} and x_{0} of (2.6), we have

$$
\xi c^{-1}\left(2 \chi_{4}-4\right)=\delta_{0}, \quad \xi c^{-1}\left(\left(\chi_{4}-2\right)^{2}\right)=x_{0} .
$$

Proof. The ring homomorphism $\xi: R\left(H_{m}\right) \rightarrow K\left(N^{n}(m)\right)$ is defined in the same way as (3.9), and we have the commutative diagram

Since $c_{1} \xi\left(\chi_{1}\right)$ and $c_{1} \xi\left(\chi_{2}\right)$ generate $H^{2}\left(N^{n}(m) ; Z\right)=Z_{2} \oplus Z_{2}$, (cf. [3, p. 259]), we can take $a, b \in H^{1}\left(N^{n}(m) ; Z_{2}\right)$ in (2.2) so that

$$
\Delta a=c_{1} \xi\left(\chi_{1}\right), \quad \Delta b=c_{1} \xi\left(\chi_{2}\right),
$$

by Lemma 2.1. Then,

$$
\begin{aligned}
j_{*} \Delta a & =j_{*} c_{1} \xi\left(\chi_{1}\right)=j_{*} c_{1}\left(c \xi c^{-1}\left(\chi_{1}\right)\right)=w_{2}\left(r c \xi c^{-1}\left(\chi_{1}\right)\right) \\
& =w_{2}\left(2 \xi c^{-1}\left(\chi_{1}\right)\right)=w_{1}\left(\xi c^{-1}\left(\chi_{1}\right)\right)^{2}=j_{*} \Delta w_{1}\left(\xi c^{-1}\left(\chi_{1}\right)\right) .
\end{aligned}
$$

Therefore $w_{1}\left(\xi c^{-1}\left(\chi_{1}\right)\right)=a$ by Lemma 2.1, and we have $\xi c^{-1}\left(\chi_{1}\right)=\alpha_{0}^{\prime}$ by (2.2). In the same way as above, we have $\xi c^{-1}\left(\chi_{2}\right)=\beta_{0}^{\prime}$.

Consider the commutative diagram

where ξ^{\prime} is the ring homomorphism defined in the same way as ξ of (3.9), using $\xi^{\prime}: S^{4 n+3} \rightarrow H P^{n}$. Then,

$$
\xi^{\prime}(\chi)=\lambda, \quad \xi^{\prime}(\chi-2)=x
$$

directly by definition. Therefore, by Lemma 3.8, (2.4) and (2.6), we have

$$
\xi^{-1}\left(2 \chi_{4}-4\right)=\xi r\left(\chi_{4}-2\right)=\xi r i(\chi-2)=r \pi^{\prime} \xi^{\prime}(\chi-2)=r \pi^{\prime} z=\delta_{0} .
$$

Finally, consider the commutatived iagram

Then, by Lemma 3.8, (2.4) and (2.6), we have

$$
\xi c^{-1}\left(\left(\chi_{4}-2\right)^{2}\right)=\xi i c^{-1}\left((\chi-2)^{2}\right)=\pi^{1} c^{-1} \xi^{\prime}\left((\chi-2)^{2}\right)=\pi^{\prime} c^{-1}\left(z^{2}\right)=x_{0} .
$$

q.e.d.

Finally, we consider the representation ring of the cyclic group Z_{4} of order 4. It is well known that

Lemma 3.11.

$$
R\left(Z_{4}\right)=Z[\mu] /<\mu^{4}-1>
$$

where μ is the unitary representation such that $\mu(g)=\exp (\pi i / 2)$ for the generator g of Z_{4}.

Let $L^{2 n+1}(4)=S^{4 n+3} / Z_{4}$ be the standard lens space $\bmod 4$, and $\zeta: S^{4 n+3} \rightarrow$ $L^{2 n+1}(4)$ be the natural projection. Then, we have the commutative diagram

where ζ 's are the natural ring homomorphisms defined in the same way as ξ of (3.9).

Lemma 3.12. For the element μ of Lemma 3.11,

$$
\sigma+1=\zeta(\mu) \in K\left(L^{2 n+1}(4)\right)
$$

is the complex line bundle whose first Chern class generates $H^{2}\left(L^{2 n+1}(4) ; Z\right)$ $=Z_{4}$. Also μ^{2} belongs to $\operatorname{cRO}\left(\mathrm{Z}_{4}\right)$, and

$$
\kappa+1=\zeta c^{-1}\left(\mu^{2}\right) \in K O\left(L^{2 n+1}(4)\right)
$$

is the real line bundle whose first Stiefel-Whitney class generates $H^{1}\left(L^{2 n+1}(4)\right.$; $\left.Z_{2}\right)=Z_{2}$.

Proof. The first half of the lemma is proved by Lemma 3.11 and [1, Appendix, (3)].

Since $\mu^{2}(g)=-1$ by Lemma 3.11, we have $\mu^{2} \in c R O\left(Z_{4}\right)$, and $\kappa+1$ is the real line bundle over $L^{2 n+1}(4)$. Also, the first Chern class of $c(\kappa+1)=\zeta\left(\mu^{2}\right)=$ $(\sigma+1)^{2}$ is equal to $2 c_{1}(\sigma+1)$, which is not zero. Therefore, $\kappa+1$ is non-trivial.
q.e.d.

Let $i: Z_{4} \subset H_{m}$ and $i^{\prime}: Z_{4} \subset H_{m}$ be the inclusions defined by $i(g)=x^{2 m-2}$ and $i^{\prime}(g)=y$, and

$$
\begin{equation*}
\rho: L^{2 n+1}(4) \longrightarrow N^{n}(m), \quad \rho^{\prime}: L^{2 n+1}(4) \longrightarrow N^{n}(m) \tag{3.13}
\end{equation*}
$$

by the natural projections induced from i, i^{\prime}.
Lemma 3.14. For the induced homomorphisms ρ^{\prime} and $\rho^{\prime \prime}$ of (3.13), and the elements $\alpha_{0}, \beta_{0}, \delta_{0}, x_{0}$ of (2.3) and (2.6), we have

$$
\begin{array}{ll}
\rho^{\prime} \alpha_{0}=0=\rho^{\prime \prime} \beta_{0}, & \rho^{\prime} \beta_{0}=\kappa=\rho^{\prime \prime} \alpha_{0} \\
\rho^{\prime} \delta_{0}=2 r \sigma=\rho^{\prime \prime} \delta_{0}, & \rho^{\prime} x_{0}=(r \sigma)^{2}=\rho^{\prime \prime} x_{0}
\end{array}
$$

Proof. We prove the equalities for $\rho^{\prime \prime}$. Consider the commutative diagram

We notice that the following equalities hold by [3, Prop. 3.9, Lemma 4.8]:

$$
\begin{equation*}
i^{\prime} \chi_{1}=\mu^{2}, \quad i^{\prime} \chi_{2}=1, \quad \rho^{\prime!} \delta=\sigma^{2} /(1+\sigma), \quad i^{\prime} \chi_{4}=\mu+t \mu, \tag{*}
\end{equation*}
$$

where t is the conjugation. Then, we have

$$
\begin{aligned}
& \rho^{\prime \prime} \alpha_{0}=\rho^{\prime}!\xi c^{-1}\left(\chi_{1}-1\right)=\zeta c^{-1} i^{\prime}\left(\chi_{1}-1\right)=\zeta c^{-1}\left(\mu^{2}-1\right)=\kappa, \\
& \rho^{\prime \prime} \beta_{0}=\zeta c^{-1} i^{\prime}\left(\chi_{2}-1\right)=0,
\end{aligned}
$$

by Lemmas 3.10 and 3.12. Also,

$$
\rho^{\prime} \delta_{0}=\rho^{\prime} r \delta=r \rho^{\prime} \delta=r\left(\sigma^{2} /(1+\sigma)\right)=r(\sigma+t \sigma)=r c r \sigma=2 r \sigma,
$$

by (2.6), the third equality of (*) and the fact that $t \sigma=-\sigma /(1+\sigma)$. Finally, we have

$$
\begin{aligned}
\rho^{\prime \prime} x_{0} & =\rho^{\prime} \xi c^{-1}\left(\left(\chi_{4}-2\right)^{2}\right)=\zeta c^{-1} i^{\prime}\left(\left(\chi_{4}-2\right)^{2}\right)=\zeta c^{-1}\left((\mu+t \mu-2)^{2}\right) \\
& =\zeta c^{-1}\left(\left(c r(\mu-1)^{2}\right)=\zeta\left((r(\mu-1))^{2}\right)=(r \zeta(\mu-1))^{2}=(r \sigma)^{2},\right.
\end{aligned}
$$

by Lemmas 3.10, 3.12 and the last euqality of (*).
We notice that the equalities

$$
i \chi_{1}=1, \quad i \chi_{2}=\mu^{2}, \quad \rho^{\prime} \delta=\sigma^{2} /(1+\sigma), \quad i \chi_{4}=\mu+t \mu
$$

which are similar to (*), can be proved in the same way as [3, Prop. 3.9, Lemma 4.7], using the inclusions

$$
Z_{4} \subset H_{2} \subset H_{m} .
$$

Therefore, the desired equalities for ρ^{1} can be proved in the same way as above.
q.e.d.

§4. Proof of Theorem 1.1

Let N^{k} be the k-skeleton of the $C W$-complex $N^{n}(m)$ in $\S 2$, and $i: N^{k} \rightarrow N^{n}(m)$ be the inclusion. For an element $a \in \widetilde{K O}\left(N^{n}(m)\right)$, we denote its image $i^{\prime} a \in$ $\widetilde{K O}\left(N^{k}\right)$ by the same letter a. Therefore, we have the elements

$$
\begin{equation*}
\alpha_{0}, \beta_{0}, \delta_{0}, x_{0} \in \widetilde{K O}\left(N^{k}\right) \quad \text { for any } \quad k \geqq 0, \tag{4.1}
\end{equation*}
$$

from those of (2.3) and (2.6).
Lemma 4.2. $\quad \alpha_{0}^{i} \beta_{0}^{j} \delta_{0}^{k} x_{0}^{l}=0$ in $\widetilde{K O}\left(N^{i+j+4 k+8 l-1}\right)$.
Proof. α_{0} and β_{0} are zero in $\widetilde{K O}\left(N^{0}\right)=0$, and δ_{0} and x_{0} are zero in $\widetilde{K O}\left(N^{3}\right)$
$=\widetilde{K O}\left(N^{0}(m)\right)$ and $\widetilde{K O}\left(N^{7}\right)=\widetilde{K O}\left(N^{1}(m)\right)$ respectively, by (2.4). Therefore, the desired results follow from the obvious fact that $a b$ is zero in $\widetilde{K O}\left(N^{p+q-1}\right)$ if a is zero in $\widetilde{K O}\left(N^{p-1}\right)$ and b is zero in $\widetilde{K O}\left(N^{q-1}\right)$.
q.e.d.

Lemma 4.3. If the ring $\widetilde{K O}\left(N^{4 n+2}\right)$ is generated by $\alpha_{0}, \beta_{0}, \delta_{0}$ and x_{0}, then $i^{\prime}: \widetilde{K O}\left(N^{4 n+3}\right) \rightarrow \widetilde{K O}\left(N^{4 n+2}\right)$ is an isomorphism.

Proof. Consider the Puppe sequence

$$
0 \longrightarrow \widetilde{K O}\left(N^{4 n+3}\right) \xrightarrow{i!} \widetilde{K O}\left(N^{4 n+2}\right)
$$

Since the elements $\alpha_{0}, \beta_{0}, \delta_{0}$ and x_{0} in $\widetilde{K O}\left(N^{4 n+2}\right)$ are the i^{1}-images of those in $\widetilde{K O}\left(N^{4 n+3}\right)$, we have the lemma.
q.e.d.

Lemma 4.4. $i^{\prime}: \widetilde{K O}\left(N^{8 n+6}\right) \rightarrow \widetilde{K O}\left(N^{8 n+5}\right)$ is an isomorphism.
Proof. By the Puppe seuqence, the lemma follows immediately. q.e.d.
Lemma 4.5. If the ring $\widetilde{K O}\left(N^{8 n+1}\right)$ is generated by $\alpha_{0}, \beta_{0}, \delta_{0}$ and x_{0}, then the ring $\widetilde{K O}\left(N^{8 n+2}\right)$ is so.

Proof. Consider the commutative diagram

In the lower sequence, $\operatorname{ker} i^{\prime}=\operatorname{Im} p^{\prime}=Z_{2} \oplus Z_{2}$ is generated by $\alpha \delta^{2 n}$ and $\beta \delta^{2 n}$ (cf. [3, p 263]). Since r in the left is an epimorphism, Ker $i^{1}=\operatorname{Im} p^{1}$ is generated by $r\left(\alpha \delta^{2 n}\right)$ and $r\left(\beta \delta^{2 n}\right)$ in the upper exact sequence. Since $c\left(\alpha_{0} x_{0}^{n}\right)=\alpha \delta^{2 n}$ by Lemma 2.7, we have $r\left(\alpha \delta^{2 n}\right)=r c\left(\alpha_{0} x_{0}^{n}\right)=2 \alpha_{0} x_{0}^{n}$, and also $r\left(\beta \delta^{2 n}\right)=2 \beta_{0} x_{0}^{n}$. These imply the desired result.
q.e.d.

Lemma 4.6. If the ring $\widetilde{K O}\left(N^{8 n+4}\right)$ is generated by $\alpha_{0}, \beta_{0}, \delta_{0}$ and x_{0}, then $i^{1}: \widetilde{\mathrm{KO}_{\mathrm{O}}}\left(N^{8 n+5}\right) \rightarrow \widetilde{\mathrm{KO}}\left(N^{8 n+4}\right)$ is an isomorphism.

Proof. We have the desired result in the same way as Lemma 4.3. q.e.d.
Lemma 4.7. If the ring $\widetilde{K O}\left(N^{8 n}\right)$ is generated by $\alpha_{0}, \beta_{0}, \delta_{0}$ and x_{0}, then the ring $\widetilde{K O}\left(N^{8 n+1}\right)$ is also so. In particular, $\widetilde{K O}\left(N^{1}\right)=\widetilde{K O}\left(S^{1} \vee S^{1}\right)=Z_{2} \oplus$ Z_{2} is generated by α_{0} and β_{0}.

Proof. Consider the commutative diagram

Since $i^{1}\left(\alpha_{0} x_{0}^{n}\right)=i^{1}\left(\beta_{0} x_{0}^{n}\right)=0$ by Lemma 4.2, we have $\alpha_{0} x_{0}^{n}, \beta_{0} x_{0}^{n} \in$ Ker $i^{\prime}=\operatorname{Im} p^{i}$. On the other hand,

$$
\rho^{\prime}\left(\alpha_{0} x_{0}^{n}\right)=0, \quad \rho^{\prime}\left(\beta_{0} x_{0}^{n}\right)=\rho^{\prime!}\left(\alpha_{0} x_{0}^{n}\right)=2^{2 n} \kappa
$$

by Lemma 3.14. Also, $2^{2 n} \kappa$ is not zero in $\widetilde{K O}\left(L^{4 n}(4)\right)$ by [5, Th. B]. Therefore, we have $\alpha_{0} x_{0}^{n} \neq 0, \beta_{0} x_{0}^{n} \neq 0$ and $\alpha_{0} x_{0}^{n} \neq \beta_{0} x_{0}^{n}$. Since $\widetilde{K O}\left(S^{8 n+1} \vee S^{8 n+1}\right)=$ $Z_{2} \oplus Z_{2}$, these imply the desired result.
q.e.d.

Lemma 4.8. If the ring $\widetilde{K O}\left(N^{4 n-1}\right)$ is generated by $\alpha_{0}, \beta_{0}, \delta_{0}$ and x_{0}, then the ring $\widetilde{K O}\left(N^{4 n}\right)$ is so.

Proof. We consider the commutative diagram

induced by $\pi=\pi \mid N^{4 n}:\left(N^{4 n}, N^{4 n-1}\right) \rightarrow\left(H P^{n}, H P^{n-1}\right)$, which is a relative homeomorphism. In the lower sequence, Ker $i^{1}=\operatorname{Im} p^{\prime}=Z$ is generated by

$$
x^{k} \quad(\text { if } n=2 k), \quad z_{0} x^{k} \quad(\text { if } n=2 k+1)
$$

by [7, p.145]. Therefore, Ker $i^{\prime}=\operatorname{Im} p^{1}$ in the upper sequence is generated by

$$
\pi^{1}\left(x^{k}\right)=x_{0}^{k} \quad(\text { if } n=2 k), \quad \pi^{1}\left(z_{0} x^{k}\right)=\delta_{0} x_{0}^{k} \quad(\text { if } n=2 k+1) .
$$

These complete the proof.
q.e.d.

Proof of Theorem 1.1. Starting from the latter half of Lemma 4.7, we have Theorem 1.1 for $\widetilde{K O}\left(N^{k}\right)$ by the induction on k, using Lemmas 4.3-4.8.
q.e.d.

By Theorem 1.1 and Lemma 3.10, we see that the ring homomorphism

$$
\xi: R O\left(H_{m}\right) \longrightarrow K O\left(N^{n}(m)\right)
$$

of (3.9) is an epimorphism.
On the other hand the following theorem is proved by D. Pitt :
Theorem 4.9. [6, Th. 2.5]

$$
\operatorname{Im} \xi \cong \begin{cases}R O\left(H_{m}\right) / c^{-1}\left(\left(\chi_{4}-2\right)^{n+1}\right) R O\left(H_{m}\right) & \text { if } n \text { is odd }, \\ R O\left(H_{m}\right) / c^{-1}\left(\left(\chi_{4}-2\right)^{n+1} c^{\prime} R S p\left(H_{m}\right)\right) & \text { if } n \text { is even },\end{cases}
$$

where $\left(\chi_{4}-2\right)^{n+1} \in c R O\left(H_{m}\right)$ if n is odd, by Lemma 2.4.
Therefore, we have Corollary 1.2 in $\S 1$.

§5. Proof of Theorem 1.3

In this section, we deal with the special case

$$
N^{n}(2)=S^{4 n+3} / H_{2}
$$

where $H_{2}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is the quaternion group.
Consider the ring homomorphism

$$
\xi: R O\left(H_{2}\right) \longrightarrow K O\left(N^{n}(2)\right)
$$

of (3.9), and set also

$$
\begin{array}{rlrl}
\alpha_{0} & =c^{-1}\left(\chi_{1}-1\right), & \beta_{0}=c^{-1}\left(\chi_{2}-1\right), \\
\delta_{0} & =c^{-1}\left(2 \chi_{4}-4\right), & & x_{0}=c^{-1}\left(\left(\chi_{4}-2\right)^{2}\right) \tag{5.1}
\end{array}
$$

in $\mathrm{RO}\left(\mathrm{H}_{2}\right)$. Then

$$
\xi \alpha_{0}=\alpha_{0}, \quad \xi \beta_{0}=\beta_{0}, \quad \xi \delta_{0}=\delta_{0}, \quad \xi x_{0}=x_{0},
$$

by Lemma 3.10. Furthermore, by Lemmas 3.3 and 3.4, we see easily that
(5.2) $\widetilde{R O}\left(H_{2}\right)$ is the free Z-module with bases

$$
1, \alpha_{0}, \quad \beta_{0}, \quad \delta_{0}, \quad x_{0}
$$

and the multiplicative structure is given by

$$
\begin{align*}
& \alpha_{0}^{2}=-2 \alpha_{0}, \quad \beta_{0}^{2}=-2 \beta_{0}, \quad \delta_{0}^{2}=4 x_{0}, \\
& \alpha_{0} \beta_{0}=-2 \alpha_{0}-2 \beta_{0}+x_{0}+2 \delta_{0}, \quad \alpha_{0} \delta_{0}=-4 \alpha_{0}, \tag{5.3}\\
& \beta_{0} \delta_{0}=-4 \beta_{0}, \quad \alpha_{0} x_{0}=4 \alpha_{0}, \quad \beta_{0} x_{0}=4 \beta_{0} .
\end{align*}
$$

By these relations, we have easily

$$
\begin{align*}
& \delta_{0} x_{0}+12 x_{0}+8 \delta_{0}=0 \tag{5.4}\\
& x_{0}^{2}+3 \delta_{0} x_{0}+8 x_{0}=0 \tag{5.5}
\end{align*}
$$

Lemma 5.6. $\alpha_{0} \delta_{0}^{i} x_{0}^{j}=(-1)^{i 2^{2(i+j)}} \alpha_{0}, \quad \beta_{0} \delta_{0}^{i} x_{0}^{j}=(-1)^{i} 2^{2(i+j)} \beta_{0}$.

Proof. These equalities follow from the last four equalities of (5.3).
Lemma 5.7. $\delta_{0}(1) \delta_{0}^{i}=(-1)^{i} \delta_{0}(1) x_{0}^{i}=(-1)^{i} 2^{2 i} \delta_{0}(1)$, where $\delta_{0}(1)=x_{0}+2 \delta_{0}$.
Proof. We see $\delta_{0}(1) \delta_{0}=-\delta_{0}(1) x_{0}=-2^{2} \delta_{0}(1)$ by (5.3), (5.4) and (5.5). These imply the desired results by the induction on i.
q.e.d.
(I) The case $n=2 m+1$

By Corollary 1.2 and (5.1), we have

$$
\widetilde{K O}\left(N^{n}(2)\right) \cong \widetilde{\mathrm{RO}}\left(H_{2}\right) / x_{0}^{m+1} R O\left(H_{2}\right)
$$

By (5.2), $\widetilde{\mathrm{RO}}\left(\mathrm{H}_{2}\right)$ is the free Z-module with bases

$$
\alpha_{0}, \quad \beta_{0}, \quad \delta_{0}, \quad \delta_{0}(1)+2^{n} \delta_{0}=x_{0}+\left(2+2^{n}\right) \delta_{0}
$$

and the ideal $x_{0}^{m+1} R O\left(H_{2}\right)$ is generated by

$$
\begin{equation*}
x_{0}^{m+1}, \quad \alpha_{0} x_{0}^{m+1}, \quad \beta_{0} x_{0}^{m+1}, \quad \delta_{0} x_{0}^{m+1}, x_{0}^{m+2} . \tag{5.8}
\end{equation*}
$$

Therefore, Theorem 1.3 for $n=2 m+1$ follows immediately from
Lemma 5.9. The elements of (5.8) are linear combinations of

$$
\begin{equation*}
2^{n+1} \alpha_{0}, \quad 2^{n+1} \beta_{0}, \quad 2^{2 n+1} \delta_{0}, \quad 2^{n-1}\left(\delta_{0}(1)+2^{n} \delta_{0}\right) \tag{5.10}
\end{equation*}
$$

and the elements of (5.10) are also so of (5.8).
We prove this lemma by the following routine calculations.
Lemma 5.11. (i) $\quad 2^{4 i+3} \delta_{0} x_{0}^{m-i} \equiv 0 \quad(0 \leqq i \leqq m)$,
(ii) $\quad 2^{4 i+6} x_{0}^{m-i} \equiv 0$ ($0 \leqq i \leqq m-1$) ,
(iii) $2 \delta_{0} x_{0}^{m} \equiv 2^{4} x_{0}^{m}$,
(iv) $\quad 2^{4 i+4} x_{0}^{m-i}+2^{4 i+5} \delta_{0} x_{0}^{m-i-1} \equiv 0 \quad(0 \leqq i \leqq m-1)$,
(v) $\quad 2^{4 i+5} \delta_{0} x_{0}^{m-i-1}+2^{4 i+8} x_{0}^{m-i-1} \equiv 0 \quad(0 \leqq i \leqq m-2)$,
(vi) $\quad 2^{n-1}\left(\delta_{0}(1)+2^{n} \delta_{0}\right) \equiv 0$,
where \equiv means modulo the ideal generated by $\left\{x_{0}^{m+1}, \delta_{0} x_{0}^{m-1}, x_{0}^{m+2}\right\}$.
Proof. (i), (ii) We have the desired equalities by the induction on i, using the equalities (5.4) $\times 2^{4 i} x_{0}^{m-i}$ and (5.4) $\times 2^{4 i+1} \delta_{0} x_{0}^{m-i-1}$.
(iii) The equality follows from (5.5) $\times x_{0}^{m-1}$ and (i).
(iv) By (5.4) and (5.5), we have easily

$$
\begin{equation*}
x_{0}^{2}=28 x_{0}+24 \delta_{0}=2^{4} x_{0}+3 \cdot 2^{2} \delta_{0}(1), \tag{5.12}
\end{equation*}
$$

and (iv) is obtained from (5.12) $\times 2^{4 i+2} x_{0}^{m-i-1}$, using (i) and (ii).
(v) The equality follows from (5.12) $\times 2^{4 i+3} \delta_{0} x_{0}^{m-i-2}$, using (i) and (ii).
(vi) By Lemma 5.7 and (iii)-(v), we have
$2^{n-1} \delta_{0}(1)=\delta_{0}(1) x_{0}^{m} \equiv 2 \delta_{0} x_{0}^{m} \equiv 2^{4} x_{0}^{m} \equiv-2^{5} \delta_{0} x_{0}^{m-1} \equiv 2^{8} x_{0}^{m-1} \equiv \cdots \equiv-2^{4 m+1} \delta_{0}$.
q.e.d.

Lemma 5.13. (i) $x_{0}^{m+1}=2^{n-1}\left(2^{n}-1\right)\left(\delta_{0}(1)+2^{n} \delta_{0}\right)-2^{3 n-1} \delta_{0}$,
(ii) $\delta_{0} x_{0}^{m+1}=2^{2 n+1}\left(2^{n+1}+1\right) \delta_{0}-2^{n+1}\left(2^{n+1}-1\right)\left(\delta_{0}(1)+2^{n} \delta_{0}\right)$,
(iii) $x_{0}^{m+2}=2^{n+1}\left(2^{n+2}-1\right)\left(\delta_{0}(1)+2^{n} \delta_{0}\right)-2^{2 n+1}\left(2^{n+2}+3\right) \delta_{0}$.

Proof. (i) From (5.12) $\times 2^{4 i} x_{0}^{m-i-1}$, we have easily

$$
2^{4 i} x_{0}^{m+i-1}=2^{4(i+1)} x_{0}^{m-i}+3 \cdot 2^{n-1+2 i} \delta_{0}(1),
$$

using Lemma 5.7. Therefore, we have

$$
\begin{aligned}
x_{0}^{m+1} & =2^{4 m} x_{0}+3 \cdot 2^{n-1}\left(1+2^{2}+2^{4}+\cdots+2^{2(m-1)}\right) \delta_{0}(1), \\
& =2^{2(n-1)} x_{0}+2^{n-1}\left(2^{n-1}-1\right) \delta_{0}(1) \\
& =2^{n-1}\left(2^{n}-1\right)\left(\delta_{0}(1)+2^{n} \delta_{0}\right)-2^{3 n-1} \delta_{0} .
\end{aligned}
$$

(ii), (iii) These are obtained easily from (i) $\times \delta_{0}$ and (i) $\times x_{0}$, using Lemma 5.7, (5.12) and (5.4).
q.e.d.

Proof of Lemma 5.9. By Lemma 5.6,

$$
\alpha_{0} x_{0}^{m+1}=2^{n+1} \alpha_{0}, \quad \beta_{0} x_{0}^{m+1}=2^{n+1} \beta_{0} .
$$

The other elements of (5.8) are linear combinations of those of (5.10) by Lemma 5.13. Conversely, by Lemma 5.11 (i) and (vi), we have

$$
2^{2 n+1} \delta_{0} \equiv 0, \quad 2^{n-1}\left(\delta_{0}(1)+2^{n} \delta_{0}\right) \equiv 0,
$$

modulo the ideal $x_{0}^{m+1} \mathrm{RO}\left(\mathrm{H}_{2}\right)$, as desired.
q.e.d.
(II) The case $n=2 m$

By Corollary 1.2, we have

$$
\widetilde{K O}\left(N^{n}(2)\right) \cong \widetilde{R O}\left(H_{2}\right) / c^{-1}\left(\left(\chi_{4}-2\right)^{2 m+1} c^{\prime} R S p\left(H_{2}\right)\right)
$$

By Lemma 3.5, the ideal $\left(\chi_{4}-2\right)^{2 m+1} c^{\prime} R S p\left(H_{2}\right)$ of $R\left(H_{2}\right)$ is generated by

$$
2\left(\chi_{4}-2\right)^{2 m+1}, \quad 2\left(\chi_{i}-1\right)\left(\chi_{4}-2\right)^{2 m+1}(i=1,2,3), \quad\left(\chi_{4}-2\right)^{2 m+2} .
$$

On the other hand, by Lemma 3.3, we have

$$
2\left(\chi_{3}-1\right)\left(\chi_{4}-2\right)^{2 m+1}=2\left(\left(\chi_{4}-2\right)^{2}+4\left(\chi_{4}-2\right)-\left(\chi_{1}-1\right)-\left(\chi_{2}-1\right)\right)\left(\chi_{4}-2\right)^{2 m+1}
$$

whose c^{-1}-image is equal to

$$
\delta_{0} x_{0}^{m+1}+8 x_{0}^{m+1}-\alpha_{0} \delta_{0} x_{0}^{m}-\beta_{0} \delta_{0} x_{0}^{m}=-4 x_{0}^{m+1}-8 \delta_{0} x_{0}^{m}-\alpha_{0} \delta_{0} x_{0}^{m}-\beta_{0} \delta_{0} x_{0}^{m},
$$

by (5.1) and (5.4). Therefore, we see that the ideal $c^{-1}\left(\left(\chi_{4}-2\right)^{2 m+1} c^{\prime} \operatorname{RSp}\left(H_{2}\right)\right)$ of $R O\left(H_{2}\right)$ is generated by

$$
\begin{equation*}
\delta_{0} x_{0}^{m}, \quad \alpha_{0} \delta_{0} x_{0}^{m}, \quad \beta_{0} \delta_{0} x_{0}^{m}, \quad x_{0}^{m+1} \tag{5.14}
\end{equation*}
$$

by the above facts and (5.1).
Also, $\widetilde{R O}\left(H_{2}\right)$ is the free Z-module with bases

$$
\alpha_{0}, \quad \beta_{0}, \quad \delta_{0}, \quad \delta_{0}(1)=x_{0}+2 \delta_{0}
$$

by (5.2). Therefore, Theorem 1.3 for $n=2 m$ follows immediately from
Lemma 5.15. The elements of (5.14) are linear combinations of

$$
\begin{equation*}
2^{n+2} \alpha_{0}, \quad 2^{n+2} \beta_{0}, \quad 2^{2 n} \delta_{0}, \quad 2^{n} \delta_{0}(1) \tag{5.16}
\end{equation*}
$$

and the elements of (5.16) are also so of (5.14).
By Lemma 5.6, we have

$$
\alpha_{0} \delta_{0} x_{0}^{m}=-2^{n+2} \alpha_{0}, \quad \beta_{0} \delta_{0} x_{0}^{m}=-2^{n+2} \beta_{0}
$$

Therefore, Lemma 5.15 follows immediately from the following
Lemma 5.17. (i) $\delta_{0} x_{0}^{m}=2^{2 n} \delta_{0}-2^{n}\left(2^{n}-1\right) \delta_{0}(1)$,
(ii) $x_{0}^{m+1}=2^{n}\left(2^{n+1}-1\right) \delta_{0}(1)-2^{2 n+1} \delta_{0}$,
(iii) $2^{n} \delta_{0}(1)=x_{0}^{m+1}+2 \delta_{0} x_{0}^{m}$,
(iv) $2^{2 n} \delta_{0}=\left(2^{n}-1\right) x_{0}^{m+1}+\left(2^{n+1}-1\right) \delta_{0} x_{0}^{m}$.

Proof. (i) By (5.4) $\times x_{0}^{m-1}$, we have

$$
-\delta_{0} x_{0}^{m}=12 x_{0}^{m}+8 \delta_{0} x_{0}^{m-1}=8 x_{0}^{m}+4 x_{0}^{m-1} \delta_{0}(1)=8 x_{0}^{m}+2^{n} \delta_{0}(1),
$$

using Lemma 5.7. While, by (5.12) $\times 2^{4 i+3} x_{0}^{m-i-2}$, we have

$$
2^{4 i+3} x_{0}^{m-i}=2^{4(i+1)+3} x_{0}^{m-i-1}+3 \cdot 2^{n+1+2 i} \delta_{0}(1)
$$

Therefore, we have (i), since

$$
\begin{aligned}
8 x_{0}^{m} & =2^{4 m-1} x_{0}+3 \cdot 2^{n+1}\left(1+2^{2}+2^{4}+\cdots+2^{2(m-2)}\right) \delta_{0}(1) \\
& =2^{2 n-1} x_{0}+\left(2^{2 n-1}-2^{n+1}\right) \delta_{0}(1) \\
& =\left(2^{2 n}-2^{n+1}\right) \delta_{0}(1)-2^{2 n} \delta_{0} .
\end{aligned}
$$

(ii) $\mathrm{By}(5.12) \times 2^{4 i} x_{0}^{m-i-1}$, we have

$$
2^{4 i} x_{0}^{m+1-i}=2^{4(i+1)} x_{0}^{m-i}+3 \cdot 2^{n+2 i} \delta_{0}(1)
$$

Therefore, we have (ii), since

$$
\begin{aligned}
x_{0}^{m+1} & =2^{2 n} x_{0}+3 \cdot 2^{n}\left(1+2^{2}+2^{4}+\cdots+2^{2(m-1)}\right) \delta_{0}(1) \\
& =2^{n}\left(2^{n+1}-1\right) \delta_{0}(1)-2^{2 n+1} \delta_{0}
\end{aligned}
$$

(iii) follows immediately by Lemma 5.7, and (iv) follows from (i) and (ii). q.e.d.

These complete the proof of Theorem 1.3.

References

[1] M. F. Atiyah: Characters and cohomology of finite groups, Publ. Math. Inst. HES, 9 (1964), 23-64.
[2] R. Bott: Quelques remarques sur les théorèmes de périodicité, Bull. Soc. Math. France, 87 (1959), 293-310.
[3] K. Fujii: On the K-ring of $S^{4 n+8} / H_{m}$, Hiroshima Math. J., 3 (1973), 251-265.
[4] D. Husemoller: Fibre Bundles, McGraw-Hill Book Co., 1966.
[5] T. Kobayashi and M. Sugawara: K_{A}-rings of lens spaces $L^{n}(4)$, Hiroshima Math. J., 1 (1971), 253-271.
[6] D. Pitt: Free actions of generalized quaternion groups on spheres, Proc. London Math. Soc. (3), 26 (1973), 1-18.
[7] B. J. Sanderson: Immersoins and embeddings of projective spaces, Proc. London Math. Soc. (3), 14 (1964), 137-153.

> Department of Mathematics,
> Faculty of Science, Hiroshima University

