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1. Introduction

Let us consider the initial value problem for a linear hyperbolic system

(1.1) ^L = Σ u A j ^ _ ( -oo<χ y «χ>,0£/£Γ) ,

(1.2) ιι(x,0)=fio(x),

where u is an iV-vector function of the real variables x=(xu x2,...9xn) and t,
Λj(j = l9 2,..., ή) are real constant NxN matrices, and uo(x) is a vector function
belonging to L2. It is assumed that the solution to this initial value problem
exists and is unique.

For the numerical solution of this problem we use the finite-difference schemes
of Lax-Wendroff type. Several sufficient conditions for their stability in the sense
of Lax-Richtmyer [4] x ) are obtained when (1.1) is a symmetric hyperbolic system
[4, 3, 2] and when it is a strictly hyperbolic system [5]. The object of this paper
is to obtain some sufficient conditions for stability when (1.1) is a strongly hyper-
bolic system.

2. Notations and preliminaries

We denote by |.y| the Euclidean norm of the vector y=(yί9 y2,•••> yn)>
denote by \A\ the spectral norm of the matrix A and put

(2.1)

In the sequel we assume that the eigenvalues of A0(y) are all real for any real
y Φ 0 and that there exist a non-singular matrix T{y) and a constant Cx independent
of y such that

(2.2) T(y)A0(y)T(y)-i=D0(y)9

1) Numbers in square brackets refer to the references listed at the end of this paper.
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(2.3)

where D0(y) is a diagonal matrix. Such a system (1.1) is called a strongly hyper-

bolic system. The system (1.1) is called strictly hyperbolic if the eigenvalues of

A0(y) are all real and distinct for any real y φ 0.

We consider a mesh imposed on the (x, ί)-space with a spacing of h>0

in each Xy-direction (j = 1, 2,..., ή) and a spacing of k>0 in the ί-direction. The

ratio λ = k/h is to be kept constant as h varies. We wish to approximate (1.1)

and (1.2) by the finite-difference scheme of the form

(2.4) v(x9 t + k) = Shv(x, 0 ,

(2.5) v(x90)=uo(x),

where

(2.6) Sh = Σ*CaTVT*2i~T«nn9 α = ( α i , α2,..., α π ),

Tj is a translation operator defined by

(2.7) Γ-^φc j , x2,...,xΛ)=t;(x1,..., * ,_ ! , x ; ±Λ, xj+u..., xn),

C'as are constant NxN matrices and the summation extends over a finite

number of terms.

To study the stability of the finite-difference scheme (2.4), we consider the

amplification matrix

(2.8) C(ω) =

where

(2.9) (α, ω) = Σ j . i α y ω y , ω = hξ,

ξ=(ξί9 ζ2>--> ζn) i s t n e variable vector dual to x in the Fourier transform. Let

AJ = ΣιbιTj be a finite-difference operator that approximates the differential

operator hdjdxj and put Σιbιexp(ilωj) = iSj(ω). Then we assume that s/ω) is a

sufficiently smooth real-valued periodic function of ωj with period 2π and that for

some positive integer r it can be written as follows:

(2.10) s/ω)=ωy + 0( |ω/ + 1 ) ( | ω ^ π ; ; = l, 2,..., n).

Put

(2.11) s(ω)=(s!(ω), s2(ω),..., sΛ(ω)) .

Then the amplification matrix corresponding to the operator

(2.12) Ph=λΣUAjΔj
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can be expressed as ίλA(s(ω)).

We denote by A* the conjugate transpose of the matrix A and denote by

λj(A) O' = l, 2,..., N) the eigenvalues of A. For hermitian matrices A and B

we use the notation A^.B when A — B is positive semidefinite.

We shall make use of the following

LEMMA 1. Let X and Y be NxN matrices and assume that all linear

combinations with real coefficients of X and Y have only real eigenvalues.

Let σ = σΐ + iσ2 be any eigenvalue of the matrix X + ιΎ, where σx and σ2 are

real numbers. Then

where λ^X) and λN(X) are the largest and the smallest eigenvalues of X re-

spectively.

This lemma follows from Lax's theorem on hyperbolic matrices [1, 6].

3. Schemes of Lax-Wendroff type

We are concerned with the case where the amplification matrix C(ω) can be

written as follows:

(3.1) C(ω) = I+Σrj=i-jγUλA(s(ω))V-λ2mR(ω, λ) 9

where

(3.2) R(ω9 λ) = Q(t(ω)) + O(λ\t(ω)\),

(3.3)

(3.4)

R(ω, λ) is continuous in ω and λ9 Qj (j = l, 2,..., ή) are real constant NxN

matrices, ί(ω)=(ί!(ω), ί2(ω),..., ^(ω)), and tj(ω) is a sufficiently smooth real-

valued periodic function of coj with period 2π. For ω such that t(ώ)φθ put

(3.5) ρo(ω) = α«ω)/|ί(ω)|).

Let 5 be the set of all points ω such that |ω7 | ^ π 0 = 1, 2,..., ή) and decom-

pose S into the following three subsets:

S1={ωeS: s(ω)φθ}, S2={ωeS: s(ω)=0, *

S3 = {ω G S: s(ω) =0, ί(ω) =0} .

In the sequel we assume that s(ω) does not vanish in S except for a finite
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number of points and that there exists a constant C2 such that

(3.6) |s(ω)|'+'£C2|ί(ω)|,

where

I I if r is odd,

2 if r is even .

Since S2 and S3 are finite sets, we can write them as follows:

(3.8) S 2 = { ω ( I U ( 2 ) , . . . , ω « } , S3={ω<s+1>,..., ω<'>}.

Put

(3.9) P=λ\s(ω)\, σ=λ2"\t(ω)\,

(3.10) e(ω; A) = l-max|A J(C(cu))|2 .
j

For ω e Sx put

(3.11) Γ(s(ω)) = Γ(ω), D0(s(ω))=D0(ω), \s(ω)\D0(ω)=D(ω)9

(3.12)

(3.13) T(ω)ρ o(ω)T(ω)- 1=ρ o(ω),

(3.14) T(ω)C(ω)T(ω)~1 =

Then C(ω) can be written as follows:

(3.15) C(ω)

Now we shall show the following

THEOREM 1. Suppose that there exist positive numbers band λ0 such that

(3.16) \λj(C(ω))\^l-δσ for λ<,λ0 0 = 1,2,..., N).

T/î n ί/ie scheme (2.4) is stable for λ^λ0.

PROOF. We consider first the case where ωeSx. When r is odd, since by

(3.6)

and rH-l—2m^l by (3.3), C(ώ) can be written as follows:
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(3.17) C(ω)=exp(ϊpD0(ω))-σ[δo(ω) + 0(λ)].

When r is even, since

pr+2 = λr+i i ^ ) i r+2 g c 2 λ r + 2 |/(ω) | = C2/lΓ+2-2mσ

and r + 2 —2m^2, we can write £(ω) as follows:

(3.18) C(ω) = exp(ι>Z>o(ω)--ί;qfIyΓ(/p/)o(ω))^M-σ

In both cases we have

(3.19) C(ω

There exists a unitary matrix U(ω) by which C(ω) is transformed into an
upper triangular matrix, namely,

C'(ω) = UC(ω) U*=K + R,

where

K=dmg(λuλ29...,λN)9 λj=λj(C(ω)) 0 = 1, 2,..., JV),

Since by (3.16) and (3.19)

)

), C'(ω)*C'(ω) = UC(ω)*C(ω)U* =1 + 0{σ)

it follows that

From this it can be shown that rtj = O(σ) (i<j). Hence \R\^βσ for some
constant β. Put

δσ=y, y

Then since

( ^ ) , q = min(p,N-l)9

we have

Next we consider the case where ωeS2. Since
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there exist unitary matrices Uj and constants βj (j = l, 2,..., s) such that

\Rj\£βjσj 0 = 1, 2,..., s),

where Kj and JR̂  (j = 1, 2,..., s) are diagonal and strictly upper triangular matrices

respectively. Put

^ ) " - 1 ) 0 = 1, 2,..., s).

Then it can be shown as before that

In the case where ω e S 3 , since C(ω)=7, we put C'(ω) = L

Now put

T0(ω) =

U(ω)T(ω) if ω e S , ,

17, if ω=ω ( '> 0 = 1, 2,..., s) ,

/ if ω e S 3 .

Then we can choose a constant C o such that

and it follows that

I C(ω)P\ = I T0(ω)" * C'(

for all p such that pk^T, where y o = r n a x (1, y, )Ί, y2> » 7s) This implies the

stability of the scheme (2.4).

In the following we shall give some sufficient conditions under which (3.16)

is valid.

We consider the following two conditions.

CONDITION (I) : There is a positive number p such that

λj(Q0(ω))^p for all ωeS2 0 = 1,2 JV) -

CONDITION (II): There is a positive number p such that

Go(ω)* + Q0(ω) = 2pl for all ω e S2 .

Then we have the following

LEMMA 2. Suppose that the condition (I) or (II) is satisfied. Then there

exists a positive number μx such that
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(3.20) e(ω;λ)^pσ for λ^μι and for all ωeS2.

PROOF. We put for simplicity ω(k)—ω0 (l^fegs) and λ2m\t(ω0)\—σ0.

Then

C(ω 0)=/-σ 0[Qo(ω 0

In the case where the condition (II) is satisfied, since

C(ωo)*C(ωo) =1- σolQo(ωo)* + Q0(ω0

there is a positive number μ\ such that

\C(ωo)\2^l-pσo for λ£μ\ ,

and it follows that

for

Next we consider the case where the condition (II) is satisfied. There is a

unitary matrix U such that UQ0(ω0)U*=K-\-R, where X is a diagonal matrix

and

Let g be a positive number and put

G=diag(0, 0 2 , . . . , Λ .V=GU.

Then we have

where

Hence we can choose g so that

Then since K^pl9 by Gerschgorin's theorem

Put C'(ω0) = W:(ω0) F - 1 . Then since

C'(ωo)*C(ωo) =1- σo(2K + K* + R) + O(λσQ),

for some constant μ\ > 0
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for λgμ\ (; = 1, 2,..., N) .

From this it follows that

e(ωo;λ)^pσo for λ^μ\ .

Since S2 is a finite set, we can choose a positive number μx so that (3.20)

is valid. This completes the proof of lemma 2.

By continuity of eigenvalues, we have the following

COROLLARY. Suppose that the condition (I) or (II) is satisfied. Then, for

each ω ( f t ) e S 2 (1^/c^s), there exist a neighborhood N(ωik)) of ω ( k ) and a positive

number μ2 independent of k such that

(3.21) e(ω;λ)^pσl2 for λ^μ2 and ωeN(ω<*>).

We have the following stability criterion in terms of the symmetric part of

δo(ω).

THEOREM 2. Assume that there exists a positive number q such that

(3.22) Qo(ω

and that the condition (I) or (II) is satisfied. Then the scheme (2.4) is stable for

sufficiently small λ.

PROOF. By (3.22) and (3.19) we can choose a constant μ > 0 such that

e(ω λ)^.qσ for λ:gμ and ωeSt.

By lemma 2 we have a constant μx such that (3.20) is valid for ω e S 2 . When

ω e S 3 , it is clear that p—0 and λj(C(ω)) = l 0 = 1, 2,..., N). Hence there exist

positive numbers δ and λ0 such that

e(ω;λ)^2δσ for Λ ^ o .

From this it follows that

\λj(C(ω))\^l-δσ for λ^λ0 0 = 1, 2,..., JV)

and the scheme (2.4) is stable for λ^λ0 by theorem 1.

We now introduce the following two assumptions.

ASSUMPTION (A): For each ω(k)eS3 (s + l^k^t)9 there exists a neighbor-

hood F(ω(fc)) o/ω ( Λ ) satisfying the following conditions:

(i) s(ω)#0 in F(ω ( k ) ) except for ω = ω ( f e ) ;
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(ii) there exists a constant C3 such that

(3.23) | ί(ω) |^C 3 | s(ω) | for ωeV(ω^)\

(iii) y=s(ω) has the inverse function ω=f(y) in F(ω ( k )).

ASSUMPTION (B): For each ω(k) eS3 (s +1 = k = t), there exists a neighbor-

hood V(ω(k)) of ω(k) satisfying the conditions (i) and (ii).

Then we have the following stability criterion in terms of Q0(ω).

THEOREM 3. Under the assumption (A), suppose that there exists a positive

number q such that all the eigenvalues of any principal submatrix of Qo(co)

are not less than q. Suppose also that the condition (I) or (II) is satisfied.

Then the scheme (2.4) is stable for sufficiently small λ.

PROOF. Put for simplicity ω ( f c ) = ω 0 . By the assumption there is a positive

number γ0 such that

f(y)eV(ω0) for \y\<γ0.

Let Sn~ι be the unit spherical surface in the real n-space and define N(ω0) by

iV(ωo) = {ω: ω=f(yl), O^y<y 0 , /eS-" 1 } .

Then N(ω0) is a neighborhood of ω 0 .

For any fixed leSn~ι, put to=f(γl) (0<y<y o ) . Then since s(ώ)=yl and

\s(ώ)\ =y, D0(ω) does not depend on γ. Let ej (7 = 1, 2, . , p) be all the distinct

eigenvalues of D0(ώ) and let m7- 0 = 1, 2, .., p) be their multiplicities respectively.

Without loss of generality we may assume that D0(ώ) is of the form

D0(ω) =

O

e2l2

O

where Ik is the unit matrix of order mk. Corresponding to this form, we partition

Qo(ω) as follows:

( G i l <2l2

δ o (a)=

Qpl Qpl

where Qjk(βϊ) is an rtij x mk matrix.

Gi
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There is a unitary matrix Uj(ω) (1 ̂ j^p) such that

) Uj(ω) = Kj(ω) + Rj(ώ),

where the matrices Kj(ώ) and Rj(fi>) are diagonal and strictly upper triangular
respectively. Making use of these, we construct the following matrices:

u U29...9UP\

RuK2 + R29...9Kp + Rp), F=(Fjk),

where

Fjk(ω) = (ek - ej)-ι Qjk(ω) Uk(ω) (j Φ k),

Put

where

β=λy, d=λ2m\t(ω)\.

Then it follows that

(iβD0 - σQ0)pR = βR(iβD0 - 6E) + O(ί 2) .

is bounded because Q0(ώ) is bounded in norm. Since by (3.23)
^C3

<y, for some constant μ 3 >0

Ip-^C/*^ <1 for

For such λ, R~i exists and we have

Since Rj((θ) (l^jύp) is bounded in norm, there is a positive number
such that

where

Put

G=diag(G1, G2,...,Gp),
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1+Rl9 K2+R29...,κp+Rp).

Then we have

and so

Since Kj^qlj (j = l, 2,..., p) by the assumption, it follows that

E* + E^(3q/2)I,

and for some constant μ'3 > 0

e(ώ;λ)^qd for /l^μ'3 .

By continuity of e(ω; A), there exist a positive number /i3 and a neighborhood

(7(0 of / on S"-1 such that

e(ω; λ)^qσ/2 for ω=f(γl) and Λ^μ 3 ,

where leU(l) and 0<y<y o Then by the Heine-Borel theorem we can cover

5"" 1 by a finite number of such neighborhoods. Hence we can choose a posi-

tive number μ such that for ω e N(ω0) (ω Φ ω0)

(3.24) e(ω;λ)^qσ/2 for λ^μ.

By continuity of eigenvalues, (3.24) holds for all ω e N(ω0).

Since S3 is a finite set, there exist a positive number μ3 and neighborhoods

N(ω<*>) of ω<*> (fc=s+l, s + 2,..., t) such that

e{ω\λ)^qσjl for Agμ3 and ωeN(ω(k>) (fe = s+1,.. . , 0 .

Put

Ω = S-\Jt

i=ίN(ω^)9 e=inf |s(ω)|, α = sup |ί(ω)|.
ωeΩ ωeΩ

Let ω 0 be any point belonging to Ω, βj(j = \9 2,..., p) be all the distinct eigen-

values of D0(ω0) and rrij O' = l, 2,..., p) be their multiplicities respectively.

Replacing ώ, /5 and d by ω 0, p 0 = A|s(coo)| and σo=λ2m\t(ωo)\ respectively, we

define the matrices U, E, F and R analogously. Since poισ0^λ2m~ιoί/ε9 we can

find a constant μ^>0 such that

|po ^0^7*^1 <1 for

Then R~x exists for such λ and there holds
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for λ ^ μ 4 .

By continuity of eigenvalues there exist a positive number μ\ and a neighborhood

N(ω0) of ω 0 such that

e(ω 2) ̂  qσ/2 for A ̂  μ'i and ω e N(ω0).

By the Heine-Borel theorem we can cover Ω by a finite number of such neighbor-

hoods, and so for some constant μ4 > 0

e(ω; λ)^qσj2 for Λ:gμ4 and ωeΩ.

If we put

λ0 =min (μ2, μ3, μ4), 4(5 =min (p, ζ?),

then (3.16) is satisfied and the theorem has been proved.

We have the following stability criterion for a strictly hyperbolic system in

terms of the diagonal elements of βo( ω )

THEOREM 4. For a strictly hyperbolic system (1.1), under the assumption

(B), suppose that there exists a positive number q such that the diagonal ele-

ments of Q0(ω) are all not less than q. Suppose also that the condition (I) or

(II) is satisfied. Then the scheme (2.4) is stable for sufficiently small λ.

PROOF. By the assumption there is a constant β such that

(3.25) \dj(ω)-dk(ω)\^β>0 {jΦk\j, fc = l, 2, . . . ,N).

Put

£(ω)=diag(tf n (ω), q22(ω\..., qNN(ω)),

pR =pI + iσP, Ωx = 5 - w ;

where

j j j Pjj=O (j, k = l9 2,.. ., iV).

Then by (3.25) we have

(iλD - σQ0)pR =pR(iλD - σE) + O(σ2),

because \P\ is bounded. Since |ί(ω)|/|s(ω)| is bounded in Ω t Π Sί9 R~ι exists for

sufficiently small λ and
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If we put C(ω)=R-ιC(ω)R, then

so that

C(ω)*C'(ω)=I-2σE + 0(λσ).

Since E^. ql by the assumption, there is a positive number μ5 such that

e(ω; λ)^qσ for λ^μ5 and ωeΩ1(]Sί.

By continuity of e(ω; λ) this result is valid also for ωeS3. Thus if we choose

λ0 =min (μ2, μ5), 2δ =min (p/2, q) ,

then (3.16) is satisfied and the theorem has been proved.
Now we shall show the following

THEOREM 5. Suppose that all linear combinations with real coefficients
of A(s(ω)) and Q(t(ω)) have only real eigenvalues and that there exists a posi-
tive number q such that the eigenvalues of Q0(ω) are all not less than q. Then
the scheme (2.4) is stable for sufficiently small λ.

PROOF. Put

M(ω) = ίρD0(ω) - σQ0(ω)

and let —σj + ipj (y = l, 2,..., N) be the eigenvalues of M(ω). Then since

T(ω)~ιM(ω)T(ω) = iλA(s(ω)) - λ2mQ(t(ω)) ,

by lemma 1 we have

σj^qσ (j = l, 2,..., N) .

By Gerschgorin's theorem we can find a suffix k(j) such that

Pj = pdkU) + O(σ\ σj = O(σ) .

There exists a unitary matrix U(ω) such that UMU*=K + R, where

Put

UQ0U*=Lί+Ei+Rl9
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where the matrices Li and L 2 are strictly lower triangular, R1 is strictly upper

triangular, Eu E2 and E are diagonal matrices and they are all bounded in norm.

Then it follows that iL2—σL1. Hence

(3.26) ipUD0U* = ίpE + σ(Lί + iE2-Lf),

K = iρE + iσE2-σEu R=σS, S=-Lf-R1 .

There are positive numbers g and C 4 such that

where

V=GU, G=άmg(g,g\...,gN).

We consider first the case where r is odd. By (3.17) C(ω) can be written as

follows:

C(ω) =exp (M(ω)) + O(λσ).

Since

Cr(ω) = vC(ω) V-ί = exp (K + σ5) + O(λσ),

it follows that

C'(ω)*C'(ω) =exp(X* + X) + σ(S* + S) + O(λσ).

By Gerschgorin's theorem the eigenvalues of exp (X* + K) + σ(S* + 5) are not

greater than

max exp (— 2σJ) + ̂ σ/4 .
j

Since

exp ( - 2σJ) + qσ/4 = 1 - (2σ</ - ^ σ/4) + O(σ2), 2σ, - ^ σ/41 iqσjA,

we have e(ω; λ)^qσ for sufficiently small λ. The condition (I) is satisfied by the

assumption and e(ω; λ) = σ=0 for ω e S 3 . Hence there exist constants Λ,o
 a n d ^

such that (3.16) is satisfied and the scheme (2.4) is stable for λ^λ0.

Next we consider the case where r is even. Put

Then by (3.26) we have
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U(ipDoγ
+ίU*=(ipE)r+ί +λrσW,

where \W\ is bounded. Hence

371

Put

and let —ot+iβ be any eigenvalue of Mγ{ώ). Then by Gerschgorin's theorem we

can find a suffix k such that

Since

and σk^q9 for sufficiently small 2 we have \oc — σk\^qσ/2 and cc^.qσ/2. Hence

there is a positive number μ5 such that

for ( ; = 1 , 2,...,

where -oLj + iβj (7 = 1, 2,..., ]V) are the eigenvalues of M^ω). By (3.18) C(ω)

can be written as follows:

C(ω) =exp(Mi(ω)) + O(λσ).

The stability of the scheme (2.4) can be shown as in the previous case.

EXAMPLE. Consider the Lax-Wendroff scheme for the system (1.1) with

n = 2 , N = 3 and

'3.

0

, o1

0

1

0

0N

0

1/

1

1

2

0

4

0

2

Then r = 2 , m = l and

^•(ω) = sin ωp tj(ω) = sin 4 (ω, /2) ( = 1, 2),

C(ω) = ±
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(3yi+2y2 y2 4y2

y2 yi + 2y2 0

Q(y)=2(A2

iyi+A2

2y2) =

0 0 yi+2y2

8 ^ + 1 0 ^ %y2 32y2

8y2 2yx + 10y2 $y2

0 0

If we choose

T(ω) =

M -p 0 )

p 1

0 0 1 /
then

/ q pq 4pq \

-pq q 4q

0 0 1 /

d2(ω)=2(s /

1+s'2)-sgn(s'1),

where

s'j=sj(ω)l\s(ω)\ (j = l, 2),

ί 1 if x > 0

( - 1 if x<0*

Hence this system is strongly hyperbolic but not strictly hyperbolic. The con-

dition (3.6) is satisfied because

Since Q(y) has only real eigenvalues for any real y and

^l 0 = 1,2,3),
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by Lax's concavity theorem for hyperbolic matrices [1]

A/ρo(ω))12(ί1(ω) + ί2(ω))/|ί(ω)|^2 Q = l, 2, 3),

and the condition (I) is satisfied. It is easily verified that the conditions of theo-

rems 2, 3 and 5 are all satisfied. It can be shown that, when ωι=0 and ω 2 = π ,

|C(ω)|>l for sufficiently small λ.

4. Examples of the schemes

We shall present examples of the schemes that satisfy the conditions (3.2),

(3.3) and (3.6). For this end we introduce the following finite-difference operators:

Λ = Σl-iAjΔj, P2 = Σ }=iAjA</>,

03 = Σπj= lAjDfl + ΣjΦkAjAu A </> Δ £2>,

where

± Z>2; = Γ,. - 27+

Put

Xj=sin (Oj, Xj=sin 2(ω;/2) ( = 1, 2,..., n),

JQ -SXj -4Xj) + Σj^AjA^iXj + Xk

Then we obtain the following scheme with accuracy of order 3:
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We have also the following scheme with accuracy of order 4:
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