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Introduction. The notion of prime ideals plays an important role in the theory
of associative algebras. It seems to be interesting for us to know how the corre-
sponding notion behaves itself in Lie algebras. In this paper we shall introduce the
notion of prime ideals into Lie algebras which are not necessarily finite-dimensional
and investigate their properties.

We give two conditions for ideals to be prime and study the interrelations
among prime, semi-prime, irreducible and maximal ideals. We also show that
in a Lie algebra satisfying the maximal condition for ideals, any semi-prime ideal
is an intersection of finite number of prime ideals and the unique maximal solv-
able ideal is equal to the intersection of all prime ideals.

The author would like to express his thanks to Professor S. Togo for his
helpful suggestions and encouragement.

1. Let Φ be a field of arbitrary characteristic. Let L be always a Lie algebra
over Φ which is not necessarily finite-dimensional. For any element x of L, < XL >
is the smallest ideal of L containing x [4]. Rads(L) is the sum of all solvable
ideals of L [6]. If L satisfies the maximal (resp. minimal) condition for ideals,
we write Le Max— < (resp. Min— <]) [5].

2. An ideal P of L is called prime if [#, K~\^P with H, K ideals of L
implies H^P or K^P.

Let L and L' be Lie algebras and let/: L->L' be a surjective homomorphism.
Then it is easily seen that an ideal P of L containing Ker/ is prime if and only if
/(P) is prime in L'.

THEOREM 1. Let P be an ideal of L. Then the following conditions are
equivalent:

i) P is prime.

ii) If[_a,H~]^Pfor aeLand an ideal H of L, then either a eP or H^P.

iii) //[α, <ί?L>]^Pfor a, beL, then either αeP or beP.

PROOF, i)=>iii). For each α e L,
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<aL> =

where V0=(ά) and K, = [... [(0), L],...,L]. If [α, <feL>]cp, we assert that
i

[Ff, <{>L>]cp for all i>0. In fact, it is true for i=0. Let i>l and assume

that the assertion is true for i — 1. Then

Thus we have the assertion. It follows that

c p.

Since P is prime, either < αL > c p or < ftL > c p and so aeP or beP.

iii)=>ii). Let α e L\P and let H be an ideal of L such that [α, //] s P. For
any beH, [α, <ί?L>]cp since the ideal <bL> is contained in'H. AsaφP,

iiϊ) implies b e P. Hence H^'P.
ii)=>i). Let//, X be ideals of L such that [#,K]cp and #$P. Since

[α, X] s P for any α e H\P, we have K c p by ii). Therefore P is prime.
This completes the proof.
As in associative rings [3] we say an ideal Q of L to be semiprime if the

following condition is satisfied : If H2 c Q for an ideal H of L, then H^Q. Semi-
prime in this sense is the same as "primitif" in [7], and the following lemma
is noted in [7].

LEMMA 2. An ideal Q of L is semi-prime if and only ί/Rad@(L/Q)=(0).

As in commutative rings [1] we define the irreducibility of ideals as follows:
An ideal N of L is said to be irreducible ifN=H n K with H, K ideals of L implies
N=HoτN=K.

LEMMA 3. (1) Any prime ideal is semi-prime.

(2) Any prime ideal is irreducible.
(3) Any maximal ideal is irreducible.
(4) Among prime, semi-prime, irreducible and maximal ideals, there are

no implications besides (1), (2) and (3).

PROOF. (1) and (3) are clear. (2) is immediate since [H , K'] s H n K for
any ideals H, K of L.

(4) Let L be a 2-dimensional non-abelian Lie algebra, that is, L=(x9y)
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with [x, y"]=x. Then the ideals of L are (0), (x) and L. (0) is irreducible but
neither prime nor semi-prime, for (x)2 =(0). Apparently (0) is not maximal.
(x) is maximal but neither prime nor semi-prime, because L2 =(x). By definition

L is prime but not maximal.
Let Si9 S2 and 53 be finite-dimensional simple Lie algebras. Let L =

Sι®S2@S3. Then the ideals containing Sί properly are Sl®S2, Sl®S3 and L.
Therefore Sl is semi-prime. Since

[Si ® s2, sl e s3] s sl = (Si e s2) n (Si e s3),

Si is neither prime nor irreducible. Ŝ  is obviously not maximal.
This completes the proof.

PROPOSITION 4. Let P be an ideal of L and let P φ L.

(1) P is prime if and only if P is irreducible and semi-prime.
(2) Let L e Min— <. Then P is prime if and only if there is the smallest

ideal M containing P properly and such that M/P is not abelian.

PROOF. (1) Let P be irreducible and semi-prime, and let H, K be ideals
of L satisfying [#, X] c P. If we put N = (H + P) n (K + P), then

c p.

Hence N^P and

n (X + P).

Then P=H + P or P=1C + P, that is, #cp or ICcp. Therefore P is prime.

The converse is shown in Lemma 3.
(2). Since LeMin— <], there is a minimal ideal which contains P properly.

If such ideals Mi9 M2 are distinct, then

[M1,M2]cM1 n M2 =P.

If P is prime, then M χ cp or M2^P, which is a contradiction. Therefore

there exists a unique minimal ideal M. M/P is not abelian because (M/P)2 =
(0) implies Me p.

Conversely, let M be the ideal satisfying the condition. Assume that P
is not prime. Then there exist ideals H, K of L such that

H $ P, X φ P and [#, K] £ p.

H + P and K + P contain P properly and therefore M s H + P, MC X + p. Hence

M2 c
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that is, (M/P)2 =(0), which is a contradiction. Therefore P is prime.
This completes the proof.

THEOREM 5. Let M be a maximal ideal of L. Then the following condi-
tions are equivalent:

i) M is prime.
ii) M is semi-prime.

iii) dimL/M>l.

PROOF. i)=>ii). This is obvious.

ii)=>iii). If dimL/M = l, then L/M is abelian and L2^M. Since M is
semi-prime, this implies L^M, which contradicts the maximality of M.

iii)=>i). If M is not prime, then there exist ideals H, K of L satisfying H φ
M, K^M and [H, K]^M. M is maximal, whence H + M=K + M=L and

L2 =

L/M is then abelian. Furthermore it has no proper ideal by maximality of M.
Therefore the dimension of L/M must be 1 .

This completes the proof.

COROLLARY 6. (1) Let L be a perfect Lie algebra. Then a maximal
ideal of L is prime.

(2) Let L = 0 Lλ where Lλ, λεΛ, are simple. Let H be an ideal of L
λeΛ

and let H^L. Then H is prime if and only if H is maximal, and if and only if
H is irreducible.

PROOF. (1) Let M be a maximal ideal of L. Assume that M is not semi-
prime, then there exists an ideal H such that H2^M and HφM. Since M is
maximal, // + M=L and

L2 =

which is a contradiction. Hence by Theorem 5 M is prime.
(2) Since L is perfect, a maximal ideal of L is prime by (1) and a prime

ideal is irreducible by Lemma 2. Let H be an irreducible ideal which is
different from L. Then

If A' has more than two elements, there are Lλl, Lλ2 (λί9λ2eΛf) such that

λl, H^H®Lλ2, and therefore

H = (H®Lλl) n (H®Lλ2).
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This contradicts the irreducibility of H. Therefore Λ' has only one element,
and H is maximal. This completes the proof.

3. Let H be an ideal of L. We denote by r(H) the intersection of all the
prime ideals of L containing H. We write rL for r(0), the intersection of all
the prime ideals of L, and call it the prime radical of L.

If L e Max — < and H is an ideal of L, then there exist a finite number of
prime ideals Pf (ϊ = l,..., n) such that

This can be proved in the same way as for nonassociative rings in [2]. Let
n

P be a prime ideal of L and let Hi9..., Hn be ideals of L such that r\ Ht^P.

Then H^P for some i, because

From this fact it is easily seen that the above expression of r(H) is unique whenever

0V/). The following may be pointed out: If Plv.., Pn are prime ideals

of L and H is an ideal of L such that H^ W Pf, then H^Pt for some i.

We here show that there is an intimate connection between the prime radical

and Rad@(L).

THEOREM 7. Rad@(L) is contained in rL. 7/LeMax — <], then Rad@(L)

equals rL.

PROOF. Let H be a solvable ideal of L. Then there is an integer n>0
such that #(II)=(0). For any prime ideal P of L we have H^P since #(π) =
(0) c p. Therefore Rad@(L) c rL .

If LeMax— <], then Rad@(L) is the unique maximal solvable ideal of L.
Assume that rL is not solvable. Let (£ be a collection of ideals # such that
r^φ// for all integers n>0. (£ is not empty because (0)e(£. Hence G
has a maximal element P. We claim that P is prime. If there are ideals
H, K of L such that

H $ P, K φ P and [H, K~] c P,

then # + P, X + P^eby definition of P. Hence

for some integers n, m>0. Let /c=max {n, m}. Then



684 Naoki KAWAMOTO

But this contradicts Pe(L Hence P is prime and rL$P, which contradicts
the definition of rL. Therefore rL is solvable and rLcRad@(L), which completes
the proof.

We finally give characterizations of semi-prime ideals when LeMax— <].

COROLLARY 8. Let LeMax-< and Q be an ideal of L. Then the fol-
lowing statements are equivalent:

i) Q is semi-prime.

ϋ) β=.r(Q).
iii) Q is a finite intersection of prime ideals of L.

PROOF. i)=>ϋ). If Q is semi-prime, Rad@(L/Q)=(0) by Lemma 2. By
Theorem 7 the intersection of all prime ideals of L/Q equals (0). Therefore Q
equals the intersection of all prime ideals of L containing Q.

ii)=>iii) follows from the fact stated in the beginning fo this section. An
intersection of semi-prime ideals is easily seen to be always semi-prime, whence
we have iii)=>i) by Lemma 2.
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