Conjugates of (p,q;r)-Absolutely Summing Operators

Mikio Kato

(Received September 12, 1974)

§1. Introduction

By K. Miyazaki [4] a linear operator T from a Banach space E into another Banach space F is said to be (p, q; r)-absolutely summing for $1 \le p, q, r \le \infty$ if there exists a constant c such that for every finite sequence $\{x_i\}$ in E the inequality

$$\left\{\sum_{i} (i^{1/p-1/q} \| Tx_i \|^*)^q\right\}^{1/q} \le c \sup_{\|x'\| \le 1} (\sum_{i} | < x_i, x' > |^r)^{1/r}$$

is satisfied. Here { $||Tx_i||^*$ } denotes the non-increasing rearrangement of { $||Tx_i||$ }, and as usual { $\sum_i (...)^q$ }^{1/q} and ($\sum_i |...|^r$)^{1/r} are supposed to mean sup for $q = \infty$ and $r = \infty$ respectively. Especially, (p, p; r)-absolutely summing operators are exactly (p, r)-absolutely summing operators which were defined by B. Mitjagin and A. Pełczyński [3] and (p, p; p)-absolutely summing operators coincide with absolutely *p*-summing operators which are due to A. Pietsch [6]. The conjugates of absolutely *p*-summing operators have been investigated by several authors and especially characterized by J. S. Cohen [1] as strongly *p'*-summing operators where 1/p+1/p'=1. The purpose of this paper is to investigate the conjugates of (p, q; r)-absolutely summing operators.

We shall introduce the notion of (r; p, q)-strongly summing operators and show that the conjugates of (p, q; r)-absolutely summing operators are (r'; p', q')-strongly summing operators where 1/p+1/p'=1/q+1/q'=1/r+1/r'=1 and that the converse holds under a certain assumption. As a consequence of this result, we shall characterize the conjugates of (p, q)-absolutely summing operators.

The author would like to thank Professor S. Tôgô for his valuable comments in preparing this paper.

§2. Conjugates of (p, q; r)-absolutely summing operators

Let E and F be Banach spaces and let E' and F' be their continuous dual spaces. Let K be the real or complex field.

For $1 \le p \le \infty$ a sequence $\{x_i\}$ with values in E is called weakly p-summable provided for any $x' \in E'$ the sequence $\{<x_i, x'>\}$ belongs to l_p . The space $l_p(E)$ of weakly p-summable sequences is a normed space with the norm Mikio Kato

$$\varepsilon_p(\{x_i\}) = \begin{cases} \sup_{\|x'\| \le 1} (\sum_{i=1}^{\infty} |< x_i, x'>|^p)^{1/p} & (1 \le p < \infty), \\ \sup_i \|x_i\| & (p = \infty). \end{cases}$$

For $1 \le p \le \infty$ a sequence $\{x_i\}$ with values in E is called strongly p-summable ([1]) provided for every sequence $\{x'_i\} \in l_{p'}(E')(1/p+1/p'=1)$ the series $\sum_{i=1}^{\infty} < x_i$, $x'_i >$ converges. The space $l_p \langle E \rangle$ of strongly p-summable sequences is a normed space with the norm

$$\sigma_p(\{x_i\}) = \sup_{\varepsilon_{p'}(\{x_i'\}) \le 1} \sum_{i=1}^{\infty} |\langle x_i, x_i' \rangle|.$$

For $1 \le p$, $q \le \infty$ a sequence $\{x_i\}$ with values in E is called (p, q)-absolutely summable provided the sequence $\{||x_i||\}$ belongs to $l_{p,q}$. The space $l_{p,q}\{E\}$ of (p, q)-absolutely summable sequences is a quasi-normed space with the quasi-norm

$$\alpha_{p,q}(\{x_i\}) = \begin{cases} (\sum_{i=1}^{\infty} i^{q/p-1} ||x_i||^{*q})^{1/q} & (1 \le q < \infty), \\ \sup_{i} i^{1/p} ||x_i||^{*} & (q = \infty), \end{cases}$$

where $\{||x_i||^*\}$ denotes the non-increasing rearrangement of $\{||x_i||\}$.

For $1 \le p$, q, $r \le \infty$ an operator T mapping E into F is called (p, q; r)-absolutely summing in K. Miyazaki [4] provided there exists a constant $c \ge 0$ such that for every finite sequence $\{x_i\}$ in E the inequality

$$\alpha_{p,q}(\{Tx_i\}) \le c\varepsilon_r(\{x_i\})$$

is satisfied. The smallest number c for which the above inequality is satisfied is denoted by $\Pi_{p,q;r}(T)$. In particular, (p, p; r)-absolutely summing operators are exactly (p, r)-absolutely summing operators which were defined by B. Mitjagin and A. Pełczyński [3] and (p, p; p)-absolutely summing operators coincide with absolutely p-summing operators which are due to A. Pietsch [6].

We now introduce the notion of (r; p, q)-strongly summing operators in the following

DEFINITION. For $1 \le p$, q, $r \le \infty$ we call an operator T mapping E into F (r; p, q)-strongly summing provided there exists a constant $c \ge 0$ such that for every finite sequence $\{x_i\}$ in E the inequality

$$\sigma_r(\{Tx_i\}) \le c \,\alpha_{p,q}(\{x_i\})$$

is satisfied. The smallest number c for which the above inequality is satisfied is called the (r; p, q)-strongly summing norm of T and denoted by $D_{r;p,q}(T)$.

In particular we say (r; p, p)-strongly summing operators to be (r, p)-

Conjugates of (p, q; r)-Absolutely Summing Operators

strongly summing operators and denote $D_{r;p,p}(T)$ by $D_{r,p}(T)$.

(p, p)-strongly summing operators are exactly strongly *p*-summing operators which were introduced by J. S. Cohen [1].

Now we suppose that $n \ge 1$ and that N is a norm or a quasi-norm on K^n . If $(x_1, ..., x_n) \in E^n$ we write

$$\|(x_1,...,x_n)\|_N = \sup_{\|x'\| \le 1} N(\langle x_1, x' \rangle,...,\langle x_n, x' \rangle),$$

$$\|(x_1,...,x_n)\|^N = \sup_{\|x'_1\| \le 1} N(\langle x_1, x'_1 \rangle,...,\langle x_n, x'_n \rangle).$$

Then we have the following two lemmas.

LEMMA 1. Let M be a quasi-norm on K^n which satisfies

$$M(\{\lambda_i\}) \le c_1 \max_{1 \le i \le n} |\lambda_i|$$

for a certain positive number c_1 and for every $\{\lambda_i\} \in K^n$. Let c_0 be a positive number which satisfies

$$M(\{\lambda_{i} + \mu_{i}\}) \le c_{0}[M(\{\lambda_{i}\}) + M(\{\mu_{i}\})]$$

for any $\{\lambda_i\}, \{\mu_i\} \in K^n$. Then for every $(x'_1, ..., x'_n) \in (E')^n$,

$$\|(x'_1,...,x'_n)\|^M \le c_0 \sup_{\substack{\|x_1\| \le 1\\ x_1 \in E}} M(< x_1, x'_1 > ..., < x_n, x'_n >).$$

PROOF. Let $(x'_1, ..., x'_n) \in (E')^n$. Let $(x''_1, ..., x''_n) \in (E'')^n$ and $||x''_i|| \le 1$. Then for any $\varepsilon > 0$ there exists an element $(x_1, ..., x_n) \in E^n$ with $||x_i|| \le 1$ such that

$$\max_{1 \le i \le n} |\langle x'_i, x''_i - J_E x_i \rangle| \le \varepsilon/c_0 c_1$$

where J_E denotes the canonical injection of E into E'', since the canonical image of the unit ball of E is $\sigma(E'', E')$ -dense in the unit ball of E''. Therefore we have

$$\begin{split} M(,..., < x'_{n}, x''_{n} >) \\ \leq c_{0}M(,..., < x'_{n}, J_{E}x_{n} >) \\ + c_{0}M(,..., < x'_{n}, x''_{n} - J_{E}x_{n} >) \\ \leq c_{0}M(,..., < x_{n}, x'_{n} >) + c_{0}c_{1} \max_{1 \le i \le n} |< x'_{i}, x''_{i} - J_{E}x_{i} > | \\ \leq c_{0} \sup_{\||x_{i}\|| \le 1} M(,..., < x_{n}, x'_{n} >) + \varepsilon, \end{split}$$

which shows that

Mikio Kato

$$\|(x'_1,...,x'_n)\|^M \le c_0 \sup_{\|x_i\|\le 1} M(,...,).$$

LEMMA 2. Let M be a quasi-norm on K^n which satisfies

$$M(\{\lambda_i\}) \le c_1 \max_{1 \le i \le n} |\lambda_i|$$

for a certain positive number c_1 and for every $\{\lambda_i\} \in K^n$ and let c_0 be a positive number which satisfies

$$M(\{\lambda_i + \mu_i\}) \le c_0[M(\{\lambda_i\}) + M(\{\mu_i\})]$$

for any $\{\lambda_i\}, \{\mu_i\} \in K^n$. Let N be a norm on K^n . Let T: $E \to F$ be a linear operator such that for a certain positive number c and for every $(x_1, ..., x_n) \in E^n$

 $||(Tx_1,...,Tx_n)||^M \le c ||(x_1,...,x_n)||_N.$

Then for $T'': E'' \rightarrow F''$ and for every $(x''_1, ..., x''_n) \in (E'')^n$,

$$\|(T''x_1'',...,T''x_n'')\|^M \le c_0^2 c \|(x_1'',...,x_n'')\|_N.$$

PROOF. Let $(y'_1, ..., y'_n) \in (E')^n$ and $||y'_i|| \le 1$. Then for any $(x_1, ..., x_n) \in E^n$ we have

$$M(\langle T'y'_{1}, J_{E}x_{1} \rangle, ..., \langle T'y'_{n}, J_{E}x_{n} \rangle)$$

= $M(\langle Tx_{1}, y'_{1} \rangle, ..., \langle Tx_{n}, y'_{n} \rangle)$
 $\leq ||(Tx_{1}, ..., Tx_{n})||^{M}$
 $\leq c ||(x_{1}, ..., x_{n})||_{N}.$

Therefore, if $||(x_1,...,x_n)||_N \le 1$, then

$$M(< T'y'_1, J_E x_1 > ..., < T'y'_n, J_E x_n >) \le c.$$

Now let $(x''_1, ..., x''_n) \in (E'')^n$ and $||(x''_1, ..., x''_n)||_N \le 1$. Then for any $\varepsilon > 0$ there exists an element $(x_1, ..., x_n) \in E^n$ with $||(x_1, ..., x_n)||_N \le 1$ such that

$$\max_{1\leq i\leq n}|< T'y_i', x_i''-J_Ex_i>|\leq \varepsilon/c_0c_1,$$

since the set $\{(J_E x_1, ..., J_E x_n) \in (E'')^n : ||(x_1, ..., x_n)||_N \le 1\}$ is $\sigma((E'')^n, (E')^n)$ -dense in the set $\{(x_1'', ..., x_n'') \in (E'')^n : ||(x_1'', ..., x_n'')||_N \le 1\}$ ([7]). Consequently

$$\begin{aligned} M(\langle T'y'_1, x''_1 \rangle, \dots, \langle T'y'_n, x''_n \rangle) \\ &\leq c_0 M(\langle T'y'_1, J_E x_1 \rangle, \dots, \langle T'y'_n, J_E x_n \rangle) \\ &+ c_0 M(\langle T'y'_1, x''_1 - J_E x_1 \rangle, \dots, \langle T'y'_n, x''_n - J_E x_n \rangle) \end{aligned}$$

Conjugates of (p, q; r)-Absolutely Summing Operators

$$\leq c_0 c + c_0 c_1 \max_{1 \leq i \leq n} |\langle T' y'_i, x''_i - J_E x_i \rangle|$$

$$\leq c_0 c + \varepsilon.$$

Hence, if $||(x_1'',...,x_n'')||_N \le 1$, then

$$M(\langle y'_1, T''x''_1 \rangle, \dots, \langle y'_n, T''x''_n \rangle) \leq c_0 c,$$

which implies that for any $(x''_1, ..., x''_n) \in (E'')^n$

$$M(\langle y'_1, T''x''_1 \rangle, ..., \langle y'_n, T''x''_n \rangle) \leq c_0 c \|(x''_1, ..., x''_n)\|_N.$$

Therefore by Lemma 1 we have the desired inequality

$$\|(T''x_1'',...,T''x_n'')\|^M \le c_0^2 c \|(x_1'',...,x_n'')\|_N.$$

THEOREM 1. Let $1 \le p, q, r \le \infty$. If an operator $T: E \to F$ is (p, q; r)-absolutely summing, then $T'': E'' \to F''$ is (p, q; r)-absolutely summing and

 $\Pi_{p,q;r}(T'') \le \max(2^{2/p}, 2^{2/q})\Pi_{p,q;r}(T).$

PROOF. If $n \ge 1$, we define M and N respectively by

$$M(\lambda_1,...,\lambda_n) = (\sum_{i=1}^n i^{q/p-1} |\lambda_i|^{*q})^{1/q}$$

and

$$N(\lambda_1,...,\lambda_n) = (\sum_{i=1}^n |\lambda_i|^r)^{1/r}$$

in the case where $1 \le q$, $r < \infty$. Then, since

$$M(\{\lambda_{i} + \mu_{i}\}) \leq \max(2^{1/p}, 2^{1/q})[M(\{\lambda_{i}\}) + M(\{\mu_{i}\})],$$
$$M(\{\lambda_{i}\}) \leq (\sum_{i=1}^{n} i^{q/p-1})^{1/q} \max_{1 \leq i \leq n} |\lambda_{i}|,$$
$$\alpha_{p,q}(\{x_{i}\}_{1 \leq i \leq n}) = \|(x_{1}, \dots, x_{n})\|^{M}$$

and

$$\varepsilon_r(\{x_i\}_{1\leq i\leq n}) = \|(x_1,...,x_n)\|_N,$$

the statement in this case is an immediate consequence of Lemma 2. The other cases can be shown similarly.

THEOREM 2. Let $1 \le p, q, r \le \infty$. If an operator $T: E \to F$ is (p, q; r)-absolutely summing, then its conjugate operator $T': F' \to E'$ is (r'; p', q')-strongly

Mikio Kato

summing and

$$D_{r';p',q'}(T') \leq \max(2^{2/p}, 2^{2/q}) \prod_{p,q;r}(T)$$

where 1/p + 1/p' = 1/q + 1/q' = 1/r + 1/r' = 1.

PROOF. Let $T \in \Pi_{p,q;r}(E, F)$. Then by the previous theorem $T'' \in \Pi_{p,q;r}(E'', F'')$ and $\Pi_{p,q;r}(T'') \le \max(2^{2/p}, 2^{2/q}) \prod_{p,q;r}(T)$. Hence, if $\{y'_i\}_{1 \le i \le n}$ is a finite sequence in F' and if $\{x''_j\} \in l_r(E'')$, we have

$$\begin{split} \left| \sum_{i=1}^{n} \langle T'y'_{i}, x''_{i} \rangle \right| &\leq \sum_{i=1}^{n} \|T''x''_{i}\| \|y'_{i}\| \\ &\leq \alpha_{p,q}(\{T''x''_{i}\}_{1 \leq i \leq n}) \alpha_{p',q'}(\{y'_{i}\}_{1 \leq i \leq n}) \\ &\leq \Pi_{p,q;r}(T'') \varepsilon_{r}(\{x''_{j}\}) \alpha_{p',q'}(\{y'_{i}\}) \\ &\leq \max\left(2^{2/p}, 2^{2/q}\right) \Pi_{p,q;r}(T) \varepsilon_{r}(\{x''_{j}\}) \alpha_{p',q'}(\{y'_{i}\}) \,. \end{split}$$

since

$$\|\{\xi_i\eta_i\}\|_{l_1} \le \|\{\xi_i\}\|_{l_p,q} \cdot \|\{\eta_i\}\|_{l_{p'},q'}$$

for $\{\xi_i\} \in l_{p,q}$ and $\{\eta_i\} \in l_{p',q'}$ ([5]). Therefore,

$$\sigma_{r'}(\{T'y'_i\}) \le \max(2^{2/p}, 2^{2/q}) \prod_{p,q;r}(T) \alpha_{p',q'}(\{y'_i\}),$$

which shows that $T' \in D_{r';p',q'}(F', E')$ and $D_{r';p',q'}(T') \le \max(2^{2/p}, 2^{2/q}) \prod_{p,q;r}(T)$.

REMARK 1. The converse of Theorem 2 holds under the assumption that $l_{p,q}{F}'$ and $l_{p',q'}{F'}$ are topologically isomorphic.

PROOF. Assume that

$$\alpha'_{p,q}(\{y'_j\}) \le \alpha_{p',q'}(\{y'_j\}) \le M \alpha'_{p,q}(\{y'_j\})$$

for a certain positive number M and for all $\{y'_j\} \in l_{p',q'}\{F'\} = l_{p,q}\{F\}'$ where $\alpha'_{p,q}$ denotes the norm of the dual space $l_{p,q}\{F\}'$ of $l_{p,q}\{F\}$. Let $T' \in D_{r';p',q'}(F', E')$. Then for an arbitrary finite sequence $\{x_i\}_{1 \le i \le n}$ in E and for any $\{y'_j\} \in l_{p',q'}\{F'\}$ we have

$$\sum_{i=1}^{n} < Tx_{i}, y_{i}' > | = \Big| \sum_{i=1}^{n} < x_{i}, T'y_{i}' > |$$

$$\leq \sigma_{r'}(\{T'y_{i}'\}_{1 \le i \le n})\varepsilon_{r}(\{x_{i}\}_{1 \le i \le n})$$

$$\leq D_{r';p',q'}(T')\alpha_{p',q'}(\{y_{j}'\})\varepsilon_{r}(\{x_{i}\})$$

Therefore, by our assumption we have

Conjugates of (p, q; r)-Absolutely Summing Operators

$$\begin{aligned} \alpha_{p,q}(\{Tx_i\}) &\leq \sup_{\alpha_{p',q'}(\{y_j\}) \leq M} \left| \sum_{i=1}^n \langle Tx_i, y_i' \rangle \right| \\ &\leq MD_{r';p',q'}(T')\varepsilon_r(\{x_i\}), \end{aligned}$$

which shows that $T \in \prod_{p,q;r}(E, F)$ and

$$\Pi_{p,q;r}(T) \le MD_{r';p',q'}(T')$$

as was asserted.

Since $l_p\{F\}'$ and $l_{p'}\{F'\}$ are isometrically isomorphic for $1 \le p < \infty$, as an immediate consequence of Theorem 2 and Remark 1 we have the following

THEOREM 3. Let $1 \le p$, $q < \infty$. An operator $T: E \to F$ is (p, q)-absolutely summing if and only if its conjugate operator $T': F' \to E'$ is (q', p')-strongly summing. In this case $\prod_{p,q}(T) = D_{q',p'}(T')$.

EXAMPLES. (1) Since for $1 \le q < r < p < \infty$ the identity operator I from C[0, 1] into $L_q(0, 1)$ is (p, q; r)-absolutely summing and not (q, r)-absolutely summing ([4]), its conjugate operator I' from $L_{q'}(0, 1)$ into M[0, 1] is (r'; p', q')-strongly summing and not (r', q')-strongly summing by Theorems 2 and 3. Here M[0, 1] denotes the Banach space of complex regular Borel measures on [0, 1].

(2) Since for $1 < r \le p < \infty$ the identity operator I from C[0, 1] into $L_p(0, 1)$ is (p, r)-absolutely summing ([4]), its conjugate operator I' from $L_{p'}(0, 1)$ into M[0, 1] is (r', p')-strongly summing.

(3) It is known ([2]) that the identity operator in l_1 is (2, 1)-absolutely summing. The operator is not absolutely *p*-summing for $1 \le p < \infty$, which is a consequence of Dvoretzky-Rogers Theorem ([6]). Therefore, the identity operator in l_{∞} is $(\infty, 2)$ -strongly summing, but not strongly 2-summing by Theorem 3.

§3. Operators whose conjugates are (p, q; r)-absolutely summing

The properties of operators whose conjugates are (p, q; r)-absolutely summing can be developed by similar discussions as in Section 2.

THEOREM 4. Let $1 \le p, q, r \le \infty$. If $T: E \to F$ is an operator whose conjugate $T': F' \to E'$ is (p, q; r)-absolutely summing, then T is (r'; p', q')-strongly summing and $D_{r';p',q'}(T) \le \prod_{p,q;r}(T')$.

The proof is similar to that of Theorem 2.

REMARK 2. The converse of Theorem 4 holds under the assumption that $l_{p',q'}\{E\}'$ and $l_{p,q}\{E'\}$ are topologically isomorphic.

This can be shown as in Remark 1.

As an immediate consequence of Theorem 4 and Remark 2 we have

THEOREM 5. Let $1 and <math>1 \le q < \infty$. An operator $T: E \to F$ is (q', p')-strongly summing if and only if its conjugate operator $T': F' \to E'$ is (p, q)-absolutely summing. In this case $D_{q',p'}(T) = \prod_{p,q}(T')$.

References

- J. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Math. Ann. 201 (1973), 177-200.
- [2] S. Kwapień, Some remarks on (p, q)-absolutely summing operators in l_p -spaces, Studia Math. 29 (1968), 327–337.
- [3] B. Mitjagin and A. Pełczyński, Nuclear operators and approximative dimension, Proc. I.C.M. Moscow, 1966, 366-372.
- [4] K. Miyazaki, (p, q; r)-absolutely summing operators, J. Math. Soc. Japan 24 (1972), 341-354.
- [5] K. Miyazaki, (p, q)-nuclear and (p, q)-integral operators, Hiroshima Math. J. 4 (1974), 99-132.
- [6] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333-353.
- [7] S. Simons, Local reflexivity and (p, q)-summing maps, Math. Ann. 198 (1972), 335-344.

Department of Mathematics, Faculty of Science, Hiroshima University