Hyperpolynomial Approximation of Solutions of Hereditary Systems

A. G. Petsoulas (Received March 1, 1974)

Introduction

Consider an operator L on $C[0,\tau]$, where $C[0,\tau] = \{\phi | \phi : [0,\tau] \to R^n$, continuous) with norm $\|\cdot\|$. Suppose that x is a solution of the equation L(x) = h, subject to the initial condition $x(0) = \alpha$. Then a problem in approximation theory is whether there are hyperpolynomials $S_n^* \in \Pi_n^*$ (Π_n^* is the set of all hyperpolynomials S_n^* of degree less than or equal to n, which satisfy the condition $S_n^*(0) = \alpha$, [5]) such that $||L(x) - L(S_n^*)|| = \inf_{S \in \Pi_n^*} ||L(x) - L(S)||$, n = 1, 2, ...

 $\lim S_n^* = x$, uniformly on $[0, \tau]$.

The above problem has been studied in the following cases:

i)
$$L(x) \equiv x' + B(t, x), \|\cdot\| = \|\cdot\|_p (L_p\text{-norm}), 1 \le p \le \infty. ([1], [3], [4].)$$

i)
$$L(x) \equiv x' + B(t, x), \|\cdot\| = \|\cdot\|_p (L_p\text{-norm}), 1 \le p \le \infty. ([1], [3], [4].)$$

ii) $L(x) \equiv x' + B(t, x) + \int_0^t F(t, s, x(s)) ds, \|\cdot\| = \|\cdot\|_p, 1$

The purpose of this paper is to study the same problem when L is an operator, which gives a hereditary system [2] and $\|\cdot\| = \|\cdot\|_p$, $1 \le p \le \infty$. The results here generalize those of [1], [3], [4], [5] not only for the case of the L_p -norm, 1< $p \leq \infty$ but also for the L_1 -norm.

Preliminaries

Let I be an interval of R, $A \subseteq R$ be compact with $\max A = 0$, $\alpha: I \times A \to R$ be a continuous function, nondecreasing with respect to the second variable and $\alpha(t,0)=t,\ t\in I.$ If $x:\alpha(I,A)\to R^n$ is continuous and $C(A)=\{f\mid f:A\to R^n, \text{ con-}$ tinuous}, we define an operator $Q_t x: I \rightarrow C(A)$ by the relation

$$(Q_t x)(\theta) = x(\alpha(t, \theta)), \quad t \in I, \quad \theta \in A.$$

An hereditary differential system is a relation of the form

$$(x-g(t,Q_tx))'=f(t,Q_tx)$$

where $f, g: I \times C(A) \rightarrow \mathbb{R}^n$ are continuous.

Suppose $U \subseteq C(A)$ is open. We say that a continuous function $g: U \to R^n$

is nonatomic at zero if for every $(t, \phi) \in U$ there exist $s_0 = s_0(t, \phi)$, $\mu_0 = \mu_0(t, \phi)$, continuous, $\rho(t, \phi, \mu, s)$ nondecreasing in μ , s and continuous such that

$$\rho(t, \phi, \mu, s) < 1, \qquad |g(t, \psi) - g(t, \phi)| \le \rho(t, \phi, \mu, s) \|\psi - \phi\|_{\infty}$$

for every $(t, \psi) \in U, \psi \in M, s \in [0, s_0], \mu \in [0, \mu_0]$, where

$$M = \{ \psi \in C(A) : (t, \psi) \in U, \| \psi - \phi \|_{\infty} \le \mu, \psi(\theta) = \phi(\theta), \theta \in A \cap (-\infty, -s] \}.$$

Also the function g is said to be of type T if

- i) g is uniformly continuous on closed and bounded sets,
- ii) g is nonatomic at zero, and
- iii) when $\lim_{n\to\infty} S_n = x$, uniformly on a closed interval J, then $\lim_{n\to\infty} g'(t, Q_t S_n) = g'(t, Q_t x)$, uniformly on J.

In what follows we consider the system

(1)
$$L(x) \equiv (x - g(t, Q_t x))' + f(t, Q_t x) = h(t), \quad t \in [0, \tau],$$

subject to the initial condition

(2)
$$Q_0 x = \phi, \qquad \phi \in C(A),$$

where $g: [0, \tau] \times C(A) \to R^n$ is of type T, $f: [0, \tau] \times C(A) \to R^n$ is uniformly continuous on closed and bounded sets and $h: [0, \tau] \to R^n$ is continuous. By $\|\cdot\|_p$, $1 \le p \le \infty$, we denote the L_p -norm and by Π_n , $n=1, 2, \ldots$, the set of all functions defined on $A \cup [0, \tau]$, which coincide with ϕ on A and a certain $S_n^* \in \Pi_n^*$ on $[0, \tau]$.

3. Main results

THEOREM. Let x(t), $t \in [0, \tau]$ be a unique solution of the system ((1), (2)). Then there exist an integer n_0 and $S_n \in \Pi_n$ such that

$$||L(x)-L(S_n)||_p = \inf_{S \in H_n} ||L(x)-L(S)||_p, \quad n \ge n_0, \quad 1 \le p \le \infty,$$

and $\lim_{n\to\infty} \|x-S_n\|_{\infty} = 0$.

The proof of this theorem requires the following lemmas.

LEMMA 1. Consider the systems

$$(H_n) \qquad (x-g(t,Q_tx))'+f(t,Q_tx)+f_n(t)=0, \quad t\in[0,\tau],$$

$$Q_0x=\phi, \quad \phi\in C(A)$$

 $n=0, 1,..., where f_n: [0,\tau] \to R^n$ are continuous and $f_0=0$. Suppose that $\lim_{n\to\infty} ||f_n||_p = 0$ and $x_0(t), t \in [0,\tau]$ is a unique solution of (H_0) . Then there exist an integer n_0 and solutions $x_n(t), t \in [0,\tau]$, of $(H_n), n \ge n_0$, such that $\lim ||x_n - x_0||_{\infty} = 0$.

The proof of this lemma is exactly analogous to that of Theorem 5.1 in [2].

Lemma 2. Let $\mu_{p,n} = \inf_{S \in \Pi_n} \|L(x) - L(S)\|_p$, $n = 1, 2, ..., 1 \le p \le \infty$. Then $\lim_{n \to \infty} \mu_{p,n} = 0$.

PROOF. According to Lemma 2 in [5] there exist $S_n^* \in \Pi_n^*$, n=1, 2, ..., such that $\lim_{n \to \infty} ||S_n^* - x||_{\infty} = 0$ and $\lim_{n \to \infty} ||S_n^* - x'||_{\infty} = 0$. Hence

$$\mu_{\infty,n} = \inf_{S \in \Pi_n} \| L(x) - L(S) \|_{\infty}$$

$$\leq \| L(x) - L(S_n) \|_{\infty}$$

$$\leq \| x' - S'_n \|_{\infty} + \| g'(t, Q_t x) - g'(t, Q_t S_n) \|_{\infty} + \| f(t, Q_t x) - f(t, Q_t S_n) \|_{\infty}.$$

Since g is of type T and f uniformly continuous on closed and bounded sets, we conclude $\lim_{n\to\infty} \mu_{\infty,n} = 0$ and consequently $\lim_{n\to\infty} \mu_{p,n} = 0$, $1 \le p \le \infty$.

LEMMA 3. Suppose that x(t), $t \in [0, \tau]$, is a unique solution of ((1), (2)) and $S_n \in \Pi_n$, n = 1, 2, ..., which satisfy $\lim_{n \to \infty} ||L(x) - L(S_n)||_p = 0$. Then $\lim_{n \to \infty} ||x - S_n||_{\infty} = 0$.

PROOF. If we put $w_n(t) = x(t) - S_n(t)$ and $k_n(t) = L(x(t)) - L(S_n(t))$, $t \in [0, \tau]$, then

$$k_n(t) = L(x(t)) - L(x(t) - w_n(t))$$

= $w'_n(t) - g'(t, Q_t x) + g'(t, Q_t(x - w_n)) + f(t, Q_t x) - f(t, Q_t(x - w_n)).$

Therefore, the functions w_n are solutions of

$$(W_n) \qquad (w - g(t, Q_t x) + g(t, Q_t (x - w)))' + f(t, Q_t x) - f(t, Q_t (x - w)) - k_n(t) = 0,$$

$$Q_0 w = 0,$$

where $k_0 = 0$.

Since $\lim_{n\to\infty} \|k_n\|_p = 0$ and zero is the only solution of (W_0) , by Lemma 1, we get $\lim_{n\to\infty} \|w_n\|_{\infty} = 0$.

LEMMA 4. If x(t), $t \in [0, \tau]$, is a solution of ((1), (2)) and $\min_{\substack{S \in \Pi_k \\ n \to \infty}} \|L(x) - L(S)\|_p$ does not exist, then there exist $S_{k,n} \in \Pi_k$, n = 1, 2, ..., such that $\lim_{\substack{n \to \infty \\ n \to \infty}} \|L(x) - L(S_{k,n})\|_p = 0$ and $\|S_{k,n}\|_{\infty} > k$, n = 1, 2, ...

PROOF. There exist $S_{k,n} \in \Pi_k$, n = 1, 2, ..., which satisfy

$$\mu_{p,k} = \inf_{S \in \Pi_k} \|L(x) - L(S)\|_p = \lim_{n \to \infty} \|L(x) - L(S_{k,n})\|_p.$$

The sequence $S_{k,n}$, $n=1, 2, \ldots$, is unbounded with respect to $\|\cdot\|_{\infty}$ since, in contrary, we have that $S_{k,n}$, $n=1, 2, \ldots$, is bounded, $S_{k,n} \in \Pi_k$, $n=1, 2, \ldots$, Π_n^* is finite dimensional and consequently there exists a subsequence S_{k,k_n} , $n=1, 2, \ldots$ such that $\lim_{n\to\infty} S_{k,k_n} = S_k \in \Pi_k$, $\lim_{n\to\infty} S'_{k,k_n} = x'$, uniformly. Thus $\mu_{p,k} = \lim_{n\to\infty} \|L(x) - L(S_{k,k_n})\|_p = \|L(x) - L(S_k)\|_p$, which is a contradiction.

PROOF OF THEOREM. If the first result of the theorem does not hold, then there exists an increasing sequence λ_n of integers such that $\min_{S \in \Pi_{\lambda_n}} \|L(x) - L(S)\|_p$ do not exist. Thus, by Lemma 4, for every λ_n there exist $S_{\lambda_n} \in \Pi_{\lambda_n}$, n = 1, 2, ..., which satisfy the relations

(3)
$$||L(x) - L(S_{\lambda_n})||_p \leq \mu_{p,\lambda_n} + \frac{1}{\lambda_n}$$

$$||S_{\lambda_n}||_{\infty} > \lambda_n, \qquad n = 1, 2, \dots$$

From (3), Lemma 2 and Lemma 3 we get $\lim_{n\to\infty} \|x-S_{\lambda_n}\|_{\infty} = 0$, which is a contradiction to (4).

Now, the second result of the theorem is obvious.

The above theorem leads to the following corollary.

COROLLARY. Suppose x(t), $t \in [0, \tau]$, is a unique solution of the system

$$L(x) \equiv x' + B(t, x) + \int_0^t F(t, s, x(s)) ds = h(t), \qquad t \in [0, \tau],$$
$$x(0) = \phi(0), \quad \phi \in C(A)$$

where $B: [0, \tau] \times R^n \to R^n$, $F: [0, \tau] \times [0, \tau] \times R^n \to R^n$ and $h: [0, \tau] \to R^n$ are continuous. Then there exist $S_n^* \in H_n^*$ and an integer n_0 such that

$$||L(x)-L(S_n^*)||_p = \inf_{S \in \mathcal{H}_n^*} ||L(x)-L(S)||_p, \qquad n \ge n_0, \quad 1 \le p \le \infty,$$

and $\lim_{n\to\infty} \|x-S_n^*\|_{\infty} = 0.$

PROOF. By considering in the theorem A = [-1, 0], $I = [0, \tau]$, $\alpha(t, \theta) = t(1 + \theta)$, $t \in I$, $\theta \in A$, g = 0 and $f(t, \phi) = B(t, \phi(0)) + \int_{-1}^{0} F(t, t(1 + \theta), \phi(\theta)) d\theta$, $(t, \phi) \in I \times C(A)$, it follows that g is of type T and f is uniformly continuous on closed and bounded sets. Thus the corollary is an immediate consequence of the theorem.

REMARK. The above corollary is the main result of [5] for $1 and moreover extends it for the <math>L_1$ -norm.

References

- [1] A. Bacopoulos and A. G. Kartsatos, On polynomials approximating the solutions of nonlinear differential equations, Pacific J. Math. 40 (1972), 1-5.
- [2] J. K. Hale and M. A. Gruz, Existence, uniqueness and continuous dependence for hereditary systems, Ann. Mat. Pura Appl. (4) 85 (1970), 63-81.
- [3] R. G. Huffstutler and F. MaxStein, The approximate solution of certain nonlinear differential equations, Proc. Amer. Math. Soc. 19 (1968), 988-1002.
- [4] R. G. Huffstutler and F. MaxStein, The approximate solution of y'=F(x,y), Pacific J. Math. 24 (1968), 283–289.
- [5] A. G. Kartsatos and E. B. Saff, Hyperpolynomial approximation of solutions of non-linear integro-differential equations, Pacific J. Math. 49 (1973), 117-125.

Department of Mathematics, Ellenik Naval Academy, Piraeus, Greece