S^{3} Actions on 4 Dimensional Cohomology Complex Projective Spaces

Tohl Asor

(Received January 17, 1975)

§1. Introduction

Recently, F. Uchida [5] has determined smooth $S U(3)$ actions on homotopy complex projective spaces $h P_{3}(C)$.

The purpose of this note is to study smooth $S^{3}(=S U(2))$ actions on cohomology complex projective planes by the analogous methods.

Let C and H be the complex and quaternion fields. Regard the complex projective plane as

$$
P_{2}(C)=P(H \times C)
$$

by the right complex multiplication. Then the smooth $S^{3}(\subset H)$ action on $P_{2}(C)$ is given by

$$
\begin{equation*}
q \cdot[p, a]=[q p, a] \quad\left(q \in S^{3}, p \in H, a \in C\right) . \tag{1.1}
\end{equation*}
$$

Also, regard H as the right complex vector space, set

$$
P_{2}(C)=P\left(C^{3}\right)=P\left(H \otimes_{C} H / \sim\right)
$$

where $p \otimes q \sim q \otimes p(p, q \in H)$, and consider the smooth S^{3} action on $P_{2}(C)$ given by

$$
\begin{equation*}
r \cdot[p \otimes q]=[r p \otimes r q] \quad\left(r \in S^{3}, p, q \in H\right) . \tag{1.2}
\end{equation*}
$$

Now consider a 4 dimensional orientable closed smooth manifold

$$
M=C H P_{2}(C),
$$

having the same cohomology ring as $P_{2}(C)$, and assume that M admits a nontrivial smooth S^{3} action.

Then, we obtain the following main theorem.
Theorem 1.3. If M satisfies the above conditions, then M is S^{3} equivariantly diffeomorphic to the complex projective plane $P_{2}(C)$ with the S^{3} action given by (1.1) or (1.2). In each case, the principal isotropy subgroup is the unit group $\{1\}$ or the cyclic group Z_{4} of order 4 , and the fixed point set $F\left(S^{3}, M\right)$ consists of
a single point or is empty.
We recall in $\S 2$ the basic facts about the smooth actions. After preparing in $\S 3$ some known results on closed subgroups and real representations of S^{3}, we prove Theorem 1.3 in $\S 4$ by showing several propositions concerning the latter half of Theorem 1.3.

§2. Smooth actions

Let G be a Lie group and M be a smooth manifold. A smooth G action α on M is a smooth map

$$
\alpha: G \times M \longrightarrow M, \quad \alpha(g, x)=g x
$$

satisfying the conditions

$$
\left(g_{1} g_{2}\right) x=g_{1}\left(g_{2} x\right), \quad e x=x, \quad\left(g_{1}, g_{2} \in G, x \in M\right)
$$

where e is the identity of G.
Assume that a smooth G action on M is given. For any $x \in M$, denote by

$$
G_{x}=\{g \in G ; g x=x\}
$$

the isotropy subgroup of G at x, which is a closed subgroup of G, and by

$$
G \cdot x=\{g x ; g \in G\}
$$

the orbit of x, which is a G invariant submanifold of M. Then the following basic facts hold.
(2.1) Let $x \in M$, and v be the normal bundle of the orbit $G \cdot x=G / G_{x}$ in M. Then the given G action on M induces naturally the G action on v as bundle maps, and we obtain the orthogonal action of the isotropy subgroup G_{x} on the fibre v_{x} over x. It is called the normal representation of G_{x} and denoted by ρ_{x}.
(2.2) (The differentiable slice theorem) Assume that G is a compact Lie group. Then the normal bundle v of (2.1) is G equivalent to the G bundle $G \times{ }_{G_{x}} v_{x} \rightarrow G / G_{x}$, where G_{x} acts on v_{x} via ρ_{x}, and also the orbit $G \cdot x=G / G_{x}$ has an open tubular neighborhood in M, which is G equivariantly diffeomorphic to $G \times{ }_{G_{x}} v_{x}$. (Cf. [3, (3.1)].)
(2.3) If G is a compact Lie group and M is connected, then there exists the conjugate class

$$
(H)=\{\text { conjugate subgroups of } H \text { in } G\}
$$

of a closed subgroup $H \subset G$ such that the set

$$
M_{(H)}=\left\{x \in M ; G_{x} \in(H)\right\}
$$

is a dense open submanifold of M. The conjugate class (H) is called the type of principal isotropy subgroups, and $H^{\prime} \in(H)$ is called a principal isotropy subgroup. (Cf. [1, IV, Th. 3.1].)

By (2.2) and (2.3), we see easily the following fact.
(2.4) If M is connected, the normal representation ρ_{x} of G_{x} at x is trivial if and only if G_{x} is a principal isotropy subgroup.

§3. Closed subgroups and real representations of $\mathbf{S}^{\mathbf{3}}$.

In this section, we prepare some results on the Lie group $S^{3}=S U(2)$.
Lemma 3.1. Any closed connected proper subgroup $H \neq\{1\}$ of S^{3} is conjugate to a maximal torus S^{1} of S^{3}.

Proof. The Lie algebra $\mathfrak{s u}(2)$ of the Lie group $S^{3}=S U(2)$ is given by

$$
\begin{aligned}
\mathfrak{s u}(2) & =\left\{X \in G L(2, C) ; \text { trace } X=0,{ }^{t} \bar{X}+X=0\right\} \\
& =\left\{\left(\begin{array}{cc}
i x & a \\
-\bar{a} & -i x
\end{array}\right) ; x \in R, a \in C\right\}
\end{aligned}
$$

Let \mathfrak{y} be a Lie subalgebra of $S U(2)$, which is the Lie algebra of H. It is clear that $H=\{1\}$ or S^{3} if $\operatorname{dim} \mathfrak{b}=0$ or 3. If $\operatorname{dim} \mathfrak{b}=1$, then \mathfrak{h} is commutative and so H is conjugate to S^{1}.

Assume that $\operatorname{dim} \mathfrak{G}=2$, and consider the bracket

$$
r=[p, q]
$$

for a base $\{p, q\}$ of \mathfrak{b}. Then the element $t=x_{1} p+y_{1} q$ with $r=x_{0} p+y_{0} q$ and $x_{0} y_{1}-x_{1} y_{0}=1$ satisfies $[r, t]=r$. Set

$$
r=\left(\begin{array}{cc}
i x & a \\
-\bar{a} & -i x
\end{array}\right), \quad t=\left(\begin{array}{cc}
i y & b \\
-\bar{b} & -i y
\end{array}\right), \quad(x, y \in R, a, b \in C) .
$$

Then the equality $r=[r, t]=r t-t r$ implies

$$
i x=-a \bar{b}+b \bar{a} \quad \text { and } \quad a=2 i(x b-y a) .
$$

By adding $\bar{a} \times$ (the second equality) to its conjugate, and using the first equality, we see that $2 a \bar{a}=-2 x^{2}$, and so $a=x=0$, i.e., $r=0$. Therefore \mathfrak{b} is commutative, and its Lie group H is a 2 dimensional torus. But this is a contradiction since $H \subset S^{3}$, and so $\operatorname{dim} \mathfrak{h} \neq 2$.
q.e.d.

Corollary 3.2. If H is a closed proper subgroup of S^{3} and $\operatorname{dim} H \geqq 1$, then H is conjugate to a maximal torus S^{1} or its normalizer $N S^{1}$ in S^{3}.

Now, we consider the representations of $S^{3}=S U(2)$.
Let $C^{(n-1)}\left[X_{1}, X_{2}\right]$ be the n dimensional complex vector space of all complex polynomials on X_{1}, X_{2} of degree $n-1$, and define the n dimensional complex representation $\rho_{n}(n \geqq 2)$ of S^{3} as follows:

$$
\begin{equation*}
\left(\rho_{n}(p)\right) f\left(X_{1}, X_{2}\right)=f\left(a X_{1}+c X_{2}, b X_{1}+d X_{2}\right) \tag{3.3}
\end{equation*}
$$

for $p=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S^{3}$ and $f\left(X_{1}, X_{2}\right) \in C^{(n-1)}\left[X_{1}, X_{2}\right]$.
Then, it is well known that any irreducible complex representation of S^{3} is equivalent to ρ_{n} for some $n \geqq 2$, and so any 4 dimensional complex representation of S^{3} is equivalent to

$$
\begin{equation*}
\rho_{4}, 1 \oplus \rho_{3}, \rho_{2} \oplus \rho_{2} \quad \text { or } \quad 1 \oplus \rho_{2} \tag{3.4}
\end{equation*}
$$

where 1 means the trivial representation.
Lemma 3.5. ρ_{4} is not the complexification of a real representation of S^{3}.
Proof. Assume that ρ_{4} is a complexification. Then the S^{3} module $C^{(3)}\left[X_{1}\right.$, X_{2}] has an S^{3} invariant non-degenerate symmetric form β, where the action of S^{3} is given by ρ_{4} (cf. [2, Th. 11.4, p. 191]). Thus, by (3.3), we have

$$
\begin{aligned}
\beta\left(X_{1}^{3}, X_{2}^{3}\right) & =\beta\left(\rho_{4}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(X_{1}^{3}\right), \rho_{4}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(X_{2}^{3}\right)\right) \\
& =\beta\left(-X_{2}^{3}, X_{1}^{3}\right)=-\beta\left(X_{1}^{3}, X_{2}^{3}\right)
\end{aligned}
$$

which shows $\beta\left(X_{1}^{3}, X_{2}^{3}\right)=0$. By operating $\rho_{4}\left(\begin{array}{ll}a & 0 \\ 0 & \bar{a}\end{array}\right)(a \bar{a}=1)$, we have in the same way

$$
\beta\left(X_{1}^{3}, X_{1}^{i} X_{2}^{j}\right)=\beta\left(a^{3} X_{1}^{3}, a^{i} \bar{a}^{j} X_{1}^{i} X_{2}^{j}\right)=a^{3+i-j} \beta\left(X_{1}^{3}, X_{1}^{i} X_{2}^{j}\right)(i+j=3),
$$

and so $\beta\left(X_{1}^{3}, X_{1}^{i} X_{2}^{j}\right)=0$ for $1 \leqq i \leqq 3$ by taking $a^{3+i-j}=-1$. These show that β is degenerate, which contradicts the condition of β.
q.e.d.

Lemma 3.6. $1 \oplus \rho_{2}$ is not also the complexification of a real representation of S^{3}.

Proof. Assume that $1 \oplus \rho_{2}$ is a complexification. Then $C^{(3)}\left[X_{1}, X_{2}\right]=$ $C^{(1)}\left[Y_{1}, Y_{2}\right] \oplus C^{(1)}\left[Z_{1}, Z_{2}\right]$ has an S^{3} invariant non-degenerate symmetric form β, where the action of S^{3} is given by $1 \oplus \rho_{2}$, and we see $\beta\left(Z_{1}, Z_{2}\right)=\beta\left(Z_{1}, Z_{1}\right)=0$,
by the same way as in the above proof. Also,

$$
\beta\left(Z_{1}, Y_{i}\right)=\beta\left(\rho_{2}\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\left(Z_{1}\right), Y_{i}\right)=-\beta\left(Z_{1}, Y_{i}\right),
$$

i.e., $\beta\left(Z_{1}, Y_{i}\right)=0(i=1,2)$, and we have a contradiction.

Proposition 3.7. Consider the real representations

$$
\eta_{i}: S^{3}=S U(2) \longrightarrow S O(4) \quad(i=1,2),
$$

defined by using the quaternion field H as follows:

$$
\eta_{1}(p) q=p q, \quad \eta_{2}(p) q=p q p^{-1} \quad\left(p \in S^{3} \subset H, q \in H\right) .
$$

Then, any non-trivial representation $\eta: S^{3} \rightarrow O(4)$ is equivalent to η_{1} or η_{2}.
Proof. Since the complexification $\tilde{\eta}$ of η is equivalent to $1 \oplus \rho_{3}$ or $\rho_{2} \oplus \rho_{2}$ of (3.4) by Lemmas 3.5 and 3.6. On the other hand, we see easily that the traces of $1 \oplus \rho_{3}$ and $\rho_{2} \oplus \rho_{2}$ are equal to those of η_{2} and η_{1}, respectively, and so we have the desired results.

Finally, we notice real representations of the normalizer $N S^{1}$ of S^{1} in S^{3}.
Proposition 3.8. If $\gamma: N S^{1} \rightarrow O(2)$ is a representation such that $\gamma \mid S^{1}$ is is non-trivial, then γ is equivalent to

$$
\gamma_{n}: N S^{1} \longrightarrow O(2) \text { for some even } n>0
$$

which is defined by

$$
\gamma_{n}(a) b=a^{n} b, \gamma_{n}(j) b=-b \quad\left(a \in S^{1} \subset C, j \in N S^{1}-S^{1}, b \in C\right)
$$

Proof. By the assumption, we can take γ up to equivalence so that

$$
\gamma(a) b=a^{n} b \quad\left(a \in S^{1}, b \in C\right)
$$

for some integer $n>0$. Set $\gamma(j)=\left(x_{k l}\right) \in O(2)$. Then, we see immediately by the relation $j a=\bar{a} j$ that

$$
x_{00}^{2}+x_{01}^{2}=1, \quad x_{01}=x_{10}, \quad x_{11}=-x_{00} .
$$

Therefore, it is easy to see that γ is equivalent to γ^{\prime} given by

$$
\gamma^{\prime}(a) b=a^{n} b, \quad \gamma^{\prime}(j) b=-\bar{b},
$$

where n must be even since $j^{2}=-1$.
q.e.d.

§4. Smooth \mathbf{S}^{3} actions on $\boldsymbol{C H P}_{2}(\boldsymbol{C})$.

In the rest of this note, assume that a 4 dimensional orientable closed smooth manifold

$$
M=C H P_{2}(C)
$$

has the same cohomology ring as the complex projective plane $P_{2}(C)$ and that M admits a non-trivial smooth S^{3} action. It is clear that this action preserves the orientation on M.

Consider a fixed maximal torus S^{1} of S^{3}, and the fixed point set

$$
F\left(S^{1}, M\right)=\left\{x \in M ; a x=x \text { for all } a \in S^{1}\right\}
$$

of the restricted S^{1} action of the given S^{3} action. Then, by the result of J. C. Su [4, Th. 7.2] (cf. also [1; IV, Prop. 1.2, Th. 2.1]),

$$
\begin{equation*}
F\left(S^{1}, M\right)=F_{1} \cup \cdots \cup F_{l} \tag{4.1}
\end{equation*}
$$

is the disjoint union of connected orientable $2 k_{i}$ dimensional submanifolds F_{i} of M, where F_{i} has the same cohomology ring as the complex projective k_{i} space $P_{k_{i}}(C)$, and

$$
k_{1}+\cdots+k_{l}=3-l .
$$

Proposition 4.2. In our case, $l=3$ in (4.1), that is, $F\left(S^{1}, M\right)$ consists of three points:

$$
F\left(S^{1}, M\right)=\left\{x_{1}, x_{2}, x_{3}\right\} .
$$

Proof. If $l=1$, then $F\left(S^{1}, M\right)=M$, i.e., the restricted action of a maximal torus S^{1} of S^{3} is trivial, and so the action of S^{3} is also trivial, which contradicts the assumption.

Assume $l=2$. Then by (4.1)

$$
F\left(S^{1}, M\right)=F_{1} \cup F_{2}, \quad F_{1} \text { is a point, } \operatorname{dim} F_{2}=2 .
$$

Therefore $\operatorname{dim} M-\max \operatorname{dim} F_{i}=2$. Also the maximum of the dimensions of proper subgroups of S^{3} is equal to 1 by Corollary 3.2. Therefore, by the result of F . Uchida [6, Th. 2], we see that $\operatorname{dim} F_{1}$ is also 2 , which contradicts $\operatorname{dim} F_{1}=0$.
q.e.d.

Now, we consider the isotropy subgroups $S_{x}^{3}(x \in M)$ and the type of principal isotropy subgroups (H) of (2.3) for a given S^{3} action on M.

Lemma 4.3. (i) If $\operatorname{dim} S_{x}^{3} \geqq 1$, then $x \in S^{3} \cdot F\left(S^{1}, M\right)$.
(ii) $\operatorname{dim} H=0$, and $S_{x}^{3} \in(H)$ if $\operatorname{dim} S_{x}^{3}=0$.

Proof. (i) is clear by Corollary 3.2.
(ii) We notice that there is a point $x \in M$ such that $\operatorname{dim} S_{x}^{3}=0$ by (i).

If $\operatorname{dim} S_{x}^{3}=0$, then the orbit $S^{3} \cdot x=S^{3} / S_{x}^{3}$ is an orientable 3 dimensional manifold. Therefore the normal bundle v of $S^{3} \cdot x$ in M is orientable, and so the line bundle v is trivial. Then the normal representation ρ_{x} is trivial by (2.2), that is, $S_{x}^{3} \in(H)$ by (2.4). q.e.d.

Proposition 4.4. We have only the following two cases (I) and (II), for the isotropy subgroups $S_{x_{i}}^{3}$ of $x_{i} \in F\left(S^{1}, M\right)$ and the fixed point set

$$
F\left(S^{3}, M\right)=\left\{x \in M ; p x=x \text { for all } p \in S^{3}\right\}:
$$

(I) $S_{x_{1}}^{3}=S^{3}, \quad S_{x_{i}}^{3}=S^{1}(i=2,3), \quad F\left(S^{3}, M\right)=\left\{x_{1}\right\}$,
(II) $\quad S_{x_{1}}^{3}=N S^{1}, \quad S_{x_{i}}^{3}=S^{1}(i=2,3), \quad F\left(S^{3}, M\right)=\phi$.

Proof. Assume that $j \in N S^{1}-S^{1}$ acts trivially on $F\left(S^{1}, M\right)=\left\{x_{1}, x_{2}, x_{3}\right\}$. Then it is clear that the orbits $S^{3} \cdot x_{i}(i=1,2,3)$ are disjoint. Choose disjoint closed S^{3} invariant tubular neighborhoods V_{i} of $S^{3} \cdot x_{i}(i=1,2,3)$. Then, S^{3} acts on the submanifold $M^{\prime}=M-U_{i=1}^{3}$ Int V_{i}, and the orbit space M^{\prime} / S^{3} is a compact 1 dimensional manifold, by the above lemma. Since each component ∂V_{i} of ∂M^{\prime} is S^{3} invariant, $\partial\left(M^{\prime} / S^{3}\right)$ consists of three points and we have a contradiction.

Therefore, j acts non-trivially on $\left\{x_{1}, x_{2}, x_{3}\right\}$, and so

$$
j x_{1}=x_{1}, \quad j x_{2}=x_{3}, \quad j x_{3}=x_{2} .
$$

Then $S_{x_{1}}^{3} \subset N S^{1}$ and $S_{x_{i}}^{3}=S^{1}(i=2,3)$. The desired result follows from Corollary 3.2.
q.e.d.

Proposition 4.5. Let (H) be the type of principal isotropy subgroups for a given S^{3} action on M, and ρ_{x} be the normal representation of (2.1). Then, according to the case (I) or (II) of the above proposition, we have
(I) $\{1\} \in(H)$, and $\rho_{x_{1}}: S^{3} \rightarrow O(4)$ is equivalent to η_{1} of Proposition 3.7, and $\rho_{x_{i}}: S^{1} \rightarrow O(2)(i=2,3)$ is so to δ_{1}.
(II) $Z_{4} \in(H)$, and $\rho_{x_{1}}: N S^{1} \rightarrow O(2)$ is equivalent to γ_{2} of Proposition 3.8, and $\rho_{x_{i}}: S^{1} \rightarrow O(2)(i=2,3)$ is so to δ_{4}.

Here, $\delta_{n}: S^{1} \rightarrow O(2)$ is given by

$$
\delta_{n}(a) \cdot b=a^{n} \cdot b \quad\left(a \in S^{1} \subset C, b \in C\right) .
$$

Proof. We notice that $\rho_{x_{i}}$ is non-trivial by (2.4).
(I) $\rho_{x_{1}}$ is equivalent to η_{1} or η_{2} by Proposition 3.7. By the definition of η_{i}, it is easy to see that $\{1\}$ or S^{1} is a principal isotropy subgroup of the S^{3} action on R^{4} via η_{1} or η_{2}. Also, by (2.2), x_{1} has a tubular neighborhood in M, which is S^{3} equivariantly diffeomorphic to R^{4} with S^{3} action via ρ_{x}. Therefore we see $H=\{1\}$ by Lemma 4.3 (ii).

It is clear that $\rho_{x_{i}}(i=2,3)$ is equivalent to δ_{n} for some $n>0$, and the principal isotropy subgroup for S^{1} action on R^{2} via δ_{n} is Z_{n}. Therefore we have $n=1$ by the above result.
(II) If $\rho_{x_{1}} \mid S^{1}$ is non-trivial, then $\rho_{x_{1}}$ is equivalent to γ_{n} for some positive even integer n, by Proposition 3.8. Therefore we can see that the principal isotropy subgroup for the $N S^{1}$ action on R^{2} via $\rho_{x_{1}}$ is S^{1} or

$$
Q_{n}=<j, \exp (2 \pi i / n)>\quad(\text { even } n>0),
$$

the subgroup of S^{3} generated by j and $\exp (2 \pi i / n)$. Also, the principal isotropy subgroup for the S^{1} action on R^{2} via $\rho_{x_{2}}$ is Z_{m} for some m.

By (2.2), choose a tubular neighborhood

$$
U_{i}=S^{3} \times{ }_{S_{i}} R^{2}, \quad S_{i}=S_{x_{i}}^{3} \quad(i=1,2)
$$

of the orbit $S^{3} \cdot x_{i}$. Then the principal isotropy subgroup for the S^{3} action on U_{i} coincides with that for the S_{i} action on R^{2} via $\rho_{x_{i}}$, since $S_{[p, v]}^{3}=p\left(S_{i}\right)_{v} p^{-1}$ for [$\left.p, v\right]$ $\in U_{i}$. Therefore, the principal isotropy subgroup is $Q_{n}=Z_{m}$ by the above consideration, which implies $m=4$ and $n=2$.
q.e.d.

Now, consider the smooth S^{3} action on the complex projective plane $P_{2}(C)=$ $P(H \times C)$ given by (1.1). Let

$$
D^{2}(t)=\{a \in C ;|a| \leqq t\}, \quad D^{4}=\{p \in H ;|p| \leqq 1\}
$$

be the unit disks. Then, we have easily the S^{3} equivariant embeddings

$$
D^{4}=D^{4} \times 1 \longrightarrow P(H \times C), \quad S^{3} \times{ }_{S^{1}} D^{2}(1) \longrightarrow P(H \times C)
$$

by sending ($p, a) \in H \times C$ to $[p, \bar{a}] \in P(H \times C)$, and so the S^{3} equivariant decomposition

$$
\begin{equation*}
P_{2}(C)=P(H \times C)=S^{3} \times{S^{1}} D^{2} \cup D^{4}, \quad\left(D^{2}=D^{2}(1)\right) . \tag{4.6}
\end{equation*}
$$

Next, consider the smooth S^{3} action on $P_{2}(C)=P\left(H \otimes_{C} H / \sim\right)$ given by (1.2). Then we have the S^{3} equivariant embeddings

$$
\begin{aligned}
& S^{3} \times_{N S^{1}} D^{2}(r) \longrightarrow P\left(H \otimes_{C} H / \sim\right) \\
& S^{3} \times_{S^{1}} D^{2}(s) \longrightarrow P\left(H \otimes_{C} H / \sim\right)
\end{aligned}
$$

$(0<s=(1-2 r) /(1+2 r)<1)$, by sending $[p, a] \in S^{3} \times{ }_{N S^{1}} D^{2}(r)$ or $S^{3} \times{ }_{S^{1}} D^{2}(s)$ to

$$
[(p \otimes p) a+(p \otimes p j)+(p j \otimes p j) \bar{a}] \quad \text { or } \quad[p \otimes p+(p \otimes p) \bar{a}]
$$

respectively, where $N S^{1}$ acts on $D^{2}(r)$ via γ_{2} and S^{1} acts on $D^{2}(s)$ via δ_{4} (cf. Proposition 4.5 (II)). Then, we have easily the S^{3} equivariant decomposition

$$
\begin{equation*}
P_{2}(C)=S^{3} \times{ }_{N S^{1}} D^{2}(r) \cup S^{3} \times{ }_{S^{1}} D^{2}(s) . \tag{4.7}
\end{equation*}
$$

Proof of Theorem 1.3. The case (I) of Proposition 4.4. By (2.2), we can choose a closed tubular neighborhood $U=S^{3} \times{ }_{S^{1}} D^{2}$ of the orbit $S^{3} \cdot x_{2}=S^{3} \cdot x_{3}$ and a closed S^{3} invariant neighborhood $V=D^{4}$ of x_{1}, such that $U \cap V=\varnothing$ and S^{1} acts on D^{2} via δ_{1} and S^{3} acts on D^{4} via η_{1}.

Then, S^{3} acts on $N=M-\operatorname{Int} U-\operatorname{Int} V$ and the orbit space N / S^{3} is a compact 1 dimensional manifold by Lemma 4.3. Therefore N / S^{3} is diffeomorphic to a closed interval [0,1$]$, and hence N is equivariantly diffeomorphic to $S^{3} \times[0,1]$, where S^{3} acts on the first factor. These show that M has an equivariant decomposition

$$
M=U \cup N \cup V \cong S^{3} \times_{S^{1}} D^{2} \cup D^{4} .
$$

Thus, M is equivariantly diffeomorphic to $P_{2}(C)$ of (4.6), as desired.
The case (II) of Proposition 4.4. We can prove this by the same way as above. We choose closed tubular neighborhoods $U=S^{3} \times{ }_{S^{1}} D^{2}$ of $S^{3} \cdot x_{2}=S^{3} \cdot x_{3}$ and $V=S^{3} \times{ }_{N S^{1}} D^{2}$ of $S^{3} \cdot x_{1}$ so that $U \cap V=\varnothing$, where S^{1} and $N S^{1}$ act on D^{2} by δ_{4} and γ_{2} respectively, by Proposition 4.5 (II). Then, we see that $N / S^{3} \cong[0,1]$ ($N=M-\operatorname{Int} U-\operatorname{Int} V$) by the same way as above, and so N is equivariantly diffeomorphic to $\left(S^{3} / Z_{4}\right) \times[0,1]$. These show that M has an equivariant decomposition

$$
M=U \cup N \cup V \cong S^{3} \times_{S^{1}} D^{2} \cup S^{3} \times_{N S^{1}} D^{2}
$$

Thus, M is equivariantly diffeomorphic to $P_{2}(C)$ of (4.7), as desired. q.e.d.

References

[1] G. E. Bredon: Introduction to Compact Transformation Groups, Pure and Applied Math. 46, Academic Press, 1972.
[2] D. Husemoller: Fibre Bundles, McGraw-Hill Book Co., 1966.
[3] D. Montgomery, H. Samelson and C. T. Yang: Exceptional orbits of highest dimension, Ann. of Math. 64 (1956), 131-141.
[4] J. C. Su: Transformation groups on cohomology projective spaces, Trans. Amer. Math. Soc. 106 (1963), 305-318.
[5] F. Uchida: Linear $S U(n)$ actions on complex projective spaces, Osaka J. Math. 11 (1974), 473-481.
[6] -: Compact transformation groups and fixed point sets of restricted action to maximal torus, (to appear).

Department of Mathematics, Faculty of Science,
Hiroshima University

