S³ Actions on 4 Dimensional Cohomology Complex Projective Spaces

Tohl Asoн

(Received January 17, 1975)

§1. Introduction

Recently, F. Uchida [5] has determined smooth SU(3) actions on homotopy complex projective spaces $hP_3(C)$.

The purpose of this note is to study smooth S^3 (=SU(2)) actions on cohomology complex projective planes by the analogous methods.

Let C and H be the complex and quaternion fields. Regard the complex projective plane as

$$P_2(C) = P(H \times C)$$

by the right complex multiplication. Then the smooth S^3 ($\subset H$) action on $P_2(C)$ is given by

(1.1)
$$q \cdot [p, a] = [qp, a] \quad (q \in S^3, p \in H, a \in C).$$

Also, regard H as the right complex vector space, set

$$P_2(C) = P(C^3) = P(H \otimes_C H/\sim)$$

where $p \otimes q \sim q \otimes p$ ($p, q \in H$), and consider the smooth S³ action on $P_2(C)$ given by

(1.2)
$$r \cdot [p \otimes q] = [rp \otimes rq] \qquad (r \in S^3, p, q \in H).$$

Now consider a 4 dimensional orientable closed smooth manifold

$$M = CHP_2(C),$$

having the same cohomology ring as $P_2(C)$, and assume that M admits a non-trivial smooth S^3 action.

Then, we obtain the following main theorem.

THEOREM 1.3. If M satisfies the above conditions, then M is S^3 equivariantly diffeomorphic to the complex projective plane $P_2(C)$ with the S^3 action given by (1.1) or (1.2). In each case, the principal isotropy subgroup is the unit group $\{1\}$ or the cyclic group Z_4 of order 4, and the fixed point set $F(S^3, M)$ consists of

a single point or is empty.

We recall in §2 the basic facts about the smooth actions. After preparing in §3 some known results on closed subgroups and real representations of S^3 , we prove Theorem 1.3 in §4 by showing several propositions concerning the latter half of Theorem 1.3.

§2. Smooth actions

Let G be a Lie group and M be a smooth manifold. A smooth G action α on M is a smooth map

$$\alpha \colon G \times M \longrightarrow M, \qquad \alpha(g, x) = gx,$$

satisfying the conditions

$$(g_1g_2)x = g_1(g_2x), \quad ex = x, \qquad (g_1, g_2 \in G, x \in M),$$

where e is the identity of G.

Assume that a smooth G action on M is given. For any $x \in M$, denote by

$$G_x = \{g \in G; gx = x\}$$

the isotropy subgroup of G at x, which is a closed subgroup of G, and by

$$G \cdot x = \{gx; g \in G\}$$

the orbit of x, which is a G invariant submanifold of M. Then the following basic facts hold.

(2.1) Let $x \in M$, and v be the normal bundle of the orbit $G : x = G/G_x$ in M. Then the given G action on M induces naturally the G action on v as bundle maps, and we obtain the orthogonal action of the isotropy subgroup G_x on the fibre v_x over x. It is called the *normal representation* of G_x and denoted by ρ_x .

(2.2) (The differentiable slice theorem) Assume that G is a compact Lie group. Then the normal bundle v of (2.1) is G equivalent to the G bundle $G \times_{G_x} v_x \to G/G_x$, where G_x acts on v_x via ρ_x , and also the orbit $G \cdot x = G/G_x$ has an open tubular neighborhood in M, which is G equivariantly diffeomorphic to $G \times_{G_x} v_x$. (Cf. [3, (3.1)].)

(2.3) If G is a compact Lie group and M is connected, then there exists the conjugate class

 $(H) = \{ \text{conjugate subgroups of } H \text{ in } G \}$

of a closed subgroup $H \subset G$ such that the set

$$M_{(H)} = \{x \in M; G_x \in (H)\}$$

252

is a dense open submanifold of M. The conjugate class (H) is called the type of principal isotropy subgroups, and $H' \in (H)$ is called a principal isotropy subgroup. (Cf. [1, IV, Th. 3.1].)

By (2.2) and (2.3), we see easily the following fact.

(2.4) If M is connected, the normal representation ρ_x of G_x at x is trivial if and only if G_x is a principal isotropy subgroup.

§ 3. Closed subgroups and real representations of S^3 .

In this section, we prepare some results on the Lie group $S^3 = SU(2)$.

LEMMA 3.1. Any closed connected proper subgroup $H \neq \{1\}$ of S^3 is conjugate to a maximal torus S^1 of S^3 .

PROOF. The Lie algebra $\mathfrak{su}(2)$ of the Lie group $S^3 = SU(2)$ is given by

$$\mathfrak{su}(2) = \{X \in GL(2, C); \operatorname{trace} X = 0, {}^{t}\overline{X} + X = 0\}$$
$$= \left\{ \begin{pmatrix} ix & a \\ -\overline{a} & -ix \end{pmatrix}; x \in R, a \in C \right\}.$$

Let \mathfrak{h} be a Lie subalgebra of SU(2), which is the Lie algebra of H. It is clear that $H = \{1\}$ or S^3 if dim $\mathfrak{h} = 0$ or 3. If dim $\mathfrak{h} = 1$, then \mathfrak{h} is commutative and so H is conjugate to S^1 .

Assume that $\dim \mathfrak{h} = 2$, and consider the bracket

$$r = [p, q]$$

for a base $\{p, q\}$ of \mathfrak{h} . Then the element $t = x_1 p + y_1 q$ with $r = x_0 p + y_0 q$ and $x_0 y_1 - x_1 y_0 = 1$ satisfies [r, t] = r. Set

$$r = \begin{pmatrix} ix & a \\ -\overline{a} & -ix \end{pmatrix}, \quad t = \begin{pmatrix} iy & b \\ -\overline{b} & -iy \end{pmatrix}, \quad (x, y \in \mathbb{R}, a, b \in \mathbb{C}).$$

Then the equality r = [r, t] = rt - tr implies

$$ix = -a\overline{b} + b\overline{a}$$
 and $a = 2i(xb - ya)$.

By adding $\bar{a} \times$ (the second equality) to its conjugate, and using the first equality, we see that $2a\bar{a} = -2x^2$, and so a = x = 0, i.e., r = 0. Therefore h is commutative, and its Lie group H is a 2 dimensional torus. But this is a contradiction since $H \subset S^3$, and so dim $h \neq 2$.

COROLLARY 3.2. If H is a closed proper subgroup of S^3 and dim $H \ge 1$, then H is conjugate to a maximal torus S^1 or its normalizer NS^1 in S^3 .

Now, we consider the representations of $S^3 = SU(2)$.

Let $C^{(n-1)}[X_1, X_2]$ be the *n* dimensional complex vector space of all complex polynomials on X_1 , X_2 of degree n-1, and define the *n* dimensional complex representation ρ_n ($n \ge 2$) of S^3 as follows:

(3.3)
$$(\rho_n(p))f(X_1, X_2) = f(aX_1 + cX_2, bX_1 + dX_2),$$

for
$$p = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in S^3$$
 and $f(X_1, X_2) \in C^{(n-1)}[X_1, X_2]$.

Then, it is well known that any irreducible complex representation of S^3 is equivalent to ρ_n for some $n \ge 2$, and so any 4 dimensional complex representation of S^3 is equivalent to

(3.4)
$$\rho_4, \ 1 \oplus \rho_3, \ \rho_2 \oplus \rho_2 \quad \text{or} \quad 1 \oplus \rho_2,$$

where 1 means the trivial representation.

LEMMA 3.5. ρ_4 is not the complexification of a real representation of S^3 .

PROOF. Assume that ρ_4 is a complexification. Then the S^3 module $C^{(3)}[X_1, X_2]$ has an S^3 invariant non-degenerate symmetric form β , where the action of S^3 is given by ρ_4 (cf. [2, Th. 11.4, p. 191]). Thus, by (3.3), we have

$$\beta(X_1^3, X_2^3) = \beta(\rho_4 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (X_1^3), \rho_4 \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} (X_2^3))$$
$$= \beta(-X_2^3, X_1^3) = -\beta(X_1^3, X_2^3),$$

which shows $\beta(X_1^3, X_2^3) = 0$. By operating $\rho_4 \begin{pmatrix} a & 0 \\ 0 & \overline{a} \end{pmatrix}$ $(a\overline{a} = 1)$, we have in the same way

$$\beta(X_1^3, X_1^i X_2^j) = \beta(a^3 X_1^3, a^i \bar{a}^j X_1^i X_2^j) = a^{3+i-j} \beta(X_1^3, X_1^i X_2^j) \ (i+j=3),$$

and so $\beta(X_1^3, X_1^i X_2^j) = 0$ for $1 \le i \le 3$ by taking $a^{3+i-j} = -1$. These show that β is degenerate, which contradicts the condition of β . *q.e.d.*

LEMMA 3.6. $1 \oplus \rho_2$ is not also the complexification of a real representation of S^3 .

PROOF. Assume that $1 \oplus \rho_2$ is a complexification. Then $C^{(3)}[X_1, X_2] = C^{(1)}[Y_1, Y_2] \oplus C^{(1)}[Z_1, Z_2]$ has an S^3 invariant non-degenerate symmetric form β , where the action of S^3 is given by $1 \oplus \rho_2$, and we see $\beta(Z_1, Z_2) = \beta(Z_1, Z_1) = 0$,

by the same way as in the above proof. Also,

$$\beta(Z_1, Y_i) = \beta(\rho_2 \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} (Z_1), Y_i) = -\beta(Z_1, Y_i),$$

i.e., $\beta(Z_1, Y_i) = 0$ (i = 1, 2), and we have a contradiction.

PROPOSITION 3.7. Consider the real representations

$$\eta_i: S^3 = SU(2) \longrightarrow SO(4) \qquad (i = 1, 2),$$

defined by using the quaternion field H as follows:

$$\eta_1(p)q = pq, \quad \eta_2(p)q = pqp^{-1} \qquad (p \in S^3 \subset H, q \in H).$$

Then, any non-trivial representation $\eta: S^3 \rightarrow O(4)$ is equivalent to η_1 or η_2 .

PROOF. Since the complexification $\tilde{\eta}$ of η is equivalent to $1 \oplus \rho_3$ or $\rho_2 \oplus \rho_2$ of (3.4) by Lemmas 3.5 and 3.6. On the other hand, we see easily that the traces of $1 \oplus \rho_3$ and $\rho_2 \oplus \rho_2$ are equal to those of η_2 and η_1 , respectively, and so we have the desired results. q.e.d.

Finally, we notice real representations of the normalizer NS^1 of S^1 in S^3 .

PROPOSITION 3.8. If $\gamma: NS^1 \rightarrow O(2)$ is a representation such that $\gamma|S^1$ is is non-trivial, then γ is equivalent to

 $\gamma_n: NS^1 \longrightarrow O(2)$ for some even n > 0,

which is defined by

$$\gamma_n(a)b = a^n b, \ \gamma_n(j)b = -\overline{b} \qquad (a \in S^1 \subset C, j \in NS^1 - S^1, b \in C).$$

PROOF. By the assumption, we can take γ up to equivalence so that

 $\gamma(a)b = a^n b$ $(a \in S^1, b \in C)$

for some integer n > 0. Set $\gamma(j) = (x_{kl}) \in O(2)$. Then, we see immediately by the relation $ja = \bar{a}j$ that

$$x_{00}^2 + x_{01}^2 = 1$$
, $x_{01} = x_{10}$, $x_{11} = -x_{00}$.

Therefore, it is easy to see that γ is equivalent to γ' given by

$$\gamma'(a)b = a^n b, \qquad \gamma'(j)b = -\overline{b},$$

where *n* must be even since $j^2 = -1$.

q.e.d.

q.e.d.

§4. Smooth S^3 actions on $CHP_2(C)$.

In the rest of this note, assume that a 4 dimensional orientable closed smooth manifold

$$M = CHP_2(C)$$

has the same cohomology ring as the complex projective plane $P_2(C)$ and that M admits a non-trivial smooth S^3 action. It is clear that this action preserves the orientation on M.

Consider a fixed maximal torus S^1 of S^3 , and the fixed point set

$$F(S^1, M) = \{x \in M; ax = x \text{ for all } a \in S^1\}$$

of the restricted S^1 action of the given S^3 action. Then, by the result of J. C. Su [4, Th. 7.2] (cf. also [1; IV, Prop. 1.2, Th. 2.1]),

$$(4.1) F(S^1, M) = F_1 \cup \cdots \cup F_l$$

is the disjoint union of connected orientable $2k_i$ dimensional submanifolds F_i of M, where F_i has the same cohomology ring as the complex projective k_i space $P_{k_i}(C)$, and

$$k_1 + \dots + k_l = 3 - l$$

PROPOSITION 4.2. In our case, l=3 in (4.1), that is, $F(S^1, M)$ consists of three points:

$$F(S^1, M) = \{x_1, x_2, x_3\}.$$

PROOF. If l=1, then $F(S^1, M)=M$, i.e., the restricted action of a maximal torus S^1 of S^3 is trivial, and so the action of S^3 is also trivial, which contradicts the assumption.

Assume l=2. Then by (4.1)

$$F(S^1, M) = F_1 \cup F_2$$
, F_1 is a point, dim $F_2 = 2$.

Therefore dim M-max dim $F_i=2$. Also the maximum of the dimensions of proper subgroups of S^3 is equal to 1 by Corollary 3.2. Therefore, by the result of F. Uchida [6, Th. 2], we see that dim F_1 is also 2, which contradicts dim $F_1=0$. q.e.d.

Now, we consider the isotropy subgroups S_x^3 ($x \in M$) and the type of principal isotropy subgroups (H) of (2.3) for a given S^3 action on M.

LEMMA 4.3. (i) If dim $S_x^3 \ge 1$, then $x \in S^3 \cdot F(S^1, M)$. (ii) dim H=0, and $S_x^3 \in (H)$ if dim $S_x^3 = 0$.

PROOF. (i) is clear by Corollary 3.2.

(ii) We notice that there is a point $x \in M$ such that dim $S_x^3 = 0$ by (i).

If dim $S_x^3 = 0$, then the orbit $S^3 \cdot x = S^3/S_x^3$ is an orientable 3 dimensional manifold. Therefore the normal bundle v of $S^3 \cdot x$ in M is orientable, and so the line bundle v is trivial. Then the normal representation ρ_x is trivial by (2.2), that is, $S_x^3 \in (H)$ by (2.4). q.e.d.

PROPOSITION 4.4. We have only the following two cases (I) and (II), for the isotropy subgroups $S_{x_i}^3$ of $x_i \in F(S^1, M)$ and the fixed point set

$$F(S^3, M) = \{x \in M; px = x \text{ for all } p \in S^3\}:$$

(1)
$$S_{x_1}^3 = S^3$$
, $S_{x_i}^3 = S^1$ $(i = 2, 3)$, $F(S^3, M) = \{x_1\}$,

(II)
$$S_{x_1}^3 = NS^1$$
, $S_{x_i}^3 = S^1$ $(i = 2, 3)$, $F(S^3, M) = \phi$.

PROOF. Assume that $j \in NS^1 - S^1$ acts trivially on $F(S^1, M) = \{x_1, x_2, x_3\}$. Then it is clear that the orbits $S^3 \cdot x_i$ (i=1, 2, 3) are disjoint. Choose disjoint closed S^3 invariant tubular neighborhoods V_i of $S^3 \cdot x_i$ (i=1, 2, 3). Then, S^3 acts on the submanifold $M' = M - \bigcup_{i=1}^{3} \text{Int } V_i$, and the orbit space M'/S^3 is a compact 1 dimensional manifold, by the above lemma. Since each component ∂V_i of $\partial M'$ is S^3 invariant, $\partial(M'/S^3)$ consists of three points and we have a contradiction.

Therefore, j acts non-trivially on $\{x_1, x_2, x_3\}$, and so

$$jx_1 = x_1, jx_2 = x_3, jx_3 = x_2.$$

Then $S_{x_1}^3 \subset NS^1$ and $S_{x_i}^3 = S^1$ (i=2, 3). The desired result follows from Corollary 3.2. q. e. d.

PROPOSITION 4.5. Let (H) be the type of principal isotropy subgroups for a given S^3 action on M, and ρ_x be the normal representation of (2.1). Then, according to the case (I) or (II) of the above proposition, we have

(1) {1} \in (H), and ρ_{x_1} : $S^3 \rightarrow O(4)$ is equivalent to η_1 of Proposition 3.7, and ρ_{x_i} : $S^1 \rightarrow O(2)$ (i=2, 3) is so to δ_1 .

(II) $Z_4 \in (H)$, and $\rho_{x_1} \colon NS^1 \to O(2)$ is equivalent to γ_2 of Proposition 3.8, and $\rho_{x_1} \colon S^1 \to O(2)$ (i=2, 3) is so to δ_4 .

Here, $\delta_n: S^1 \rightarrow O(2)$ is given by

$$\delta_n(a) \cdot b = a^n \cdot b \qquad (a \in S^1 \subset C, b \in C).$$

PROOF. We notice that ρ_{x_i} is non-trivial by (2.4).

Tohl Ason

(I) ρ_{x_1} is equivalent to η_1 or η_2 by Proposition 3.7. By the definition of η_i , it is easy to see that {1} or S^1 is a principal isotropy subgroup of the S^3 action on R^4 via η_1 or η_2 . Also, by (2.2), x_1 has a tubular neighborhood in M, which is S^3 equivariantly diffeomorphic to R^4 with S^3 action via ρ_x . Therefore we see $H = \{1\}$ by Lemma 4.3 (ii).

It is clear that ρ_{x_i} (i=2, 3) is equivalent to δ_n for some n>0, and the principal isotropy subgroup for S^1 action on R^2 via δ_n is Z_n . Therefore we have n=1 by the above result.

(II) If $\rho_{x_1}|S^1$ is non-trivial, then ρ_{x_1} is equivalent to γ_n for some positive even integer *n*, by Proposition 3.8. Therefore we can see that the principal isotropy subgroup for the NS^1 action on R^2 via ρ_{x_1} is S^1 or

$$Q_n = \langle j, \exp(2\pi i/n) \rangle \quad (\text{even } n > 0),$$

the subgroup of S^3 generated by j and $\exp(2\pi i/n)$. Also, the principal isotropy subgroup for the S^1 action on R^2 via ρ_{x_2} is Z_m for some m.

By (2.2), choose a tubular neighborhood

$$U_i = S^3 \times_{S_i} R^2, \quad S_i = S^3_{x_i} \qquad (i = 1, 2)$$

of the orbit $S^3 \cdot x_i$. Then the principal isotropy subgroup for the S^3 action on U_i coincides with that for the S_i action on R^2 via ρ_{x_i} , since $S^3_{\lfloor p, v \rfloor} = p(S_i)_v p^{-1}$ for $[p, v] \in U_i$. Therefore, the principal isotropy subgroup is $Q_n = Z_m$ by the above consideration, which implies m = 4 and n = 2. q.e.d.

Now, consider the smooth S^3 action on the complex projective plane $P_2(C) = P(H \times C)$ given by (1.1). Let

$$D^{2}(t) = \{a \in C; |a| \leq t\}, \quad D^{4} = \{p \in H; |p| \leq 1\}$$

be the unit disks. Then, we have easily the S^3 equivariant embeddings

$$D^4 = D^4 \times 1 \longrightarrow P(H \times C), \qquad S^3 \times_{S^1} D^2(1) \longrightarrow P(H \times C)$$

by sending $(p, a) \in H \times C$ to $[p, \overline{a}] \in P(H \times C)$, and so the S³ equivariant decomposition

(4.6)
$$P_2(C) = P(H \times C) = S^3 \times_{S^1} D^2 \cup D^4, \quad (D^2 = D^2(1)).$$

Next, consider the smooth S^3 action on $P_2(C) = P(H \otimes_C H/\sim)$ given by (1.2). Then we have the S^3 equivariant embeddings

$$S^{3} \times_{NS^{1}} D^{2}(r) \longrightarrow P(H \otimes_{C} H/\sim),$$

$$S^{3} \times_{S^{1}} D^{2}(s) \longrightarrow P(H \otimes_{C} H/\sim)$$

258

$$(0 < s = (1 - 2r)/(1 + 2r) < 1)$$
, by sending $[p, a] \in S^3 \times_{NS^1} D^2(r)$ or $S^3 \times_{S^1} D^2(s)$ to

$$[(p \otimes p)a + (p \otimes pj) + (pj \otimes pj)\overline{a}] \quad \text{or} \quad [p \otimes p + (p \otimes p)\overline{a}],$$

respectively, where NS^1 acts on $D^2(r)$ via γ_2 and S^1 acts on $D^2(s)$ via δ_4 (cf. Proposition 4.5 (II)). Then, we have easily the S^3 equivariant decomposition

(4.7)
$$P_2(C) = S^3 \times_{NS^1} D^2(r) \cup S^3 \times_{S^1} D^2(s).$$

PROOF OF THEOREM 1.3. The case (I) of Proposition 4.4. By (2.2), we can choose a closed tubular neighborhood $U = S^3 \times_{S^1} D^2$ of the orbit $S^3 \cdot x_2 = S^3 \cdot x_3$ and a closed S^3 invariant neighborhood $V = D^4$ of x_1 , such that $U \cap V = \emptyset$ and S^1 acts on D^2 via δ_1 and S^3 acts on D^4 via η_1 .

Then, S^3 acts on N = M - Int U - Int V and the orbit space N/S^3 is a compact 1 dimensional manifold by Lemma 4.3. Therefore N/S^3 is diffeomorphic to a closed interval [0, 1], and hence N is equivariantly diffeomorphic to $S^3 \times [0, 1]$, where S^3 acts on the first factor. These show that M has an equivariant decomposition

$$M = U \cup N \cup V \cong S^3 \times_{S^1} D^2 \cup D^4.$$

Thus, M is equivariantly diffeomorphic to $P_2(C)$ of (4.6), as desired.

The case (II) of Proposition 4.4. We can prove this by the same way as above. We choose closed tubular neighborhoods $U=S^3 \times_{S^1} D^2$ of $S^3 \cdot x_2 = S^3 \cdot x_3$ and $V=S^3 \times_{NS^1} D^2$ of $S^3 \cdot x_1$ so that $U \cap V = \emptyset$, where S^1 and NS^1 act on D^2 by δ_4 and γ_2 respectively, by Proposition 4.5 (II). Then, we see that $N/S^3 \cong [0, 1]$ $(N=M-\operatorname{Int} U-\operatorname{Int} V)$ by the same way as above, and so N is equivariantly diffeomorphic to $(S^3/Z_4) \times [0, 1]$. These show that M has an equivariant decomposition

$$M = U \cup N \cup V \cong S^3 \times_{S^1} D^2 \cup S^3 \times_{NS^1} D^2.$$

Thus, M is equivariantly diffeomorphic to $P_2(C)$ of (4.7), as desired. q. e. d.

References

- [1] G. E. Bredon: Introduction to Compact Transformation Groups, Pure and Applied Math. 46, Academic Press, 1972.
- [2] D. Husemoller: Fibre Bundles, McGraw-Hill Book Co., 1966.
- [3] D. Montgomery, H. Samelson and C. T. Yang: Exceptional orbits of highest dimension, Ann. of Math. 64 (1956), 131-141.
- [4] J. C. Su: Transformation groups on cohomology projective spaces, Trans. Amer. Math. Soc. 106 (1963), 305–318.
- [5] F. Uchida: Linear SU(n) actions on complex projective spaces, Osaka J. Math. 11 (1974), 473-481.

Tohl Asoн

Department of Mathematics, Faculty of Science, Hiroshima University