Note on Self-Maps Inducing the Identity Automorphisms of Homotopy Groups

Kouzou Tsukiyama

(Received January 16, 1975)

§1 Introduction

Let X be a connected CW-complex with the base point *. Then we can consider the group $\mathscr{E}(X)$ of all based homotopy classes of self homotopy equivalences of (X, *). This group has been studied by several authors.

Also, we can consider the subgroup

$$(1.1) \qquad \qquad \mathscr{E}_{\sharp}(X) \qquad (\subset \mathscr{E}(X)),$$

formed by self-maps of (X, *) inducing the identity automorphisms of all homotopy groups $\pi_i(X)$. Then $\mathscr{E}_*(X) = 1$ means that a (continuous) map $\psi: (X, *) \rightarrow (X, *)$ is homotopic rel * to the identity map if and only if ψ induces the identity automorphisms, that is,

$$\psi_* = \mathrm{id} : \pi_i(X) \longrightarrow \pi_i(X)$$
 for all *i*.

The purpose of this note is to study a sufficient condition for $\mathscr{E}_{*}(X) = 1$.

Let $\{X_n | n \ge 1\}$ be a Postnikov system of X, that is, X_n be a CW-complex obtained by attaching (i+1)-cells (i>n) to X so that X_n kills the homotopy groups $\pi_i(X)$ for i>n. Then we can consider the cohomology group

(1.2)
$$H^n(X_{n-1}; \pi_n(X))$$
, with the local coefficient,

where $\pi_1(X_{n-1}) \cong \pi_1(X)$ acts on the coefficient $\pi_n(X)$ by the usual action of the fundamental group in X.

Our main result is stated as follows:

THEOREM 1.3. Assume that a connected CW-complex X satisfies

 $\pi_i(X) = 0$ (i > N) or dim X = N, for some integer N,

and that the cohomology groups of (1.2) are

 $H^n(X_{n-1}; \pi_n(X)) = 0$ $(1 < n \le N).$

Then, the group $\mathscr{E}_{*}(X)$ of (1.1) consists only of the identity 1.

Our proof is based on the considerations of D. H. Gottlieb [4], who studies fibre homotopy equivalences of a Hurewicz fibering by using the classifying space of J. Stasheff [11], and on the usual obstruction theory. After studying $K(\pi, n)$ -fibrations in §2, we prove the above theorem in §3. Also, we give in §4 some examples for $\mathscr{E}_{*}(X) = 1$.

The author wishes to express his thanks to Professor M. Sugawara for his reading the manuscript and useful suggestions.

§ 2. $K(\pi, n)$ -fibrations

In this section, we consider a Hurewicz fibration

$$(2.1) p: E \longrightarrow B, F = p^{-1}(*) (* \in B)$$

where the base space B is a connected CW-complex and the fibre F has the homotopy type of a connected CW-complex.

Let $\mathscr{L}(E)$ be the group of all fibre homotopy classes of fibre homotopy equivalences of (2.1), and F^F be the space of all homotopy equivalences of F with the compact-open topology. Then, the homomorphism

(2.2)
$$r: \mathscr{L}(E) \longrightarrow \pi_0(F^F)$$

is defined as follows: For any fibre homotopy equivalence $\varphi: E \to E$ of (2.1), $r[\varphi]$ is represented by the restriction $\varphi|F \in F^F$.

The above homomorphism r is restated as follows. Let

(2.3)
$$p_{\infty}: E_{\infty} \longrightarrow B_{\infty}$$
, with the fibre F,

be a universal fibration in the sence of J. Stasheff [11], and

$$(2.4) k: B \longrightarrow B_{\infty}$$

be a classifying map for the given fibration (2.1). In fact, we can choose (2.3) so that k is an inclusion and (2.1) is the restriction of (2.3) to B (cf. [4, p. 45]). Also let $L(B, B_{\infty}; k) \in k$ be the path component of the space $L(B, B_{\infty})$ of all maps from B to B_{∞} with the compact-open topology, and consider the evaluation map

(2.5)
$$\omega: L(B, B_{\infty}; k) \longrightarrow B_{\infty}, \qquad \omega(f) = f(*).$$

Then, the following lemma is easily seen by the considerations of [4, §§ 3–4].

LEMMA 2.6. The homomorphism r of (2.2) is equal to the composition

$$\mathscr{L}(E) \cong \pi_1(L(B, B_{\infty}; k)) \xrightarrow{\omega_*} \pi_1(B_{\infty}) \cong \pi_0(F^F),$$

216

where the first isomorphism is the one given by [4, Th. 1] and the last is the special one for B = *.

Now, we consider the case that

(2.7) the fibre F of (2.1) is an Eilenberg-MacLane space $K(\pi, n)$ for some integer $n \ge 2$.

Then the following lemma is proved by C. A. Robinson $[7, \S 2]$.

LEMMA 2.8. For the case (2.7), the following are valid.

(i) The homotopy groups of the classifying space B_{∞} of (2.3) are given by

 $\pi_1(B_{\infty}) = \operatorname{aut} \pi, \quad \pi_{n+1}(B_{\infty}) = \pi, \quad \pi_i(B_{\infty}) = 0 \qquad (i \neq 1, n+1),$

and the usual action of π_1 on π_{n+1} coincides with the usual action of the automorphism group aut π on π .

(ii) Furthermore, the usual action of $\alpha \in \pi_1(B)$ on $\pi = \pi_n(F)$ in the fibration (2.1) coincides with the action of $k_*(\alpha) \in \pi_1(B_{\infty})$ on π in (i), where k is the classifying map of (2.4).

By these considerations, we can prove the following

PROPOSITION 2.9. Assume that a fibration (2.1) satisfies (2.7), and

 $H^n(B;\pi)$ (with the local coefficient π) = 0,

where the action of $\pi_1(B)$ on π is the one in (ii) of the above lemma. Then, the homomorphism ω_* in Lemma 2.6 is monic.

PROOF. Since the range $\pi_1(L(B, B_{\infty}; k))$ of ω_* is equal to the quasi-homotopy group $Q_1(L(B, B_{\infty}; k))$ by [4, p. 44, Cor.], it is sufficient to prove the following fact by the definition (2.5) of ω :

Any map $h: S^1 \times B \rightarrow B_{\infty}$, satisfying

$$h(*, x) = x \ (= k(x)), \qquad h(t, *) = * \ (x \in B, t \in S^1)$$

is homotopic rel $S^1 \vee B$ to the map

$$\bar{k}: S^1 \times B \longrightarrow B_{\infty}, \qquad \bar{k}(t, x) = x.$$

For any $x \in B^0$ (the 0-skeleton of B), there is a path l_x of B connecting x with *. Then, $h|S^1 \times x$ and $\bar{k}|S^1 \times x$ are homotopic to $h|S^1 \times *=\bar{k}|S^1 \times *$ by the homotopies $h(t, l_x(s))$ and $\bar{k}(t, l_x(s))$ ($s \in I$), respectively, and hence $h|S^1 \times x$ is homotopic rel (*, x) to $\bar{k}|S^1 \times x$. Therefore, we see that h is homotopic rel $S^1 \vee B$ to \bar{k} on

Kouzou Tsukiyama

$$(S^1 \vee B) \cup (S^1 \times B^0) = (S^1 \vee B) \cup (S^1 \times B)^1,$$

where $(S^1 \times B)^i$ is the *i*-skeleton of the product complex $S^1 \times B$.

Furthermore, we consider the obstructions to the skeleton-wise extensions of homotopies between h and \bar{k} rel $S^1 \vee B$. Then, by Lemma 2.8 (i) and [6, (16.3)], we see that the only obstruction lies in the cohomology group

$$H^{n+1}(S^1 \times B, S^1 \vee B; \pi)$$

with the local coefficient π , where $\beta \in \pi_1(S^1 \times B)$ acts on $\pi = \pi_{n+1}(B_\infty)$ by the action of $\bar{k}_*(\beta) \in \pi_1(B_\infty)$. Since the above cohomology group is isomorphic to $H^n(B;$ π) of the proposition by [6, (4.8)], we have the desired result. *q.e.d.*

For the case that

(2.10) $F = K(\pi, n), \pi_i(B) = 0 \ (i \ge n)$ for some $n \ge 2$, it is easy to see that (2.11) the local coefficient of the cohomology group $H^n(B; \pi)$ in the above proposition is given by the usual action of $\pi_1(E) \cong \pi_1(B)$ on $\pi_n(E) \cong \pi_n(F) = \pi$.

By Lemma 2.6 and Proposition 2.9, we have the following

PROPOSITION 2.12. Assume (2.10) and let the cohomology group $H^n(B; \pi)$ of (2.11) vanish. If a fibre map

$$\varphi : (E, *) \longrightarrow (E, *), \quad p \circ \varphi = p, \quad (p(*) = *)$$

of (2.1) induces the identity automorphisms of all homotopy groups $\pi_i(E)$, then φ is homotopic rel * to the identity map id_E .

PROOF. It is well known that *E* has the homotopy type of a *CW*-complex, (cf. [11, Prop. (0)]). Therefore the assumption $\varphi_* = \text{id}$ implies that φ is a homotopy equivalence by the theorem of J. H. C. Whitehead, and so φ is a fibre homotopy equivalence by the result of A. Dold [1, Th. 6.1]. Also, the restriction $\varphi|F$ is homotopic to id_F , since $F = K(\pi, n)$ and $(\varphi|F)_* = \text{id}: \pi \to \pi$. On the other hand, the homomorphism *r* of (2.2) is monic by Lemma 2.6 and Proposition 2.9. These show that φ is homotopic to id_E by a fibre homotopy φ_t . Then the loop $\varphi_t(*)$ ($t \in I$) of *F* is homotopic to the constant loop since $\pi_1(F)=0$, and so φ is homotopic rel * to id_E by the homotopy extension theorem. q.e.d.

§3. Proof of Theorem 1.3

Now, we consider a connected CW-complex X and its Postnikov system

 $\{X_n | n \ge 1\},\$

defined as follows: Let X_n be a CW-complex obtained by attaching (i+1)-cells

(i>n) to X, so that X_n kills the homotopy groups $\pi_i(X)$ for i>n, that is,

(3.1)
$$j_{n*}: \pi_i(X) = \pi_i(X_n) \quad (i \leq n), \qquad \pi_i(X_n) = 0 \quad (i > n),$$

where $j_n: X \to X_n$ is the inclusion.

Then, we can consider the cohomology group

(3.2)
$$H^n(X_{n-1}; \pi_n(X))$$
, with the local coefficient

where $\pi_1(X_{n-1}) = \pi_1(X)$ acts on $\pi_n(X)$ as usual. It is a subgroup of the cohomology group $H^n(X; \pi_n(X))$ with the local coefficient.

THEOREM 3.3. Assume that a connected CW-complex X satisfies

 $\pi_i(X) = 0$ (i > N) for some integer N.

If the cohomology groups of (3.2) are

$$H^{n}(X_{n-1}; \pi_{n}(X)) = 0 \qquad (1 < n \leq N),$$

then any map $\psi: (X, *) \rightarrow (X, *)$, satisfying

$$\psi_* = \mathrm{id} : \pi_i(X) \longrightarrow \pi_i(X) \qquad (1 \le i \le N),$$

is homotopic rel * to the identity map id_x.

PROOF. By the assumption, we take $X_N = X$. By the obstruction theory and the definition of X_n , it is easy to see that there is an extension

(3.4)
$$f_n: X_n \longrightarrow X_{n-1}, \quad f_n \circ j_n = j_{n-1} \quad (1 < n \leq N),$$

and we have a Hurewicz fibration

$$p_n\colon X'_n\longrightarrow X_{n-1}$$

induced from f_n , i.e., there is a based homotopy equivalence

$$h_n: X_n \longrightarrow X'_n$$
 such that $p_n \circ h_n \sim f_n$ rel*.

Then, p_n satisfies (2.10) for $\pi = \pi_n(X)$ by (3.1) and (3.4).

Also for a given map ψ , we see easily by the obstruction theory that there is a map

$$\psi_n \colon X_n \longrightarrow X_n, \qquad \psi_n \circ j_n = j_n \circ \psi \quad (1 \le n \le N),$$

and it holds $f_n \circ \psi_n \sim \psi_{n-1} \circ f_n$ rel*. Therefore, we have a map $\psi'_n \colon (X'_n, *) \to (X'_n, *)$ such that

$$\psi'_n \circ h_n \sim h_n \circ \psi_n$$
 rel*, $p_n \circ \psi'_n = \psi_{n-1} \circ p_n$.

By the assumptions $\psi_* = id$ and (3.1), we see $\psi_{n*} = id$ and so $\psi'_{n*} = id$ since h_n is a based homotopy equivalence.

Now, we prove $\psi = \psi_N \sim \text{id rel} *$ by showing $\psi_n \sim \text{id rel} *$ inductively. ψ_1 is so since $X_1 = K(\pi_1(X), 1)$ and $\psi_{1*} = \text{id}$. Assume $\psi_{n-1} \sim \text{id rel} *$, then ψ'_n is homotopic rel * to a fibre map ψ''_n of the fibration p_n and $\psi''_{n*} = \psi'_{n*} = \text{id}$. Therefore, we see $\psi''_n \sim \text{id rel} *$ by Proposition 2.12, and so $\psi_n \sim \text{id rel} *$ as desired. q.e.d.

PROOF OF THEOREM 1.3. The case $\pi_i(X) = 0$ (i > N) is the above theorem.

For the case dim X = N, we consider a CW-complex X_N defined as in (3.1), Then, we see easily by the elementary homotopy theory that the inclusion $j_N: X \to X_N$ induces an isomorphism

$$\mathscr{E}(X)\cong\mathscr{E}(X_N)$$

(cf. [8, Lemma 7.1]). Therefore, we have the desired result by the above theorem. q.e.d.

As a special case, we consider a connected CW-complex X satisfying

(3.4)
$$\pi_i(X) = 0 \qquad (i \neq n, m)$$

or

(3.5)
$$\dim X = m, \quad \pi_i(X) = 0 \quad (i = n, i < m),$$

for some $m > n \ge 1$. Then, we see $X_{m-1} = K(\pi_n(X), n)$ and the following corollary, which is shown in [9, Cor. 2] for the case n > 1.

COROLLARY 3.6. For the case (3.4) or (3.5), we have $\mathscr{E}_{*}(X) = 1$ if

$$H^m(\pi_n(X), n; \pi_m(X)) = 0$$

where the cohomology group is the one with the local coefficient for n=1 by the usual action $\pi_1(X)$ on $\pi_m(X)$.

§4. Some examples $\mathscr{E}_{\sharp}(X) = 1$

EXAMPLE 4.1. (Cf. [10, Lemma 3.2].) Let G be a finite group, which acts freely on the odd dimensional sphere S^{2n-1} . Then $\mathscr{E}_{\mathbf{x}}(S^{2n-1}/G)=1$.

PROOF. We have the covering $S^m \rightarrow S^m/G = X$, m = 2n-1, and so $\pi_1(X) = G$,

$$\pi_1(X) = G, \quad \pi_m(X) = \pi_m(S^m) = Z, \quad \pi_i(X) = 0 \quad (1 < i < m),$$

The degree of the action $g: S^m \to S^m$ of $g \in G$ is $(-1)^{m+1} = 1$ the Lefshetz fixed

220

point theorem, and the usual action of $g \in \pi_1(X)$ on $\pi_m(X)$ coincides with g_* : $\pi_m(S^m) \to \pi_m(S^m)$, and so we see that $\pi_1(X)$ acts trivially on $\pi_m(X)$. Also G has the periodic cohomology and

$$H^{m}(G; Z) = H^{m}(\pi_{1}(X), 1; \pi_{m}(X)) = 0$$

since m is odd (cf. [5]). Therefore we have the desired result by Corollary 3.6 for the case (3.5). q.e.d.

EXAMPLE 4.2. $\mathscr{C}_{*}(RP^{n})=1$, where RP^{n} is the real projective n-space.

PROOF. For odd n, the result is contained in the above example.

For even *n*, by the same way as in the proof of the above example, we see that $\pi_1(RP^n) = Z_2$ acts non-trivially on $\pi_n(RP^n) = Z$. Also, we see easily by definition that the cohomology group $H^n(Z_2; Z)$ with the non trivial local coefficient is 0 (cf. [3, §16]). q.e.d.

EXAMPLE 4.3. The condition of Corollary 3.6 holds, if n=1 and $\pi_1(X)$ is a free group, by [3, Th. 7.1].

EXAMPLE 4.4. Let X be simple and acyclic, i.e., $\tilde{H}_*(X)=0$. Then, $\mathscr{E}_*(X) = \mathscr{E}_*(X_n)=1$ for all n, where X_n is the n-th Postnikov complex of X defined as in (3.1).

PROOF. By [2, Th. 4.2], we see that $\mathscr{E}(X) = \operatorname{aut} \pi_1(X)$ and so $\mathscr{E}_{\sharp}(X) = 1$. Since $j_m^* \colon H_i(X) \to H_i(X_m)$ is epic for $i \leq m+1$, by the theorem of J. H. C. Whitehead, we see $H_i(X_m) = 0$ for $i \leq m+1$, and so $H^{m+1}(X_m; \pi_{m+1}(X)) = 0$. Thus we have $\mathscr{E}_{\sharp}(X_n) = 1$ by Theorem 1.3. q.e.d.

References

- A. Dold: Partitions of unity in the theory of fibrations, Ann. of Math. 78 (1963), 223-255.
- [2] E. Dror: Acyclic spaces, Topology 11 (1972), 339-348.
- [3] S. Eilenberg and S. MacLane: Cohomology theory in abstract groups I, Ann. of Math. 48 (1947), 51-78.
- [4] D. H. Gottlieb: On fibre spaces and the evaluation map, Ann. of Math. 87 (1968), 42-55.
- [5] P. S. Landweber: Complex bordism of classifying spaces, Proc. Amer. Math. Soc. 27 (1971), 175-179.
- [6] P. Olum: Obstructions to extensions and homotopies, Ann. of Math. 52 (1950), 1-50.
- [7] C. A. Robinson: Moore-Postnikov systems for non-simple fibrations, Illinois J. Math. 16 (1972), 234-242.
- [8] N. Sawashita: On the group of self-equivalences of the product of spheres, Hiroshima Math. J. 5 (1975), to appear.
- [9] W. Shih: On the group $\mathscr{E}[X]$ of homotopy equivalence maps, Bull. Amer. Math. Soc.

Kouzou Tsukiyama

70 (1964), 361–365.

- [10] D. L. Smallen: The group Eq(M) of self-equivalences of certain manifolds, Thesis, The University of Rochester, 1972.
- [11] J. Stasheff: A classification theorem for fibre spaces, Topology 2 (1963), 239-246.

Hiroshima-Denki Institute of Technology*)

222

^{*)} The present address of the author is as follows: Department of Mathematics, Faculty of Education, Shimane University.