Parallelizability of Grassmann Manifolds

Toshio Yoshida

(Received January 13, 1975)

§1. Introduction

Let $G_{n,m}$ be the Grassmann manifold of all *m*-planes through the origin of the Euclidean *n*-space R^n . A. Neifahs [3] proved that *n* is a power of 2 if $G_{n,m}$ is parallelizable.

In this note, we prove the following

THEOREM 1.1. $G_{n,m}$ is parallelizable, i.e., the tangent bundle of $G_{n,m}$ is trivial, if and only if

$$n = 2, 4 \text{ or } 8; \quad m = 1 \text{ or } n-1.$$

To prove this theorem, we use the following theorem.

For a real vector bundle ξ , we denote by $Span\xi$ the maximum number of linearly independent cross-sections of ξ . Especially, we denote $SpanM = Span\tau M$, where τM is the tangent bundle of a C^{∞} -manifold M.

THEOREM 1.2. Let ξ_k be the canonical line bundle over the real projective k-space RP^k , and $n\xi_k$ the Whitney sum of n-copies of it. Then, $Span G_{n,m} \ge k$ implies $Span nm\xi_{n-m} \ge m^2 + k$.

The author wishes to express his hearty thanks to Professors M. Sugawara and T. Kobayashi for their valuable suggestions and discussions.

§2. Proof of Theorem 1.2

Let $\gamma_{n,m}$ be the canonical *m*-plane bundle over $G_{n,m}$, i.e., the total space of $\gamma_{n,m}$ be the subspace of $G_{n,m} \times \mathbb{R}^n$ consisting of all pairs (x, v) where $x \in G_{n,m}$ and v is a vector in x. Then, by [2, Problem 5–B],

(2.1)
$$\tau G_{n,m} \cong \operatorname{Hom}(\gamma_{n,m}, \gamma_{n,m}^{\perp}),$$

where $\gamma_{n,m}^{\perp}$ denotes the orthogonal complement of $\gamma_{n,m}$ in the trivial bundle $G_{n,m} \times \mathbb{R}^n \to G_{n,m}$.

Consider the Stiefel manifold $V_{n,m}$ of all orthonormal *m*-frames in \mathbb{R}^n , which has the involution by sending each (v_1, \ldots, v_m) to $(-v_1, \ldots, -v_m)$. By [5, Prop. 1], we see the following fact.

(2.2) There exists an equivariant map from $S^l = V_{l+1,1}$ to $V_{n,m}$ if and only if $Span n\xi_l \ge m$, where ξ_k is the canonical line bundle over RP^k in Theorem 1.2.

PROOF OF THEOREM 1.2. Assume that $Span G_{n,m} \ge k$. Then we have k linearly independent cross-sections s_1, \ldots, s_k of Hom $(\gamma_{n,m}, \gamma_{n,m}^{\perp})$ by (2.1).

For each $v = (v_1, ..., v_m) \in V_{n,m}$, we set

$$v^{l} = ((s_{l}(\tilde{v}))(v_{1}), (s_{l}(\tilde{v}))(v_{2}), \dots, (s_{l}(\tilde{v}))(v_{m})) \in (\mathbb{R}^{n})^{m} \qquad (1 \leq l \leq k),$$

where \tilde{v} is the subspace of \mathbb{R}^n spanned by v. Also, let $f_i: \mathbb{R}^n \to (\mathbb{R}^n)^m$ be the inclusion onto the *i*-th factor. Then, we see easily that

(2.3) $f_i(v_j)(1 \le i, j \le m), v^l(1 \le l \le k)$ are linearly independent in $(\mathbb{R}^n)^m$. Therefore, we obtain a map $\varphi: V_{n,m} \to V_{nm,m^2+k}$, where $\varphi(v)$ is obtained from (2.3) by the orthonormalization. Also, this map φ is equivariant with respect to the involutions.

It is well known that $Span n\xi_{n-m} \ge m$, and so there exists an equivariant map $\psi: S^{n-m} \to V_{n,m}$ by (2.2). Hence, we obtain an equivariant map $\varphi \circ \psi: S^{n-m} \to V_{nm,m^2+k}$, and so $Span nm\xi_{n-m} \ge m^2 + k$ by (2.2). q.e.d.

§3. Proof of Theorem 1.1

As $G_{n,m}$ is diffeomorphic to $G_{n,n-m}$, it is sufficient to consider $G_{n,m}$ for $1 \le m \le n/2$.

LEMMA 3.1. For even dimensional $G_{n,m}$, Span $G_{n,m}=0$.

PROOF. In this case, it is well known that the *i*-dimensional homology group $H_i(G_{n,m}; Z)$ for odd *i* of $G_{n,m}$ with the integral coefficient Z does not contain the free part. Hence, the Euler characteristic of $G_{n,m}$ is positive, and so $Span G_{n,m}=0$ by Hopf's theorem. q.e.d.

LEMMA 3.2. If $G_{n,m}$ is parallelizable, then $nm \equiv 0 \mod 2^{\varphi(n-m)}$, where $\varphi(n-m)$ is the number of integers s such that $0 < s \le n-m$ and $s \equiv 0, 1, 2$ or $4 \mod 8$.

PROOF. Since $Span G_{n,m} = m(n-m)$ by the assumption, we see $Span nm\xi_{n-m} = nm$ by Theorem 1.2. Thus, we have the desired result by [1, Th. 7.4]. q.e.d.

LEMMA 3.3. If $G_{n,m}(1 \le m \le n/2)$ is parallelizable, then (n, m) = (2, 1), (4, 1), (8, 1) or (8, 3).

PROOF. By the above two lemmas, the assumption implies that *m* is odd, *n* is even and $n \equiv 0 \mod 2^{\varphi(n-m)}$. Therefore, we have the lemma by noticing that

 $n < 2^{\varphi(n/2)}$ for even n > 16 and by the straightforward calculations. q. e. d.

Now, we calculate the Stiefel-Whitney class of $G_{8,3}$ by using the following result, which is an immediate consequence of [4, Th. 1].

LEMMA 3.4. Let $\sigma_1, ..., \sigma_r$ denote the elementary symmetric functions in variables $x_1, ..., x_r$, and set

$$\Phi'_{r}(\sigma_{1},...,\sigma_{r}) = \Pi^{r}_{i,\,i=1}(1+x_{i}+x_{j}),$$

in the polynomial ring (over the integers mod 2). Then, for any r-plane bundle η , the total Stiefel-Whitney class $w(\eta \otimes \eta)$ is given by

$$w(\eta \otimes \eta) = \Phi'_r(w_1(\eta), \dots, w_r(\eta)),$$

where $w(\eta) = 1 + w_1(\eta) + \dots + w_r(\eta)$.

LEMMA 3.5. $w(\gamma_{8,3} \otimes \gamma_{8,3}) = 1 + (w_1^4 + w_2^2) + (w_1^2 w_2^2 + w_3^2)$, where w_i (i = 1, 2, 3) is the *i*-th Stiefel-Whitney class of $\gamma_{8,3}$.

PROOF. It is easy to see that

$$\Pi_{i,i=1}^{3}(1+x_{i}+x_{i}) = (1+\sigma_{1}^{2}+\sigma_{2}+\sigma_{1}\sigma_{2}+\sigma_{3})^{2} = 1+\sigma_{1}^{4}+\sigma_{2}^{2}+\sigma_{1}^{2}\sigma_{2}^{2}+\sigma_{3}^{2}.$$

Thus, the result follows from the above lemma.

LEMMA 3.6. $w_4(G_{8,3})$ is not zero.

PROOF. $\tau G_{8,3} \cong \operatorname{Hom}(\gamma_{8,3}, \gamma_{8,3}^{\perp}) \cong \gamma_{8,3}^{*} \otimes \gamma_{8,3}^{\perp} \cong \gamma_{8,3} \otimes \gamma_{8,3}^{\perp}$ by (2.1), because the dual bundle $\gamma_{8,3}^{*}$ of $\gamma_{8,3}$ is isomorphic to $\gamma_{8,3}$ [2, Problem 3–D]. Also, $(\gamma_{8,3} \otimes \gamma_{8,3}^{\perp}) \oplus (\gamma_{8,3} \otimes \gamma_{8,3}) \cong \gamma_{8,3} \otimes (\gamma_{8,3}^{\perp} \oplus \gamma_{8,3}) \cong 8\gamma_{8,3}$. So, $w(G_{8,3})w(\gamma_{8,3} \otimes \gamma_{8,3}) = w(8\gamma_{8,3})$ $= 1 + w_{1}^{8}$. Thus, we see that $w_{4}(G_{8,3}) = w_{1}^{4} + w_{2}^{2}$ by the above lemma, which is not zero by [2, Problem 6–B and Th. 7.1]. q.e.d.

PROOF OF THEOREM 1.1. It is well known that $RP^n = G_{n+1,1}$ (n=1, 3, 7) is parallelizable, and so the theorem follows immediately by Lemmas 3.3 and 3.6. q.e.d.

References

- [1] J. F. Adams: Vector fields on spheres, Ann. of Math., 75 (1962), 603-632.
- [2] J. Milnor and J. Stasheff: Characteristic classes, Ann. of Math. Studies, 76 (1974).
- [3] A. Neifahs: A necessary condition for the parallelizabity of Grassmann manifolds, Latvian Math. Yearbook, 9 (1971), 193-195.
- [4] E. Thomas: On tensor products of n-plane bundles, Arch. Math., 10 (1959), 174-179.
- [5] T. Yoshida: Note on equivariant maps from spheres to Stiefel manifolds, Hiroshima Math. J., 4 (1974), 521–525.

q.e.d.

Toshio Yoshida

The Faculty of Integrated Arts and Sciences, Hiroshima University