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In this paper we consider the following differential inequalities with retarded
arguments:

(A) (-1) *(-)(0 sgn x(t) ^ f Pt

(B) ( - i) χ(-)(0 sgn x(ί) ^ po(ί) f ί Φί
i = l

For these inequalities the following conditions will be assumed without further
mention:

(a) The functions p^ί) (ί = 0,1,..., iV) are continuous and nonnegative on
[0, oo).

(b) The functions f^y) and φ£y)(i=l,...9N) are continuous and positive
on ( - oo, 0) U (0, oo) and /f( y) sgn y and φt( y) sgn y are nondecreasing in y.

(c) The functions gi{i){i = \,...,N) are continuous and nondecreasing on
[0, oo) and

git) <*t for t ^ 0 and lim g^t) = oo .
i-+oo

We shall restrict our attention to solutions x(t) of (A) or (B) which exist on a
half-line [ί^, oo). Such a solution is called oscillatory if it has a sequence of zeros
tending to infinity; otherwise a solution is called nonoscillatory.

The object of this paper is to obtain sufficient conditions under which all
bounded solutions of the differential inequalities (A) and (B) are oscillatory. Our
results generalize the results due to Gustafson [1] and Shreve [8]. For related
results we refer the reader to the papers by Koplatadze [2], Kusano and Onose
[3], Ladas [4], Ladas, Lakshmikantham and Papadakis [5], and Sficas and
Staikos [6,7].

THEOREM!. Assume that

(1) lim sup \\ [j-flfft)]"-1 Σ Λ ( # > ( » - 1)! lim sup

where f(y)= min fι(y) and g(t)= max
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Then, if n^.2 all bounded solutions of (A) are oscillatory, while if n = l all

solutions of (A) are oscillatory.

PROOF. Suppose there exists a bounded nonoscillatory solution x(t) of (A).

Without loss of generality we may suppose that x(t) is eventually positive. There

is a ί i > 0 such that x(g0))>O for t<£tl9 i=l , . . . , N. From (A) it follows that

(— l)wx ( n )(i)^0 for t^tv Hence in view of the boundedness of x(t) there exists

a t2^tι such that

(2) ( - i y j c < ' > ( 0 ^ 0 for t^t

Combining Taylor's formula with remainder

(3) x(s)= "Σo-^^-(s-ty+ ( | | _ | υ ! ^(s-ur^x^iu) du

with the inequality (A), we get for ίΞ>sgί2

From (2), (4) and the monotonicity of x, fh gt it follows that

x(s) ̂  x(t) + ̂ y / ^ \\ i Σ

Therefore

(5) χ(g(t))^χ(t)+ fΨ(0^))) [ lu-gW^Σ
(n—l)l Jg(t) i=ι

for t^t3, where t3 is chosen so large that g(t)^.t2 for t^t3.

Now, by (2), x'(ί):gθ for ί^ί 2, so that x(t) decreases to a limit c^O as ί-+oo.

From (5) we see that c = 0. Again from (5) we find

(6) (n-i)l

for t^t3. Taking the limit superior as ί-»oo of both sides of (6) we obtain a con-

tradiction to the hypothesis (1). This contradiction establishes the desired result

for the case n ^ 2.

To complete the proof it is sufficient to observe that when n = 1 every non-

oscillatory solution of (A) is necessarily bounded.

In exactly the same way we can prove the following theorem.
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THEOREM 2. Assume that

(7) limsupΓ O-0(/)]M~VoO) ds >(n- 1)! lim sup ] ^ Λ

N

where φ(y)=Π φt(y) and g(t)= max g^t).Π
i=ί

Then, if n^2 α// bounded solutions of(B) are oscillatory, and if n = \ all
solutions of(B) are oscillatory.

REMARK 1. Theorems 1 and 2 generalize the results of Gustafson [1, Theo-
rems 3.1, 4.1] and Shreve [8, Theorem 1]. An important special case of (A)
and (B) to which the above theorems apply is the retarded differential equation

x<»)(0 + ( - l)n+1p(t)\x(g(t))\asgnx(g(t)) = 0, 0 < α ̂  1.

REMARK 2. Oscillation criteria of similar nature have been obtained by
Koplatadze [2], Ladas, Lakshmikatham and Papadakis [5] and Sficas and
Stakios [6, 7]. For example, according to Theorem 3 of [7], all bounded solu-
tions of (A) are oscillatory if

(8) lim supΓ [ 0 ( 0 - 0 W ] " - 1 ! pt(s)ds>(n-1)1 lim sup
ί-+oo Jg(t) ι=l y-0

where g(t) andf(y) are the same as in Theorem 1.
The following example shows that in some cases (1) is better than (8).

EXAMPLE 1. The retarded differential equation

(9) f/

a being a positive constant, has no bounded nonoscillatory solutions. This follows
from Theorem 1 (or 2) since

S i a

_—4-[ s —V* ] 3 ds= co .
y/t S

On the other hand,

limsupl _-^rtyj7-yJs~y ds=-^~,

so that the criterion (8) is applicable to (9) only when a> 18.
We note that the ordinary differential equation
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associated with (9) has a bounded nonoscillatory solution of the form x(t) = Γλ

(λ>0). This shows that the oscillation of bounded solutions of (9) is caused by
the presence of the delay.

We shall state oscillation criteria of slightly different kind for the differential
inequalities (A) and (B).

THEOREM 3. Let

f(y)= min f£y) and g{t) = max gtf)

and suppose that g'(t)^.O,

L ° l < c o f o r s o m e f l > 0 'L ° l
and

(11) f V w ( f t 5 - ^ ) ] " - 2 Σ Pis)ds)it = oo .

Then, all bounded solutions of (A) are oscillatory.

PROOF. Let x(t) be a bounded nonoscillatory solution of (A) which is eventu-
ally positive. It follows from (A) that (-l)nx^(t)^O for t^tl9 tγ being suffi-
ciently large, and hence that there is a t2^t1 such that (2) holds for t^t2-

Applying Taylor's formula to x'(s) and using (A) and (2), we have

(12)

for t^s^t2. Putting s — g(t) in (12) and taking the monotonicity of fί9 gh x into
account, we obtain

(13) -χ\g{t))^WgV§> \* lu-g(t)y-2Σ Pι(u)du

for t^t3, where t3 is taken so that g(t)^.t2 for t^t3. Multiplying both sides of
(13) by g'(t)lf(x(g(t))) and then integrating over [ί3, ί], we obtain

f*(9(<3))

Ay)
(14)

(n-2)\ )t} \Jβ(s) i=ι
-2 Σ Pί(u)du)ds.

iι /
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In view of (2) x(t) tends to a finite limit c^O as ί-»oo. Therefore, by (10), the left

hand side of (14) remains bounded, while on account of (11) the right hand side

becomes unbounded as ί->oo. This contradiction proves our theorem.

Similarly we can prove the following

THEOREM 4. Let

N

ΠΦi(y) and g(t) = max gt(t)
ί = l l ^ ί g i V

and suppose that #'(0^0>

\ J*/\ < Q 0 9 \ -rr-τ-< oo for some α > 0 ,
J+o Φiy) J-fl Φiy) J

and

= 0 0 .

Then, all bounded solutions o/(B) are oscillatory.

REMARK 3. An important special case to which Theorems 3 and 4 are

applicable is the equation

= 0, 0 < α

EXAMPLE 2. Consider the retarded differential equation

(15) sgn χ ( ί - - L ) = 0 , 0 < α

From Theorem 3 (or 4) it follows that all bounded solutions of (15) are oscillatory,

since

However, neither (1) nor (8) is applicable to (15). In fact, as is easily verified,

Ct r in

lim sup \ s-t+ — \ds = 0,

lim sup \ Γ t - — - s + — \ds = 0 .
ί-00 J ί - ί - i L t S\

ACKNOWLEDGMENT. The author would like to thank Professor T.

Kusano for his helpful suggestions concerning this work.



192 Manabu NAITO

References

[ 1 ] G. B. Gustafson, Bounded oscillations of linear and nonlinear delay-differential equa-

tions of even order, J. Math. Anal. Appl. 46 (1974), 175-189.

[ 2 ] R. G. Koplatadze, Remarks on the oscillation of solutions of higher order differential

inequalities and equations with retarded argument, DifferenciaΓnye Uravnenija 10

(1974), 1400-1405. (Russian)

[ 3 ] T. Kusano and H. Onose, Oscillatory and asymptotic behavior of sublinear retarded

differential equations, Hiroshima Math. J. 4 (1974), 343-355.

[ 4 ] G. Ladas, Oscillatory effects of retarded actions, to appear.

[ 5 ] G. Ladas, V. Lakshmikatham and J. S. Papadakis, Oscillations of higher-order

retarded differential equations generated by the retarded argument, Delay and Func-

tional Differential Equations and Their Applications (K. Schmitt, Ed.), pp. 219-231,

Academic Press, New York, 1972.

[ 6 ] Y. G. Sficas and V. A. Staikos, The effect of retarded actions on nonlinear oscillations,

Proc. Amer. Math. Soc, to appear.

[ 7 ] Y. G. Sficas and V. A. Staikos, Oscillations of differential equations with deviating

arguments, Funkcial. Ekvac, to appear.

[ 8 ] W. E. Shreve, Oscillation in first order nonlinear retarded argument differential

equations, Proc. Amer. Math. Soc. 41 (1973), 565-568.

Department of Mathematics,

Faculty of Science,

Hiroshima University




