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Introduction

Let M be a differentiable manifold with a given linear connection V and

e e M b e a fixed point. Then we have considered in [5] the local multiplication μ

at e compatible with F, which is given by

μ(x9y) = Exp^τ^oExp K.y),

where Exp^ denotes the exponential mapping at x and τβtX denotes the parallel

displacement of tangent vectors along the geodesic joining e to x in a normal

neighborhood of e.

If M is a reductive homogeneous space AjK with the canonical connection,

due to K. Nomizu, then the local multiplication μ given above satisfies

μ(x9y) = (expX) y;X = Exp H^eSR c 81,

where 2l = 9Jl + ft is the decomposition of the Lie algebra of A such that ad

9W. (Cf. [15, Theorem 10.2].) Therefore, if M is reduced to a Lie group A

itself, then the canonical connection is reduced to the ( —)-connection of [3] and

the local multiplication μ coincides with the multiplication of A in local.

These facts suggest us a problem of the existence of a global differentiable

binary system on a reductive homogeneous space A/K, which coincides locally

with the above geodesic local multiplication μ. We have been interested in this

problem and in the question how such a multiplication relates to the canonical

connection and to the general Lie triple system defined on the tangent space $01,

which will be called the Lie triple algebra in this paper (cf. [5-8]).

The main purpose of the present paper is to investigate the above problem

and to provide the basic concepts to construct the global theory of differentiable

binary systems, as an analogy and also as a generalization of the theory of Lie

groups and Lie algebras.

Our considerations are based on the purely algebraic concept of a homo-

geneous loop (Definition 1.4) and the concept of a homogeneous Lie loop (Defini-

tion 3.1), a homogeneous loop admitting a natural differentiable structure. We

shall prove that any homogeneous Lie loop has the canonical connection and is

a reductive homogeneous space. We shall investigate the condition for the

multiplication of such a loop G to coincide in local with the geodesic local multi-
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plication μ given above. Especially, if G has in addition the symmetric property,
i.e.,

(xy)-1 = x-iy-1 (x, y e G),

then we shall prove that G is a symmetric homogeneous space and satisfies the
above condition.

We study in § 1 various properties of homogeneous loops used in the subse-
quent sections.

We shall consider in § 2 the semi-direct product A = G x K of a homogeneous
loop G by some group K of automorphisms of G, and show that A is a group and
G can be regarded as the factor set AjK by the left coset decomposition of A
modulo its subgroup K.

In §3, we shall investigate the various properties of the canonical connection
of a homogeneous Lie loop G. Above all, we shall prove that G can be identified
with the reductive homogeneous space A(G)jK(G) with the canonical decomposi-
tion $l = (5 + ft of the Lie algebra of A(G), A(G) being the semi-direct product
G x K(G) (Theorem 3.7).

In § 4, we shall show that the geodesic local multiplication μ of a locally
reductive space G defines the geodesic homogeneous local Lie loop, which is a
basic example of a homogeneous Lie loop in local.

In § 5, we shall investigate the conditions for a homogeneous Lie loop G to be
coincident with any geodesic local Lie loop and we shall say such a loop to be
geodesic. Connected Lie groups are examples of geodesic homogeneous Lie
loops.

§6 will be devoted to studying the symmetric Lie loop G, i.e., a homogeneous
Lie loop with the symmetric property. After proving that G is a symmetric
homogeneous space (Theorem 6.1) we shall show that G is geodesic (Theorem
6.4).

Finally, in § 7, we shall consider the Lie triple algebra (5 defined on the tan-
gent space of a geodesic homogeneous Lie loop G by

XY=lx, y ] α ; IX, Y,Z] = [ [* , 7L,Z] (X, y ,ze©),

with respect to the canonical decomposition $l=(5 + 5ΐ, and show that G can be
characterized locally by its Lie triple algebra © (Theorems 7.3 and 7.8).

The correspondence between the subloops of G and the subsystems of (S
is going to be discussed in another article.

Recently, A. Sagle and others are studying a local multiplication on a reduc-
tive homogeneous space with the same interest as ours in its relations to linear
connections and to non-associative algebras. (Cf. [17, Appendix] and [18].)

For the terminologies used in this paper, we refer mainly to R. H. Bruck
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[1] in the theory of loops, and S. Kobayashi-K. Nomizu [9] in differential

geometry.

§ 1. Homogeneous loops

In this section, we shall introduce the notion of homogeneous loops and

investigate their basic properties.

Let G = (G, μ) be a binary system with a binary operation

μ: GxG >G.

The multiplication μ(x, y) (x, y EG) is denoted by xy when no confusion occurs.

The left and right translations by an element x e G are denoted by

(1.1) LX9 Rx: G-^G; Lx(y) = xy, Rx(y) = yx (yeG).

DEFINITION 1.1. A binary system G = (G,μ) is a quasigroup if all left and

right translations (1.1) of G are permutations of G.

A quasigroup G is a loop if there is a (two-sided) identity eeG, xe = ex = x

(x e G). The concepts of subloops, homomorphisms and isomorphisms of loops

and quasigroups are defined in a natural manner.

For the systematic theory of loops, we refer to R. H. Bruck [1].

DEFINITION 1.2. Let G be a loop. The left translation group L(G) of G

is the transformation group of G generated by all left translations of G. Also,

the left inner mapping group L0(G) of G is the subgroup of L(G) generated by all

left inner mappings

(1.2) LX9, = L^oL,oL/> ( i j e G ) .

PROPOSITION 1.1. The left inner mapping group L0(G) of a loop G is the

ίsotropy subgroup of the left translation group L{G) at the identity eeG.

PROOF. Consider the subset

H = {α e L(G) L ^ o α e L0(G)} cz L(G).

It is clear that L0(G) is contained in H since Lxy(e) = e. Conversely, if oceH

leaves e fixed, then αeL0(G). Therefore, it is sufficient to show that H = L(G).

For any aeH, put a(e) = a and Θ = L~ίotχeL0(G). Then, for any xeG we

see that Lχoa e H, since (Lxooc) (e) = xa and

1) In this paper, ^ / m e a n s the composition of mappings f and g such as g°f{x)=g{f(x))
Therefore, we notice that our notations differ slightly to those in [1],
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L-JoLχo* = L-}oLχoLaoθ = LX)aoθeL0(G).

Furthermore, we see β = Lx

ιo(χeH, since a = xb (b = β(e)) and

Thus we see that L(G)czL(G)oHczH as desired. q. e. d.

REMARK 1.1. The multiplication group M(G) of a loop G is the transforma-

tion group of G generated by all left and right translations of G. Also, the inner

mapping group I(G) is the subgroup of M(G) generated by all left inner mappings

LX)y, right inner mappings Rxy and proper inner mappings Tx (x, y e G), where

(1.3) RXt, = R^oRyoRχ; Tx = L:ΌRχ.

Then, the above proof is on the same line as that of [1, IV Lemma 1.2]:

I(G) is the ίsotropy subgroup of M(G) at eeG.

DEFINITION 1.3. A loop G is said to have the left inverse property, or to be

a left I. P. loop, if, for any xeG, there corresponds an element x'1 e G such that

(1.4) χ~ι(χy) = y (yeG),

or equivalently,

(1.4)' L x - l i X = id2> or L ί » = L , - , .

This element x" 1 is uniquely determined by x, and x'1 is the inverse of x.

Now, let G be a left I. P. loop with the identity e. For any fixed element a e

G, consider a binary operation μa: GxG-+G defined by

(1.5) μa(x,y) = a({a-iχ){a-iy)) (x,yeG),

where the multiplications on the right hand side are the original ones of G.

Then it is easy to see the following

LEMMA 1.2. G ( α ) = (G, μfl) is a loop with the identity a, and G ( e ) is the

same as the original loop G.

This loop G ( α ) will be called the transposed loop of G centered at α. In the

following, we denote the multiplication (1.5) by

(a)

x - y = μa(x, y).

THEOREM 1.3. Let G be a left I. P. loop. For any a, beG, the left inner

2) id means the identity transformation.
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mapping Lab of (1.2) is an automorphism ofG if and only if the transposed loop

G ( b ) is isomorphic to G( f l f t ) under the left translation La of G.

PROOF. By (1.5) and (1.2), we have

(b)

La(x - y) = (L^oL^db-'xKb-iy)),

La(x)° ]La(y) = LJLath{b-iχ)Lath{b-iy)).

Since Lab and Lb-ι are permutations of G, these are equal if and only if L α b is an

automorphism of G. q. e. d.

Since L α -i j α = id by (1.4)', we have

C O R O L L A R Y 1.4. Any transposed loop G ( α ) of a left I. P. loop G is isomo-

rphic to G by La-i, and is thereby a left I. P. loop.

L E M M A 1.5. The inverse of x in G ( α ) is expressed by a(a~ιx)"ί in the

original loop G.

P R O O F . Put x' = a(a~ίx)~ί. Then we see easily μa{x', x) = a. Since a is

the identity of the left I. P. loop G ( α ) , the element x' must be the inverse of x in

G<fl>. q.e.d.

By the condition of Theorem 1.3, we give the following

DEFINITION 1.4. A loop G is called a left A-loop, if the left inner mapping

group L0(G) of Definition 1.2 is a subgroup of the automorphism group AUT(G)

of G. By a homogeneous loop, we mean a left A-loop with the left inverse proper-

ty.

REMARK 1.2. A loop G is an A-loop, if /(G) in Remark 1.1 is a subgroup of

AUT(G). Various properties of A-loops have been investigated by R. H. Bruck

and L. J. Paige [2].

THEOREM 1.6. Let G be a homogeneous loop. Then, for any a, beG,

the transposed loops G ( f l ) and G(f>) are isomorphic under the left translation Lc

of G, where c is the element determined by b = ca. Moreover, the transposed

loop (G<α>)<b> ofG^ coincides with G<ft>.

PROOF. The first half of the theorem is an immediate consequence of

Theorem 1.3.

Let (G\ •) denote (G<α>, ), which is a left I. P. loop by Corollary 1.4.

Consider the multiplication

μ>b{x, y) = b ((b' x) (bfmy)) in G'<»,



146 Michihiko KIKKAWA

where bf = a(a~ίb)~ί is the inverse of b in G' by Lemma 1.5. By (1.5) and (1.4),

we see that V z = a((a~ίb)~1(a~Λ z)) and

μ'b(x9y) = (LaoLd)({d-\a-iχ)){d-\a-iy))) (d = a^b).

Here, La°Ld = LadoLad = LboLUid and Lad is an automorphism of G by the assump-

tion. Also

LaJd-\a-iz)) = {L-b^LaoLd){d-\a~'z)) = b^z.

These show that μ'b(x, y) = Lb((b~1x)(b~1y)) = μb(x, y) as desired. q. e. d.

By this theorem, we can give the following

DEFINITION 1.5. A class {Ga;aeG} of homogeneous loops on the same

underlying set G will be called a homogeneous structure on G, if Gb is the trans-

posed loop G(

a

b) of Gα centered at b for any a, beG. A homomorphism

φ:{Ga;aeG} >{Hb;beH}

of homogeneous structures is a mapping φ: G-+H such that φ: Ga-+Hφ{a) is a

homomorphism for any aeG.

COROLLARY 1.7. For any homogeneous loop G, the class

jfG = {G<β>;αeG}

0/α// transposed loops of G is a homogeneous structure on G, and conversely any

homogeneous structure on G is given by this manner. Also, any automorphism

φ: JfG->Jί?G is a composition

φ = Laooc, a = φ(e\ aeAUT(G),

where e is the identity of G and La is the left translation (1.1) of G.

LEMMA 1.8. The following identities are valid in a homogeneous loop G:

(1-6) Lxy = Ly>y-ίχ-i.

(1.7) L~}y = Ly-itX-ι = LUtV (u = xy, uv = x).

(1.8)

PROOF. Since LxyeAUT(G) and Lx>y(y~ix''1) = (xy)~ί, we have easily

LXiy{z) and so

= LχyθLχyθLy-lχ-l = Lyiy-ίχ-l9
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Lχ,\ = L~±ιx-ioLy-ioLx-i =Ly-ιx-ι = Lx-ιxy

Γ Γ Γ
— J-#χ-1,n — 1-tu,u~1x — ^Ίi^ '

These show (1.6) and (1.7). Also, (1.8) is obtained by

q.e.d.

DEFINITION 1.6. A loop G is said to be left alternative if

(1.9) x(xy) = (xx)y, for any x, yeG,

or equivalently L x x = id in G. A left I. P. loop G is said to be left power alterna-

tive3^ if

(1.10) LχPχq = id, for any xeG and any integers p, q,

where x° = e, xM = xxM~1 and x~n = (xn)~ι for any positive integer n. Also, a loop

G is said to be power associative (resp. di-assocίatίve) if any element of G gener-

ates (resp. any two elements of G generate) an associative subloop, i.e., a subgroup

ofG.

The following is evident:

PROPOSITION 1.9. A power alternative loop is power associative, and a di-

associative loop is left power alternative.

As a corollary to Theorem 1.3, we have the following

PROPOSITION 1.10. Assume that a left I. P. loop is left power alternative.

Then, the transposed loop G ( f l P ) is isomorphic to G for any aeG and any integer

P-

PROPOSITION 1.11. Let G be a homogeneous loop. Then the following

three conditions are equivalent to each other:

(1) G is left power alternative.

(2) LxniX = id, for any xeG and any positive integer n.

(3) Lxχn = id, for any x e G and any positive integer n.

PROOF. From the definition (1.10), it is clear that (1) implies (2) and (3).

Assume (2), which is equivalent to (xnx)z = xn(xz) (x, zeG9n>0). Then we

see easily by induction that χnχm = χn+τn and (x~1)" = x~n for any positive integers

m, n. So we see also that

3) In [10, II ] , we called G with this property left dί-associative in the strong sense.
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y1 =Lx-
x-ί)n

for any xeG and n>0 by (1.7). Therefore we get (3).

Now assume (3). Then we see by induction

(*) xn+mz = xn(xmz) (x, z e G, n, m ^ 0),

which shows

(**) LxntXm = id, for n, m ^ O .

For n^m^O, since xn~m = x~m(xmxn~m) = x~mxn by (1.4) and (*), we have Lx-n>χm

= Lxmxn-m = id by (1.6) and (**). This and (1.7) show Lx-nχm = Lx±miXn = id for

m^ng:0. Therefore, (**) holds also for m^O^n. Finally, we have (**) for

m<0 by these results and the first equality of (1.7), and so (1) is valid. q. e. d.

PROPOSITION 1.12. Let G be a homogeneous loop, satisfying the condition

(1.11) (xy)-1 = JΓ 1 *" 1 , for any x,yeG.

Then

(1) G has the right inverse property, i.e., (yx)x~ * = y for any x, yeG.

(2) Rxy = Ly-i x-i and thereby Rxy is an automorphism of G.

(3) If G is left alternative in addition, then G is left power alternative and

hence power associative.

PROOF. (1) and (2) are easily seen by (1.11) and the left inverse property.

(3): By (2), we see RXty(x~1) = y(xy)'1 =y(y'1x~1) = x'1 and so Rx,y(xn) =

xn for n>0. The latter equation is equivalent to Lχnχ(y) = y, and hence G is left

power alternative by the above proposition. q. e. d.

DEFINITION 1.7. A homogeneous loop G will be said to have the symmetric

property if the inverse mapping J: G->G, J(x) = x~1, is an automorphism of G,

that is, the identity

(1.12) {xy)-i = x-iy-i (x,yeG)

holds for G.

PROPOSITION 1.13. Let G be a homogeneous loop. Then G has the sym-

metric property if and only if any one of the following identities holds for

G(x,y,zeG):

(1)

(2)

(3)
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Moreover the following is valid if G has the symmetric property:

(4) L,-!.,-! = L,., (x,yeG).

PROOF. It is clear that (1.12) is obtained by substituting x"1 for y in (1),

or y'1 for z in (2). Also, (3) is a restatement of (2).

Assume that G has the symmetric property. By replacing x with Λ:"1 in (1.8),

we get

(*) x(xy~ί) = y(y~ιx)2.

Further, by substituting zx for x and zy for y in (*), we get

(**) (zx)((zx)(zy)-1) = (zy)((zy)-\zx)Y .

Since Lzy(y~1x) = (zy)~1(zx) and Lzy is an automorphism, we have

Thus, by (*) and (**), (1) is shown as follows:

i)) = {zy\{zy)-\zx)Y =

(2) follows immediately from (1.12) and (1).

Also, (4) follows from (1.12) and (3). q. e. d.

REMARK 1.3. From (1.7) and the above proposition it follows easily that

the symmetric property implies the identity LxχoLxx = id. In §6 it will be shown

that if G is a homogeneous Lie loop with the symmetric property, Lxx = iά holds,

that is, G is left alternative.

Here, we shall give some examples of homogeneous loops.

EXAMPLE 1.1. A group G is a homogeneous loop with the trivial left inner

mapping group L0(G).

EXAMPLE 1.2. An A-loop G (cf. Remark 1.2) is a homogeneous loop, if G

has the (left and right) inverse property, or equivalently, if G is di-associative

(cf. [2, Theorem 3.1]).

EXAMPLE 1.3. A loop G is a Moufang loop if G satisfies the following con-

dition for any x, y, zeG:

(1.13) x(y(xz)) = ((xy)x)z.

Then a Moufang loop has the inverse property, and is an A-loop if it is commuta-

tive. (Cf., e.g., [1, VII Lemmas 3.1, 3.3].) Therefore, a commutative Moufang
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loop is a homogeneous loop.

EXAMPLE 1.4. In general, Moufang loops are not always (left) A-loops. For

instance, the sphere SΊ = {z e (£; \z\ = 1} in the Cayley number system (£ is a Mou-

fang loop with the multiplication of (£. But it is not a homogeneous loop. Never-

theless, SΊ contains a non-trivial homogeneous subloop G = {±ei\ / = 0,..., 7}

consisting of all generators of £ and their inverses. The left inner mappings act

on G by Leuej (ek) = ek or — ek according as e{e} = ±ek or not.

EXAMPLE 1.5. In [8, II Theorems 3, 5] we have proved the following:

Let G be a subset of a group A satisfying the conditions

(1) eeG and G~x —G, where e is the identity of A.

(2) If x, yeG, then xyxeG.

(3) Any element xeG has a unique square root x 1 / 2 in G. Then G is a

homogeneous loop with the symmetric property, under the multiplication

(1.14) μ(x,y) = xιl2yx1l2 (x9yeG).

Let Pn denote the set of all positive definite symmetric real nxn matrices.

Then Pn satisfies the above conditions (l)-(3) as a subset of the group of all non-

singular nxn matrices and so Pn is a homogeneous loop with the symmetric proper-

ty under the multiplication μ(X, Y) = X^2YX^2 for X, YePn.

Also, the set Hn of all positive definite Hermitian matrices is a homogeneous

loop under the multiplication as above.

REMARK 1.4. More generally, it can be shown that, if G is a Moufang loop

in which each element has a unique square root, the loop G(1/2) = (G, μ) of [1,

VII Theorem 5.2] is a homogeneous loop with the symmetric property, where μ

is defined by (1.14).

§ 2. Semi-direct products

In this section we shall study the semi-direct product of a homogeneous loop

G by a subgroup K of the automorphism group AUT(G) of G.

DEFINITION 2.1. Let G be a homogeneous loop and K be a transformation

group of G such that L0(G)aKczAUT(G), where L0(G) is the left inner mapping

group of Definition 1.2. The semi-direct product GxK of G by K is the Car-

tesian product GxK together with the binary operation

(2.1) (x, «Xy, β) = (xαOO, LxMyf«oβ)

for (x,α), (y,β)eGxK, where LxMy)eL0(G) is the left inner mapping of (1.2).
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THEOREM 2.1. The semi-direct product GxK of the above definition is

a group with the identity (e, id) (e is the identity of G) and the inverse

(2.2) (x,*)""1 • = ( α " 1 ( x " 1 λ « " 1 ) for (x,κ)eGxK.

Moreover, by using the left translation Lx 0/(1.1), we have an isomorphism

(2.3) p:GxK > AUT(jfG), p(x,α) = Lχoα

for (x,a)eGxK, of GxK into the automorphism group AUT(3fG) of the

homogeneous structure 3tfG of G of Corollary 1.7.

PROOF. From Corollary 1.7 it follows that p(x, α) is an automorphism of

Jfc. Moreover, for any x, yeG and α, βeK, the equality Lx°a = Lyoβ implies

x = Lx(e) = Lx(<x(e)) = Ly(β(e)) = y and so α = β. Therefore p is injective.

Also

p(x, α)°p()>, β) = LχoctoLyoβ = LχoLa(y)o<χoβ

Thus p preserves the multiplication, and so G x K is associative. It is easily seen

that (e, id) is the identity and the inverse is given by (2.2). q. e. d.

The automorphism Lχoot = p(x, α) of 34?G is called the representation of (x, α)e

GxK. Then the semi-direct product G x K can be identified with the subgroup

ρ(GxK) of AJJT{jeG) by the above theorem. In particular, by Corollary 1.7,

we have the following

COROLLARY 2.2. p: GxAUT(G)^AUT(jί?G) is an onto isomorphism.

Therefore, the semi-direct product GxAUT(G) can be identified with AUT(jfG)

and AUT(G) is the isotropy subgroup of A\JT{tfG) at eeG.

The following lemma is also proved easily by definition.

LEMMA 2.3. The notations being the same as in Theorem 2.1;

(1) The group K is the representation group of the subgroup exKofGxK,

and we can identify K = exK.

(2) (x,α) = (x,id)(e,α), (e,α)(x,id)(e,α)~1 = (α(x),id) for any xeG and

ueK.

(3) G x K = (Gid)K (uniquely factored), where Gid = Gx id.

(4) Gid is an aά(K)-invariant subset of GxK.

Here we give the definitions of normal subloops and quotient loops.

DEFINITION 2.2. A subloop H of a loop G is normal iff/ is invariant under
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the inner mapping group I(G) of Remark 1.1, i.e., if the followings are valid for
any x9 yeG:

(1) x(yH) = (xy)H9 (2) (Hx)y = H(xy)9 (3) Hx = xH.

Then the quotient loop G/H of G modulo H can be defined naturally by

G/H = {xH;xeG}9 (xH)(yH) = (xy)H,

and the projection p: G-+G/H, p{x) — χH9 is an onto homomorphism of loops
(cf. [1, IV]).

THEOREM 2.4. Let H be a subloop of a homogeneous loop G. Then
(1) H is a homogeneous loop.
(2) // H is a normal subloop of G, the quotient loop G/H of G modulo H

is also a homogeneous loop.

PROOF. It is easily seen that x"1 is contained in H if xeH. Hence (1) is
clear.

Since the projection p: G-+GJH is an onto homomorphism, (2) is obtained
also immediately. q.e.d.

THEOREM 2.5. Let H be a normal subloop of a homogeneous loop G and
suppose that a transformation group K, L0(G)czKczAUT(G)9 leaves H invariant.
Then:

(1) The subset HxK is a subgroup of the semi-direct product GxK.
(2) Any left coset of HxK is (x9 oΐ)(H xK) = xH xK (xeG,aeK).
(3) The factor set GxK/HxK by the left coset decomposition of GxK

modulo HxK9 with the multiplication

(2.4) (xH x K)(yH xK) = (xy)H xK ( x j e G ) ,

is a homogeneous loop isomorphic to the quotient loop GjH.

PROOF. (1), (2): These are clear by (2.1), (2.2) and the assumption for H.
(3): By (2), the mapping j : G/H-+ G x K/H x K9 j(xH) = xHxK9 is a bijec-

tion. Therefore we have (3) by the definition of the quotient loop and Theorem
3.4. q. e. d.

REMARK 2.1. In the above theorem the kernel Kx of the restriction homo-
morphism r: K^AUT(H), r(α) = α|H (oceK)9 is a normal subgroup of HxK,
and H x K/Kί is isomorphic to the semi-direct product H x K2, where K2 is the
image of r. In fact, the mapping r induces a homomorphism (A, α)-»(A, oc\H) of
the group HxK onto the semi-direct product H x K2, since L0(H)czK2

(^AUT(H)
follows from L0(G)<=:KczAUT(G).
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COROLLARY 2.6. The factor set GxK/K of left cosets of K, with the mul-
tiplication

(2.5) (x x K)iy x K) = (xy) xK (x,yeG),

is a homogeneous loop isomorphic to G itself
By the above corollary and Corollary 2.2, we get

COROLLARY 2.7. Any homogeneous loop G can be identified with the
set AUT(3eG)IAUT(G) of all cosets of AΌT(G) in the automorphism group
AUT(jfG) of the homogeneous structure of G, under the mapping j : G-»
AUT(jfrG)IAUT(G), j(x) = LχoAUT(G), xeG.

THEOREM 2.8. Let H be a normal subloop of a homogeneous loop G,
and consider the subgroup

L0(G, H) = {α e L0(G); φH) = xH for any xeG} c L0(G).

Then (1) L0(G, H) is a normal subgroup of L0(G) and

L0(GIH)^L0(G)/L0(G,H).

(2) The subset H x L0(G, H) is a normal subgroup of the semi-direct product
G x L0(G) and

G/H x L0(G/H) s G x L0(G)IH x L0(G, H).

PROOF. (1): Any α e L0(G) is an automorphism of G and it leaves H invari-
ant. Hence α induces the automorphism α' of GjH by cc'(xH) = (ocx)H9 and we
obtain the homomorphism

/ : L0(G) > A UT(GIH), /(α) = α'.

Since α/ = LJcHj3,ί/6L0(G/if) for α = LJcy, we see that Im(/) = L0(G/H). Also,
Ker (/) = L0(G, H) by definition. Thus (1) is proved.

(2) Let p: G-+G/H be the natural projection. We see easily by definition
that the onto-mapping

pxf:GxL0(G) > GjHxL0(G/H)

is a homomorphism of the semi-direct products and Ker(pxf) = HxL0(G,H).
Thus (2) is proved. q. e. d.

§ 3. Homogeneous Lie loops

In this section, we shall consider a homogeneous Lie loop, a homogeneous
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loop admitting a natural differentiable structure, and assert that such a loop is a

reductive homogeneous space due to K. Nomizu [15]. For well known termi-

nologies and results on differentiable manifolds with linear connections, we refer

to [9].

DEFINITION 3.1. A homogeneous Lie loop G is a homogeneous loop of

Definition 1.4 and also a (C00-) differentiable4) manifold such that the loop

multiplication μ: Gx G-+G is differentiable.

REMARK 3.1. By A. I. MaΓcev [14], the tangent algebras of some analytic

loops have been treated.

EXAMPLE 3.1. A Lie group G is a homogeneous Lie loop.

EXAMPLE 3.2. The set Pn of all positive definite real symmetric nxn

matrices in Example 1.5 is a homogeneous Lie loop. In fact, the multiplication

μ(X, Y) = X1ί2YXίί2 is differentiate with respect to the natural differentiate

structure on Pn. (Cf. [10].)

In the same way, the manifold of all positive definite Hermitian matrices is a

homogeneous Lie loop. These are examples of homogeneous Lie loops with the

symmetric property, that is, symmetric Lie loops (cf. § 6).

PROPOSITION 3.1. Let G be a homogeneous Lie loop. Then the inverse

mapping J: G-+G, J(x) = x~1 (xeG), is a dίjfeomorphism of G.

PROOF. Choose a local coordinates (u 1 , w2,..., u") (n = dimG) centered at

the identity e with a domain U. Then there exists a neighborhood Voίe such that

μ(VxV)aU. Since μ(x, e) — x for x e ί / , it follows that

Thus the implicit function theorem shows that there exists a neighborhood W of

e such that J is differentiable on W.

Now, for any fixed element aeG, consider the neighborhood Wa = La(W)

of α, where La denotes the left translation of G. Since J(x) = a(w(w~ίa~1)2)

(Lemma 1.10), for any x = aw e Wa9 we see that J is differentiable at a by the above

result and the differentiability of μ. q. e. d.

REMARK 3.2. By using Proposition 3.1, we can show that every connected

homogeneous Lie loop is generated by any neighborhood of its identity. In fact

it is proved by a method similar to that for connected Lie groups.

Let G be a homogeneous Lie loop and consider the module X(G) of all

4) In the rest of this paper, the differentiability is always assumed to be of class C°°.
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differentiable vector fields on G over the real algebra g(G) of all differentiable

real valued functions on G. Denote by Lx

a) the left translation in the transposed

loop G ( α ) of G centered at a (cf. Lemma 1.4). For any two vector fields X, Ye

), we construct the vector field FXYby

(3.1) (FxY)a = lim^l(dL^t))-HYxit))-Yal, 5 )

for aeG, where x(t) is an integral curve of X through a = x(0). Then the fol-

lowing lemma is seen easily:

LEMMA 3.2. The assignment (X, Y)-+FXY defines a linear connection V

on G, that is, Fx is linear and satisfies

rfx+gYz=frxz+grγz,

(X, Y,ZeX(G) and/, ^

DEFINITION 3.2. The linear connection V on G defined by (3.1) will be

called the canonical connection of the homogeneous Lie loop G.

In this section, we consider a homogeneous Lie loop G = (G, V) together with

the canonical connection Γ.

THEOREM 3.3. Any left translation Lx (x e G) of a homogeneous Lie loop

G is an affine transformation of the canonical connection V. Therefore, V is

invariant under the left translation group L(G) (Definition 1.2) of G.

PROOF. AS was shown in the proof of Theorem 1.3, we have

(a) (xa)
Lx(g - y) = (xg) - (xy),

(b)
where denotes the multiplication of the transposed loop G{b). This is equivalent

to

(•) φoL^ = L^gfoφ (φ = Lx).

Then, we see by the definition (3.1) that

(**) ^ % g i )

lim

Here, g(t) is an integral curve through a=g(0) of the vector field X, and so φ(g(t))

5) For a differentiable map φ, we denote by dφ the induced linear mapping of tangent vectors.
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is an integral curve of dφ(X). Therefore, by the definition (3.1) of F, (**)
implies

(3.2) dφ(FxY)=VdφiX)dφ(Y).

Hence φ is an affine transformation. q.e.d.

THEOREM 3.4. The differentiable automorphism group Aut{G) of a homo-
geneous Lie loop G is a subgroup of the affine transformation group Ajf(G).

PROOF. Let φeAut(G). Then we have (*) in the above proof, by applying
φ to (1.5). Thus we see that φ satisfies (3.2) by the above proof. q. e. d.

Now, let G be a connected homogeneous Lie loop. Then, since any left
inner mapping Lxy = L~}oLχoLy (x, yeG) is a diffeomorphism of G, the left
inner mapping group L0(G) (Definition 1.2) is a subgroup of Aut(G) by Defini-
tion 1.4, the latter being a subgroup of Ajf(G) by the above theorem. Since
Ajf(G) acts on G as a Lie transformation group (cf., e.g., [9, IV Theorem 1.5]),
it is seen that Aut(G) is a closed subgroup of Ajf(G), and we can consider the set

(3.3) K(G) = the closure of L0(G) in Aut{G),

which is also a Lie transformation group of G. Moreover, L0(G) is connected
since G is supposed to be so, and consequently the group K(G) is a connected Lie
group satisfying L0(G)cK(G)aAut(G)czAUT(G).

Furthermore, we can consider the semi-direct product

(3.4) A(G) = Gx K(G)

of Definition 2.1, which is a group by Theorem 2.1. A{G) is also a connected
Lie group with the product manifold structure by definition. Then we have the
following theorem by Lemma 2.3 and Corollary 2.6.

THEOREM 3.5. For a connected homogeneous Lie loop G, the connected
Lie group A(G) of (3.4) contains K(G) = exK(G) as a closed subgroup, and
the mapping

(3.5) i : G > A(G)jK(G\ ί(x) = π K ( G ) (x e G),

is a loop-isomorphism onto the homogeneous space A(G)/K(G) with the multipli-
cation (2.5).

Also, we can show that A(G)/K(G) is a reductive homogeneous space,
defined by K. Nomizu [15] as follows:

Let M=A/K be a homogeneous space of a connected Lie group A by a closed
subgroup K,
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DEFINITION 3.3. A homogeneous space M = Λ/K is reductive6) if and only

if A acts effectively on M and the Lie algebra 21 of A is decomposed into a direct

sum such as

(3.6) 51 = M + R (direct sum), ad (K)M c SOI,

where ft is the Lie algebra of K and 9JI is a subspace of 91.

With respect to the direct sum decomposition (3.6), we see that the subspace
SJR can be identified with the tangent space $He to M at the origin e = π(K) under

the induced linear map dπ of the natural projection π: A-+M = A/K. In the Lie

group A9 we can find a neighborhood V of the identity 1 e A, a connected sub-

manifold iVcexpSOl and a connected submanifold HaK such that the mapping

(a,h)-+ah(aeN,heH) gives a diffeomorphism of NxH onto K (cf., e.g., [4,

II Lemma 2.4]). For X eWl = 9Άe9 we put a vector field X* on π(JV) = N* as

(3.7) Z * ( β ) = . Λ β ( * ) (αeiV),

where ta is the natural action of α on M.

THEOREM 3.6. [15, Theorem 8.1] LetM = AjK be a reductive homogeneous

space with a fixed decomposition (3.6). Then there exists a one-to-one corre-

spondence between the set of all A-invariant linear connections V on M and the

set of all bilinear functions A: $Hx9!Jl->90ΐ satisfying

(3.8) ad(k)A(X, Y) = A(μd(k)X9 ad(fc)Y) (X, Ye sDί, k e K).

The correspondence is given by

(3.9) Λ(X, Y) = {Vx.Y*)e (X, Ye 9JI),

where X* and Y* are vector fields defined as (3.7).

DEFINITION 3.4. By the above theorem, there corresponds to ΛL = O an

^-invariant connection V on M = AjK. This connection is called the canonical

connection of the reductive homogeneous space M.

Now we prove the following:

THEOREM 3.7. In Theorem 3.5, the homogeneous space A(G)/K(G) is reduc-

tive and the isomorphism i: G-+A(G)/K(G) of (3.5) is an affine isomorphism with

respect to the canonical connections of Definitions 3.2 and 3.4.

PROOF. Since the action of any element α = (x, oc)eA(G) on G is the same as

its representation Lχoot, A(G) acts effectively on G. By the product manifold

6) We note that, in the original definition of the reductive homogeneous space of [15], the
action of A on M is not assumed to be effective. See also [9, X p. 198 Remark].
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structure, the Lie algebra 21 of A(G) = G x K(G) is decomposed into the direct sum

(3.10) 21 = © + ft,

where © = © e is the tangent space to the submanifold G i d = G x id at e and ft is

the Lie algebra of K(G). By Lemma 2.3 (4), the submanifold G i d is invariant by

a,ά(K(G)) acting on A(G). Hence we have

(3.11) adCK(G))© c © in 21.

Thus A(G)/K(G) is a reductive homogeneous space by (3.10) and (3.11). It is

clear that i: G-*A(G)IK(G) of (3.5) is a diffeomorphism, which induces a linear

connection V on A(G)/K(G) from the canonical connection Γ of G. For each

α = (x, oί)eA(G), Lχo<x is an affine transformation by Theorems 3.3 and 3.4.

Hence, tα = ioLχoocoΓ1 is an affine transformation of F', that is, V is an A(G)~

invariant connection on A{G)jK{G).

Now, we choose a neighborhood V of l = ( e , id)e^4(G) and submanifolds

N, # such as 1 eΛΓcexp©, leHαK(G) and NxH->V, (n, /ι)->n/ι, is a diffeo-

morphism. For Xe, Ye e © we define the vector fields X* and Y* on N* = π(N)

as (3.7). Then we have

(3.12) ( Γ i . n ( 1 ) = ( Γ i i ( ) ( )

where ί and Fare the vector fields on G defined by

(3.13) Xx = dLx(Xe), Ϋx = dLx(Ye) ( x e G ) .

In fact, if we consider a differentiate curve expίX = (x(ί), on{i)) = α(t) in AT, we

have α(0)=l, (ί/α/df)o = 0 and Y* ( α ( ί ) ) = dίΌ(iLΛ(ί)odα(0(Yβ). So, for any connec-

tion on AT*, the covariant derivative of Y* and di(Ϋ) in the direction of di(Xe)

at π(l) must be coincident. Thus by the definition (3.1) of the canonical connec-

tion V of G we see (V% Y)e = 0 and so the right hand side of (3.12) must be equal

to zero. Therefore V is the canonical connection of the reductive homogeneous

space A(G)/K(G) by Theorem 3.6 and Definition 3.4. q. e. d.

Hereafter, we denote by G — A{G)jK{G) the connected homogeneous Lie loop

G identified with the reductive homogeneous space A(G)/K(G) together with their

canonical connections under the natural isomorphism i: G-+A(G)/K(G). The

direct sum decomposition (3.10) of the Lie algebra 21 of A(G) will be called the

canonical decomposition of

Here we recall some results given in [15], concerning reductive homogeneous

spaces. These are valid for any connected homogeneous Lie loop G = A(G)/K(G)

by Theorem 3.7.
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THEOREM 3.8. [15, Theorem 10.2] The canonical connection of a reductive

homogeneous space G = A/K, with the decomposition $t = (5 + ft of the Lie algebra

of A, is the unique A-invariant connection which has the following property:

For every X e (5, let a(f) = exp tX be the i-parameter subgroup of A generated

by X and let x(t) = π(a(t)) be the curve through x(0) = e = π(l). Then the parallel

displacement of vectors along the curve x(i) is the same as the translation by the

natural action of a(t) on G.

THEOREM 3.9. [15, Theorem 10.3] In Theorem 3.8, denote by S and R

the torsion and curvature tensors7^ of the canonical connection, respectively.

Then

(1) V is locally reductive, that is, FS = 0 and FR = 0.

(2) Se(X, Y) = [X, 7 ] β for X, Ye ©.

(3) Re(X, Y)Z = HX, 7]*, Z] for X,Y,Ze®.
(4) [9, X Corollary 2.5 (3)] V is complete.

Here, [ , ] @ (resp. [ , ]$) denotes the (^-component (resp. ^component)

of the Lie bracket [ , ] in 21 = (5 +51.

EXAMPLE 3.3. If G is reduced to a connected Lie group then K(G) = {id}

and A(G) = G. In this case the canonical connection of G is reduced to the ( —)-

connection of E. Cartan [3, § 1].

As was seen in the proof of Theorem 3.7, the action of A(G) = G x K(G) on

G is the same as that of its representation group p(A(G)) = {Lχooc; (x,a)eA(G)}

of Theorem 2.1. The fact similar to this is valid also for the semi-direct product

GxAUT(G). By Corollary 2.2 and Theorems 3.3, 3.4, its representation group

is the differentiable automorphism group Aut(jfG)of the homogeneous structure

#eG of G, which is a subgroup of Aff(G). By definition, 3^G assigns to each aeG

the transposed loop G ( α ) (cf. Definition 1.5 and Theorem 1.7).

THEOREM 3.10. Let G be a connected homogeneous Lie loop. The (differ-

entiable) automorphism group Aut(3^G) of the homogeneous structure 3^G of G

is a subgroup of the afβne transformation group Aff(G) of the canonical connec-

tion of G. The automorphism group Aut(G) (resp. Aut(G(a))) is the ίsotropy

subgroup of Aut(3fG) at the identity e (resp. at ae G).

Moreover, G can be regarded as the reductive homogeneous space Aut(Jί?G)l

Aut(G).

PROOF. These are proved in the same way as that of the proof of Theorem

3.7, by substituting K(G) with Aut(G). q. e. d.

7) In this paper, we adopt the signs of S and R opposite to the usual ones, that is, we define
S(X, Y) = [X, Y]-VxY+PyX, Λ(A ,y) = F t x , n - [ F Λ Fr]

for X, Y
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§ 4. Geodesic local Lie loops

In this section, we shall give a geometric example of homogeneous Lie loop

in local. By means of the parallel displacements of geodesies along geodesies,

we define a local multiplication for a differentiable manifold with a linear connec-

tion, and show that it satisfies the conditions of the homogeneous loop in local,

for a locally reductive space.

Let G be a connected differentiable manifold with a given linear connection

V. For a differentiable curve y: t-+y(ή (a<t<b) in G, by using the parallel

displacement τttS: (δ y ( ί )->(δ y ( s ) of tangent vectors8) along y and the exponential

mapping Exp y ( ί ) with respect to the connection, we can define the diffeomorphism

(4.1) φttS(y) = Expy(s)oτf fβo(Expy(0)- *•

of a normal neighborhood Uy(t) of y(t) onto a normal neighborhood Uγ(s) of y(s).

We call φt,s(y) the parallel displacement of geodesies along the curve γ9 since

it sends each geodesic through y(t) in Uγ(t) to a geodesic through y(s) in Uγ(s).

Let U be a normal neighborhood of a fixed point eeG, such that U is a normal

neighborhood of each point of U. For the existence of such a neighborhood (said

to be simple and convex), see, e.g., [4, I Theorem 6.2]. For any xeU, choose

the unique geodesic γ in U such that y(0) = e, y(l) = x, and set

(4.2) μ(x, y) = φo,i(y)(y) for y contained in a domain of φo,i(y) >

where φo,ι(y) is the parallel displacement along y of (4.1). Then

(4.2.1) μ is a local multiplication defined on a (nonempty) open subset of

UxU containing (e, e) with its values in U, and μ is differentiable on a neighbor-

hood of (e, e).

(4.2.2) For any xeU, both of μ(e, x) and μ(x, e) are defined and equal to

x, that is, e is the identity.

(4.2.3) For xeU, the left translation Lx: y^μ(x,y) is a local diffeomor-

phism of a neighborhood of e onto a neighborhood of x, and the right translation

Rx: y^>μ(y, x) is also so.

The differentiability of μ and (4.2.3) for Rx have been shown in [5, Theorem

1].9>

DEFINITION 4.1. A pair (U,μ) defined as above will be called a geodesic

local Lie loop of G at e.

In general, we give the following

8) Qfrx denotes the tangent space to G at #.

9) In [5], μ{x,y) of (4.2) is denoted by/β(j>, *).
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DEFINITION 4.2. Let M be a differentiable manifold, and U be a connected

neighborhood of a fixed point eeM. If a local multiplication μ satisfies (4.2.1)-

(4.2.3), then ((7, μ) will be called a local Lie loop.

Moreover, if the following conditions (4.2.4) and (4.2.5) are satisfied, the local

Lie loop (U, μ) will be said to be homogeneous:

(4.2.4) There exists a neighborhood V of e and, for xeV, there exists an

inverse x " 1 e U such that μCx"1, x) = μ(x, x~x) = e and Lx-ιoLx induces an identity

map on a neighborhood of e.

(4.2.5) If μ(x, y) = xy and its inverse (xy)'1 are all defined, then the left

inner mapping

induces a local diffeomorphism commuting with μ, i.e., Lxyoμ = μo(LXtyxLxy)9

in a neighborhood of (e, e).

In the sequel, we consider the geodesic local Lie loops in a locally reductive

space (cf. Theorem 3.9 (1)).

PROPOSITION 4.1. LetG be a differentiable manifold with a linear connec-

tion F. Then the following conditions (l)-(3) are mutually equivalent:

(1) V is locally reductive, i.e., FS = 0 and FR = 0.

(2) The parallel displacement (4.1) of geodesies along any differentiable

curve in G induces a local afβne transformation.

(3) The parallel displacement of geodesies along any geodesic induces a

local affine transformation.

PROOF. (1)<=>(2) is found in [9, VI Corollary 7.6]. (2)=>(3) is trivial.

(3)=>(1): Let S and R denote the torsion and curvature tensors of F, re-

spectively. At any point eeG,we take a normal neighborhood U of e. For any

tangent vectors X, Y, Ze © e at e, denote by X*, Y* and Z* the vector fields on U

given by the parallel displacement of X, Y, Z, respectively, along the geodesic

joining e to each point in U. Let x(t) be the geodesic tangent to X at e = x(0).

Since the parallel displacement of geodesies along x(t) is a local affine transforma-

tion, S(t) = SX(t)(Y*ity, Z* ( ί )) is constant on the geodesic x(t). Hence, we have

e-se((Fx.y*)e, z)

-Se(Y,(Fx*Z*)e)

= 0.

(FxR)e = 0 is shown in the same way. q. e. d.
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As an immediate consequence of the above proposition, we have

LEMMA 4.2. Let (U, μ) be a geodesic local Lie loop of a locally reductive

space. Then any left translation Lx(xeU) is a local affine transformation.

Now we prove the following

THEOREM 4.3. Let G be a locally reductive space. Then any geodesic

local Lie loop of G is homogeneous.

PROOF. Let (U, μ) be a geodesic local Lie loop at e e G, where U is a simple

and convex normal neighborhood of e. For any x = Expe X (X e ©e) of U, put

x~ 1 =Exp c ( — X). Let x(t) be the geodesic in U such as x(0) = e and x(l) = x.

Then, by definition, x(ή~ί=x( — t) whenever x( — t) is defined in U. Suppose

that ΛΓ 1 and xy belong to U for x, ye U and consider a geodesic triangle in U

constructed by the geodesic segments γί9 y2 and γ3 joining e to x, x to xy and xy

to e, respectively. Then γ2 is the Lx-image of the geodesic segment joining e =

j/(0) to y = y(l). Since Lx-ι is a parallel displacement of geodesies along the

geodesic x(t) by the definition (4.2), it sends every geodesic joining e to γ2(s) to a

geodesic through x~ί

9 and, in particular, it sends x(t) to x(t—l). So we have

Lx-i(x) = e. By Lemma 4.2, Lx-ι is a local affine transformation at each point

for which it is defined, and so the geodesic segment γ2 must be mapped onto a

geodesic through e = Lx-i(x)9 and the parallelism of vectors along the geodesic

x(t) must be preserved by Lx~u From these facts it follows that L^-i-image of

the geodesic segment y2 is the geodesic y(s) from e to y, that is, Lx-i(Lx(y(s))) =

y(s). Thus the condition (4.2.4) is shown.

The left inner mapping Lxy = Lxy

ιoLχoLy is also a local affine transformation

at each point of its domain, if x, y and (xy)'1 belongs to U. Hence it commutes

with the local multiplication μ, for μ is defined by means of parallel displacements

along geodesies. As was proved above, Lxy

ί(xy) = e and so we have Lxy(e) = e.

Therefore, Lxy is a local automorphism of (U,μ) in a neighborhood of e. Thus

we get (4.2.5). q.e.d.

PROPOSITION 4.4. In any geodesic local Lie loop (U, μ) of a locally reduc-

tive space G, any geodesic x(t) through the identity e = x(0) is a local 1-parameter

subgroup of(U, μ). Moreover, Lx(t) is a local 1-parameter group of local trans-

formations of G, that is, Lx(tfLx(s) = Lx{t+s) whenever they are defined in U.

Conversely, any local 1-parameter subgroup of(U9μ) is a geodesic of G.

PROOF. Let x(t) be a geodesic through e=x(0) in G. For a fixed value s

such as x(s) e U, Lx(s) is a local affine transformation defined as the parallel

displacement of geodesies along the geodesic x(t) from e to x(s) by (4.2). Hence,
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by the uniqueness of the geodesic tangent to x(s) 1 0 ) at x(s), Lx ( s )x(ί) must coincide

with x(s + t) as long as they are contained in U. This shows the first assertion.

By the proof of Proposition 4.5, we have also dL x ( ί ) ; c ( s ) = id as the linear trans-

formation of the tangent space (5e. Since Lx(t)Ms) is a local affine transformation

by Lemma 4.2, it must be the identity mapping on its domain (cf. [9, VI § 6

Lemma 4]).

Conversely, if x(ί) is a local 1-parameter subgroup of ([/, μ), then it is differ-

entiable in t by definition, and so it is an integral curve of the vector field X,

Xx=dLx(x(0)) (xe I/), through e = x(0). On the other hand, the geodesic x(t)

tangent to x(0) at e must satisfy the differential equation

with the initial condition x(0) = e, for dLx{t) is the parallel displacement of vectors

along x(ί). Therefore we get x(t) = x(t). q.e.d.

PROPOSITION 4.5. In Proposition 4.4, the induced linear map dLxy: (5e->

© e of any left inner mapping Lxy, if it is defined for x, yeU, is an element of

the restricted holonomy group Ψ°.

PROOF. Let γί9 y2 and y3 be the geodesic segments considered in the proof

of Theorem 4.3. Then, by (3) of Proposition 4.1 and by the definition (4.2),

we can see that dLχodLy induces the parallel displacement of vectors along the

piecewise differentiable curve y1 followed by y2 By Theorem 4.3, dL(xy)-ι is

the inverse of dLxy and so it must be the parallel displacement along y3. Thus

we see that dLXiy=dLixy)-iodLχodLy gives the composition of the parallel dis-

placements along the geodesic triangle constructed with γί9 y2 and y3. Since the

normal neighborhood U is contractible by definition, dLxy belongs to Ψ°. q. e.d.

§ 5. Geodesic homogeneous Lie loops

Any homogeneous Lie loop G is a locally reductive space by Theorems 3.7

and 3.9, and so a geodesic local Lie loop (U, μ) of Definition 4.1 at the identity

e of G is homogeneous by Theorem 4.3. In this section, we investigate the condi-

tions for the given loop G itself to be coincident locally with the geodesic local Lie

loop (U, μ) of G.

Let G be a connected homogeneous Lie loop with the canonical connection Γ

and regard it as a reductive homogeneous space A{G)jK{G) by Theorem 3.7,

where y4(G) = G x K(G) is the semi-direct product of G by the closure K(G) of the

left inner mapping group L0(G). Let 2I = (δ + ft be the canonical decomposition

10) x(s) denotes the tangent vector to the curve x(t) at x(s).
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(3.10) of the Lie algebra of A{G), (5 and ft being identified with the tangent space

to G at e and the Lie algebra of K(G), respectively. For each Xo e (5, denote X

and X the vector fields on G defined by the left and right translations of G as

follows:

(5.1) Xx = dLx(X0), Xx = dRx(X0) (xeG).

PROPOSITION 5.1. For each Xo e (5c=3I, denote by

(5.2) exp tX0 = (x(t), α(0), *(0 e G, α(ί) e

the ^parameter subgroup of the Lie group A(G) = GxK(G) generated by Xo.

Then,

(1) x(t) is a geodesic tangent to Xo at e.

(2) x(s + 0 = x(s)α(s)(x(O),
α(s + 0 = Lx(s)Ms)(x(t))occ(s)oa(ή.

(3) x(t)"x = cc(t)(x( — 0)> α ( 0 ~ x = α ( ~ O

(4) —J^- = Xx(t), that is, x(t) is an integral curve of the vector field X of

(5.1), through e = x(0), and

doc _ d I ί τ

PROOF. Since the natural projection π: ^4(G)^G = ̂ (G)/X(G) sends (x(t),

α(0) to x(t) by Theorem 3.7, (1) is immediate from Theorem 3.8. (2) and (3) are

clear by the definition (2.1) and (2.2) in Theorem 2.1. (4) is obtained by differ-

entiating the equations of (2) with respect to 5 and evaluating at s = 0. q.e.d.

PROPOSITION 5.2. For any Xo, Yo e ©, let X and Ϋbe the vector fields on G

defined as (5.1) by left translations of G. Denote by x(t) and y(f) integral curves

of X and 7, respectively, through e = x(0) = y(0). Then for each fixed value oft,

the curve zt(s) = x(t)y(s) in G is an integral curve of the vector field

Z,: „ _ > dLi*"\Ϋm) (ueG),

where L^ ( r ) ) denotes the left translation in the transposed loop G ( * ( ί ) ) of G

centered at x(t) (cf. Lemma 1.2).

PROOF. By using the definition (1.5) of the multiplication in G ( * ( ί ) ) , we have

2,(2,00) = dLmodL{m)-iϊ{s)odL:lt){Ym)

= dLmodLm(Y0)

q-e d
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L E M M A 5 . 3 . For each zeG

(5.3) dJodRz + dL-1 = 0 on (5,

where J denotes the inverse mapping J(x) = x~1 of G.

PROOF. For each X0e(5, let x(t) be a differentiable curve in G satisfying the

conditions x(0) = e and (dxjdt)0 = X0. From (1.8) of Lemma 1.8, we obtain

Differentiating both sides of this equation with respect to t and evaluating at ί = 0,

we get

dJodRz(X0) = dRz-i(

Since dJ(X0)= -Xo, we have the required equation. q. e. d.

A 1-parameter subgroup x(t) of a homogeneous Lie loop G is an immersion

JC: R-+G which is a homomorphism of homogeneous Lie loops, where R denotes

the additive Lie group of real numbers.

PROPOSITION 5.4. For Xoe0ύ let X and X be the vector fields of (5.1).

Denote by x(t) and x(t) the maximal integral curves of X and X, respectively,

through e = x(0) = 3c(0). Then the following conditions (l)-(5) are mutually

equivalent:

(1) x{t) is a geodesic in G.

(2) x(i) is a 1-parameter subgroup of G.

(3) (mmr^m-'xisr1 (s9teR).
(4) dTm(X0) = X09 where TX = L~' oRχ.
(5) x(ί) = x(0 (teH).
(6) x(t) is the ^parameter subgroup of G.

PROOF. (1)«>(5) is clear from (1) and (4) of Proposition 5.1, that is x(t) =

x(t) in (5.2). Also, (5)<^>(4) is clear by definition of x(t) and x(t).

(1)=>(2): If x(t) is a geodesic in G, zt: s->x(t)x(s)is also a geodesic because

LX(t) is an affine transformation of G by Theorem 3.3. Clearly, zί(0) = ic(ί) and

(dzt/ds)s=0 = dLSi(t)(X0) = dxldt. On the other hand, the curve zt: s-»x(ί + s)

is a geodesic which satisfies the same initial condition as zt at ί = 0. Hence we

get x(t + s) = x(t)x(s) which proves (2) since x(t) is defined for all values of R.

(2)=>(3) is clear.

(3)=>(4): if (3) holds, by Lemma 5.3, we get
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d
dJodLx(t)(X0) =

s = 0 ds

= dJodRm(X0),

s = 0

and so we have dLm(X0) = dRm(X0) which is the same as (4).

(6) follows clearly from (2) and (5).

(6)=>(5): If the integral curve x(t) of the vector field X is a 1-parameter

subgroup of G, it follows from (2) and (4) of Proposition 5.1 that x(s)x(i) =

x(s)φ)(x(t)) and x(t) = x(t) hold for all s, teR and so we get

(5.4) α(s)«0) = *(0 (s,teR),

where GxptX0 = (x(t), α(ί)), the 1-parameter subgroup of the Lie group A(G) =

GxK(G) generated by Xoe<&. Hence d<x(t)(X0) = X0 for teR. Using (2)

of Proposition 5.1 again, we have

dx\dt = JL- x(t + s) = dLxit)odoL(t)(X0) = dLx(t)(X0).
MJ S=0

Thus we get x(t) = x(t). q.e.d.

REMARK 5.1. In the above proof, we have the equality (5.4) provided one of

the conditions (l)-(6) of the above proposition for G. Hence, by (2) of Proposi-

tion 5.1,

(5.5) α(ί + 5) = Lx(t)Ms)ooc(t)oφ)

is valid in that case.

In view of (3) in Proposition 5.4, we have

COROLLARY 5.5. Suppose that a homogeneous Lie loop G has the symme-

tric property of Definition 1.7, then every geodesic x(t) of G through e = x(0)

is a ^parameter subgroup of G.

PROPOSITION 5.6. Let G be a connected homogeneous Lie loop and 9Ϊ=

© + ft be the canonical decomposition of the Lie algebra of A(G) = GxK(G).

Then each of the following conditions (l)-(4) implies all the other:

(1) The 1-parameter subgroup expίX0 of A(G) generated by an arbitrary

element X o e(S is contained in the submanifold Gid = Gx id of A(G).

(2) For each Xo e (5, the curve x(t) in G defined by (5.2) satisfies the follow-

ing

(5.6) Lxit)Ms) = id ( s , ί e « ) .

(3) For each Xo e 05, the maximal integral curve x(t) (x(0) = e) of the vector
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field X of (5.1) satisfies the following

Lm,m = i d (s,teR).

(4) The left translation Lx(t) (teR) of G by any x(t) on the curve of (2)
yields the parallel displacement from any point x(s) to x(t)x(s) along it.

Moreover, when any one of these conditions is satisfied, all conditions
(l)-(6) of Proposition 5.4 are satisfied.

PROOF. ( 1 ) O ( 2 ) : By Definition 2.1 of the multiplication of the semi-direct
product, we get

(*) (*(0, id)(x(s), id) = (x(t)x(s\ Lx(ί)Ms)).

If (1) is satisfied then from (*) it follows that x(t + s) = x(t)x(s) and Lx(t)Ms) — id
for the curve x(t) of (2). Conversely, if (5.6) is satisfied for x(t), we have

x(s)(x(t)x(u)) = (x(s)x(t))(x(u))

for all s, t, ueR. So, by using (4) of Proposition 5.1, we have

(**) -^-{x(t)x{u)) = dRxiu)(dx/dt)

= dRx(u)odRx(t)(X0)

d
^ [(jφ)*(O)*(«)]

ίx(s)(x(,t)x(um
s=o

for any fixed value of u. On the other hand, (4) of Proposition 5.1 implies also
the equation

(***) dx(u + t)/dt = dRxiu+t)(X0)

for any fixed value of w. By comparing the differential equations (**) and (***),
we see that x(u + t) = x(t)x(u) for all values of u, teR. Combining this result
with the assumption (5.6), we see easily that (x(ί), id) is the 1-ρarameter subgroup
of the Lie group A(G), generated by Xo. Hence (1) is obtained.

(l)o(3): If (1) is satisfied, x(t) is a 1-parameter subgroup of G as was shown
above. Then by Proposition 5.4, we see x(t) = x(t). Thus (3) is reduced to (2).
Conversely, if (3) is satisfied, in the same way as the proof above, merely replacing
x and Rx with x and Lx, respectively, in (**) and (***), we can obtain (1).
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(1)=>(4): if eχptX0 = (x(t),id) in the Lie group A(G), its action on G =

A(G)/K(G) is equal to the left translation Lx(t), by (*). Hence, Nomizu's Theorem

(Theorem 3.8) asserts that Lx(t) yields the parallel displacement along x(t) from

e to x(t). Since Lx{t) is an affine transformation of G and since x(t) is a geodesic,

we see also that Lx(t) yields the parallel displacement from any point x(s) to

x(t)x(s) along the curve s->x(t)x(s). However this curve is equal to s-»x(ί + s)

as was seen in the above proof of (1)=>(2). Hence (4) is obtained.

(4)=>(2): Let exp tX0 = (x(t), α(0) as in (5.2). Then the curve γ: t^x(t)

is a geodesic of G by Proposition 5.1. Since Lx{t) is an affine transformation of

G, the curve / : s-+x(t)x(s) is also a geodesic of G. If dLx(t) is the parallel dis-

placement along y, then the geodesic y' is tangent to γ at x(ί) and so we have

x(t)x(s) = x(t + s). Since the affine transformation Lx(t) preserves the parallel

displacement along any curve, so does it for the curve y. Thus we have

dLx(tfdLx(s) = dLx(t)x(s),

which is equivalent to (5.6).

In the course of the above proof, x(ή is shown to be a 1-parameter subgroup

of the homogeneous Lie loop G. Hence the second half of the proposition is

clear. q.e.d.

DEFINITION 5.1. A connected homogeneous Lie loop G will be said to be

geodesic if one of the conditions (l)-(4) of Proposition 5.6 is satisfied.

By this definition we have

THEOREM 5.7. Any geodesic local Lie loop (U,μ) of Definition 4.1 at the

identity e of a connected homogeneous Lie loop G = A(G)/K(G) with the canonical

connection is homogeneous and satisfies the condition (5.6) for any geodesic

x(t) through e = x(0) whenever the local affine transformation L x ( f ) j c ( s ) is defined,

that is, the local Lie loop (U, μ) is geodesic by definition.

Moreover, if G is geodesic, then the multiplication μ of any geodesic local

Lie loop (U, μ) of G at e coincides with the given multiplication of G, as far as μ

is defined.

PROOF . The first half of the theorem is an immediate consequence of Theorem

4.3 and Proposition 4.4, taking account of Theorems 3.7 and 3.9, and the remain-

ing half is clear from (4) of Proposition 5.6. q. e. d.

By combining this to Example 3.3 and Theorem 3.8, we have

COROLLARY 5.8. Any connected Lie group G is a geodesic homogeneous

Lie loop. For every 1-parameter subgroup x(t) = exptX of G ( I e S ) , the left

translation Lxit) is the parallel displacement along x(t) with respect to the ( —)-

connection of G.
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REMARK 5.2. A. A. Sagle and J.R. Schumi [18] have considered also a local

multiplication μ o n a reductive homogeneous space AjK defined in a neighborhood

of the origin e by

(5.7) μ(π exp X, π exp 7) = π exp F(X, Y)

for X, Y belonging to a neighborhood of 0 in the subspace (5 of the direct sum

decomposition 21 = (5 + R of the Lie algebra of A, where F(X, 7 ) e ( 5 and F is

analytic at (0,0) e © x (5. (Cf. also [17, Appendix].)

§ 6. Symmetric Lie loops

In this section, we study the connected homogeneous Lie loops with the

symmetric property of Definition 1.7. Such loops are called symmetric Lie loops

and shown to be in a special class of symmetric spaces. By using the methods

and results of O. Loos [13], we show that any symmetric Lie loop is geodesic in

the sense of Definition 5.1.

Let G be a connected homogeneous Lie loop and let A(G) = Gx K(G) be the

semi-direct product of G by the closure K(G) of the left inner mapping group

L0(G) (cf. Theorem 3.5).

Denote by σ: A(G)-+A(G) the mapping defined by

(6.1) σ(x9 α) = (x~ι, α) for (x, α) e A{G) = G x K(G).

σ is differentiate since the inverse mapping J is so by Proposition 3.1.

THEOREM 6.1. A connected homogeneous Lie loop G has the symmetric

property, i.e.,

(xy)~ i = x-1 y-1 (x, y G G) (cf. Definition 1.7)

holds, if and only if the mapping σ o/(6.1) is an involutiυe automorphism of the

Lie group A(G).

Therefore, the reductive homogeneous space G = A(G)/K(G) is a symmetric

homogeneous space by the triple (A(G), K(G), σ)1 *> if and only if G has the sym-

metric property.

PROOF. For any elements (x, α), (y, β) e A(G) = G x K(G), we have

σ((x, oί)(y, β)) =

σ(x, φ(y, β) = (

11) For the terminologies and results about (affine) symmetric spaces, we refer to [9, XI
§§2-5] and [13].
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For the mapping σ to be an automorphism of A(G), it is necessary and sufficient
that

(•) (xαOO)"1 = x^αOO"1 and LxMy) = Lx-ιMy)-i

hold for all x, y e G and cceK.
If (*) holds, the first equality implies the symmetric property of G. Con-

versely, if G has the symmetric property, (*) follows from (4) of Proposition 1.13.
If σ is an automorphism of Λ(G), it is clear that K(G) is the subgroup of A(G)

consisting of all elements fixed by σ, and so the effective symmetric homogeneous
space A(G)/K(G) is defined by the triple (A(G), K(G), σ). q. e. d.

DEFINITION 6.1. A connected homogeneous Lie loop with the symmetric
property will be called a symmetric Lie loop.

In the rest of this section we assume that G is a symmetric Lie loop. Then,
by the above theorem, the general theory of symmetric homogeneous spaces is
applicable for G = A(G)/K(G).

The canonical decomposition 91 = ©-{-& (direct sum) of the Lie algebra of
A{G) is just the canonical decomposition of (91, Λ, dσ), that is, © is the eigenspace
of dσ for the eigenvalue — 1 and ft is the one for + 1 . The canonical connection
of the symmetric homogeneous space is, by definition, the canonical connection
of the corresponding reductive homogeneous space G=A(G)/K(G), which is
identified with the canonical connection of the homogeneous Lie loop G by Theo-
rem 3.7.

We define the symmetry Sx of G at each point x e G by

Sx = LχoJoL-' (xeG),

where J denotes the inverse mapping of G. By Lemma 1.5, Sx is the inverse
mapping of the transposed loop G(*> of G centered at x. By Corollary 5.5, every
geodesic x(f) (teR) of G through e=x(0) is a 1-parameter subgroup of the loop
G. Hence, by J(x(t)) = x(—t), the symmetry Se = J at e is the geodesic symmetry
and, for each x e G, Sx is also the geodesic symmetry at x, because the left transla-
tion Lx is an affine transformation of G (Theorem 3.3). Thus we see that x is an
isolated fixed point of the geodesic symmetry Sx at x. (Cf. [13, Annexe].)

In the following we shall show that a symmetric Lie loop G is geodesic.

LEMMA 6.2. Lxx=id, that is, G is left alternative, and Sx=Lχ2°J for any
xeG.

PROOF. We put θ = LXtX for any fixed xeG. Then θeAut(G)aAjf(G)
by Theorem 3.4 and 0o0 = id by Remark 1.3. Consider the induced linear map
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dθ: ©-•©, © being the tangent space of G at e. Then, for Ye ©, dθ(Y)= ± Y

and so, in a normal neighborhood U of e9 θ(y) = y or θ(y) = y~ί for each y =

Exp e(7) e t/. But the latter case is impossible if y Φ e. In fact, if we consider a

continuous curve x(t) joining e = x(0) to x = x(l) in G, then LJc(f)tJC(f)();) is continu-

ous in t for each fixed ye U. If yφe then . y ^ " 1 in 1/ and since Lxi0)}X{0) = iά

we have Lx(t)fX{ί)(y) = y for yeU, O ^ ί ^ l . Thus we have 0 = id on U. By

Theorems 6.1 and 7.7 of [9, VI], we can conclude that 0 = id on G.

By using the fact just proved above, we get

sx(y) = xix-'yr1 = χ(χy-') = LxoLxoj(y) = Lχ2oj(y)

for any y e G. Hence Sx = Lχ2°J. q. e. d.

O. Loos has defined in [13, Chapter II] a symmetric space to be a differen-

tiable manifold G with a diίferentiable multiplication

(6.2) xty^SJίy) (x,yeG)

satisfying the following conditions (R.1)-(R.4):

(R.I) x*x = x.

(R.2) x*(x*y) = y.

(R.3) x*(y*z) = (x*y)*(x*z).

(R.4) Every xeG has a neighborhood U such that x*.y = .y implies y = x for all

.yet/. Cf. [12] also.

By fixing a base point e of G, he has defined also the quadratic representation

Q of G by

(6.3) Q(*) = S»°Se ( x e G ) .

If G is a symmetric space in the usual sense, its geodesic symmetries Sx (xeG)

satisfy the conditions (R.1)-(R.3) and (R.4) is assured also for a normal neighbor-

hood U of x. The mapping Q above means the transvection along the geodesic

passing through e and x (cf. [9, X, p. 236]).

O. Loos has given also the canonical connection of the symmetric space G

by means of the tangent algebra of the multiplication (6,2). (Cf. [13, Chapter I

§ 4 and Chapter II § 2].)

If we apply his theory to our symmetric Lie loop G, we can translate it in

terms of our multiplication of the loop G as follows:

By Lemma 6.2, (6.2) is written as

(6.4) x*y = x(xy~ι) = (xx)y~ί .
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The quadratic representation (6.3) is written also as

(6.5) Q(x) = Lχ2,

since Se = J.

Also, by examining into details of the definition of the canonical connection
of [13, II §2], we can see that it is exactly the same as our canonical connection
of the symmetric Lie loop G. If x(t) = ΈxpetX (X e(S) is a geodesic through
e = x(0), we have seen in Corollary 5.5 that x(t) is a 1-parameter subgroup of the
loop G. By putting

(6.6) φt = Q(Expe(t/2)X) (Xe(5),

O. Loos has proved the following theorem for symmetric spaces in general
([12, Satz 5.7] and [13, II Theorem 2.7]).

THEOREM 6.3. The transformation φt (teR) of a symmetric space G given
by (6.6) is a 1-parameter group of transformations, and dφt induces the parallel
displacement of vectors along the geodesic x(t) = ΈxpetX.

Translating these results into our symmetric Lie loop G, we have the following
theorems:

THEOREM 6.4. Any symmetric Lie loop is geodesic.

PROOF. Let G be a symmetric Lie loop and let x(t) = ExpetX (Ie(5) be a
geodesic of G through e = x(0). By Corollary 5.5 x(i) is a 1-parameter subgroup
of G. In view of (6.5) and (6.6), we can see φt = Lx(t) (teR). Then the above
theorem implies that Lx(t)x(s) = id for any t, seR. Thus the proof is completed
by Proposition 5.6 (2) and Definition 5.1. q.e.d.

THEOREM 6.5. In Theorem 6.4, any geodesic local Lie loop(U9μ)at e has
the symmetric property whose multiplication μ(x,y) = xy can be expressed as

(6.7) xy = x^2*(e*y),

where x1/2 denotes the middle point of the geodesic segment joining e to x in U.

PROOF. In view of (6.3) and (6.4), we get

= β(*0/2))ϋO = x(t/2)*(e*y) (yeG).

Since φt = Lx(t) is the parallel displacement along x(t)9 we have (6.7). Restricting
it to a normal neighborhood U of e, we have a geodesic local Lie loop (U, μv)
with the symmetric property. q. e. d.
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REMARK 6.1. It is well known that the torsion tensor of the canonical con-

nection of a symmetric homogeneous space vanishes identically, and hence so

does it in any symmetric Lie loop.

REMARK 6.2. Motivated by the relation between the transvection Lx and the

symmetry Sx (or reflection across x) in (6.4) and (6.7), we have constructed in [8]

a homogeneous loop with the symmetric property, called a symmetric loop,

that is defined as a left alternative homogeneous loop whose element has a unique

square root. Then it can be shown that (G, *) given by (6.4) for a symmetric loop

G is a quasigroup satisfying (R.1)-(R.3), called a quasigroup of reflection, and

that any quasigroup of reflection has the canonical homogeneous structure which

assigns to each eeG a symmetric loop G ( β ) = (G, μ) by (6.7).

Taking account of Lemma 6.2, these global algebraic theory of symmetric

loops and quasigroups of reflection are applicable for any symmetric Lie loop G

if each element of G has a unique square root.

EXAMPLE 6.1. The homogeneous Lie loops Pn and/fM given in Example 3.2

are symmetric Lie loops. In fact, they have the symmetric property and each

element of them has a unique square root.

§ 7. Lie triple algebras

In this section, after giving the definition of the Lie triple algebra (i.e. general

Lie triple system introduced by K. Yamaguti [19]), we show that a Lie triple alge-

bra © is defined on the tangent space of a geodesic homogeneous Lie loop G

and that © can be regarded as the tangent algebra of G in a certain sense.

DEFINITION 7.1. A Lie triple algebra (or a general Lie triple system

[19, Definition 2.1]) is an anti-commutative algebra © (over an arbitrary field)

with the trilinear operation © x © x ©->©, denoted by [X, Y, Z] for X, Y, Z e ©,

satisfying the following conditions for any X, Y, Z, U, Ve ©:

(7.1.1) [X,X,Y] = 0.

(7.1.2) 6{[X, Y,Z\ + (XY)Z} = 0.

(7.1.3) S{[XY,Z,£/]} = 0.

(7.1.4) IX, Y, l/F] = IX, Y, C/]F+ Ό[_X, Y, K].

(7.1.5) IU, V, IX, Y, Z]] = [[I/, V, X], Y, Z] + [X, [[/, V, Y], Z]

Here the symbol ® in (7.1.2) and (7.1.3) denotes the cyclic sum with respect to
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the three elements X, Y,ZeOΰ.

REMARK 7.1. From the definition above, it is clear that the underlying

anti-commutative algebra of a Lie triple algebra © is reduced to a Lie algebra

if the trilinear operation is trivial, i.e., [X, Y, Z ] = 0 .

Also, if the underlying anti-commutative algebra of © is trivial, © is reduced

to a Lie triple system under the ternary operation [X, Y, Z] of ©.

Homomorphisms and isomorphisms of Lie triple algebras should be under-

stood to be the mappings which preserve both of the binary and ternary operations

of them. For the terminologies of Lie triple algebras (general Lie triple systems),

see also [20, § 1].

In the sequel we are only concerned with finite dimensional real Lie triple

algebras.

Let © be a Lie triple algebra. For X, Ye ©, denote by D(X, Y) the endo-

morphism of © defined by

D(X, Y)Z = [_X, 7, Z] (X, Y,Ze&).

It is called an inner derivation of ©. By (7.1.4) and (7.1.5), any inner derivation

of © is a derivation of both of the binary and ternary operations of ©. Let

fto = D(©, ©) denote the Lie algebra of endomorphisms of © generated by all

inner derivations of ©. In fact, from

(7.3) ID(U, V), D(X, 7)] = D(D(U, V)X, Y) + D(X, D(U, V)Y)

it follows that ft0 is closed under the Lie bracket of endomorphisms.

Now, set 2I0 = © + &0 (direct sum) and define a new bracket operation in

3I0 as follows:

(7.4.1) IX, 7] = XY+D(X, 7) (X, Ye ©),

(7.4.2) [A, X-]= - IX, A] = A(X) (A e Λo, X e ©),

(7.4.3) IA, E] = AB-BA {A, Be Ro).

THEOREM 7.1. (Cf. [15, the proof of Theorem 18.1] and [19, Proposition

2.1].) Let © be a Lie triple algebra and fto = D(©, ©) be the Lie algebra of all

inner derivations of ©. Then $lo = © + £fco {direct sum) forms a Lie algebra

under the bracket operation of (7.4.1-3), and 5l0 is a Lie subalgebra

PROOF. The bracket (7.4) is bilinear by definition, and [X, X] = 0 by (7.1.1).

Jacobi's identity follows from (7.1.2-5). The fact that ft0 is a subalgebra of 2I0

is clear from (7.3) and (7.4.3). q. e. d.



Geometry of Homogeneous Lie Loops 175

DEFINITION 7.2. The Lie algebra 9X0 = ©-fft0 obtained in the above theo-

rem is called the standard enveloping Lie algebra of the Lie triple algebra ©.

In general, 91 = © -f 51 is called an enveloping Lie algebra of © if ft is a Lie algebra

generated by derivations of © and if ft contains ft0, the bracket of 91 being defined

as (7.4) for A, Be ft.

THEOREM 7.2. (Cf. [15, the proof of Theorem 18.1].) Let G be a locally

reductive space with the torsion and curvature tensors S and R, respectively

(cf. foot note 7) in §4). Then, at each point eeG, the tangent space © = © e

to G is a Lie triple algebra under the operations defined as follows:

(7.5) XY = S£X, Y); [X, Y, Z] = Re(X, Y)Z (X, Y9Ze<&).

PROOF. It is clear that © is an anti-commutative algebra with respect to XY

of (7.5). (7.1.1) follows from Re(X, X) = 0. Also, (7.1.2) and (7.1.3) are obtained

from Bianchi's first and second identities (cf. Theorem 5.3 of [9, III]), respec-

tively, by using the assumption PS = 0 and FR = 0. (7.1.4) and (7.1.5) are the

immediate consequences of the following identity substituted T with S and R,

respectively:

R(X, Y)(T(Xu...,Xk)) = Σϊ=i T(X,,..., R(X, Y)Xi9...9XJ

for any vector fields X, Y, Xl9...9 Xk9 if Tis a (l,fc)-tensor satisfying F Γ = 0 .

q.e. d.

From the above theorem we have

THEOREM 7.3. Let G = A(G)/K(G) be a connected homogeneous Lie loop

with the canonical decomposition $ϊ = (J5-f-ft of the Lie algebra 91 of A(G).

Then © is a Lie triple algebra under the operations

(7.6) XY= IX, Y]®; IX, Y,Z] = \_{_X, Y] f t,Z]

for X, Y, Ze (5, where the brackets on the right hand side are those in the Lie

algebra 91.

Moreover, the adjoint representation of Si on the subspace (5 o/9ί is faithful

and 91 is regarded as an enveloping Lie algebra of the Lie triple algebra ©.

PROOF. Since the canonical connection of G is locally reductive by Theorem

3.7, from (2), (3) of Theorem 3.9 and from the above theorem, it follows that (5

is a Lie triple algebra under the operations (7.6).

Since ad (K)& c (5, we can restrict the adjoint representation of ft to © as

ad@: ft >End(©), ad@04)X = [A,X] ( i e f i j e δ ) .

Let ftx denote the kernel of this Lie algebra homomorphism. Then it is
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easy to see that ftx is an ideal of 21. Since Λ(G) acts on G effectively, we get ftx = 0

and so ad® is an into isomorphism. By identifying ft with ad@(ft) under this

isomorphism, we have an enveloping Lie algebra 21 = © + ad@(ft) of the Lie triple

algebra ©. In fact, the inner derivation algebra fto = D(©, ©) is an ideal of

ft = ad@(ft). q.e.d.

PROPOSITION 7.4. Let G be a connected locally reductive space. For any

two points e and e\ the Lie triple algebras © e and ©e, o/Theorem 7.2 are mutual-

ly isomorphic.

PROOF. Let y be a piecewise differentiate curve in G joining e to e'. The

parallel displacement τ of vectors along γ is a linear isomorphism of © e onto ©e,

and it preserves the torsion and curvature tensors because they are supposed

to be parallel on G. Hence τ: ©<,-»©<,> is an isomorphism of the Lie triple alge-

bras by (7.5). q.e.d.

PROPOSITION 7.5. Let G be a connected locally reductive space and let

© = © e be the Lie triple algebra of Theorem 7.2 at eeG. Then the inner deriva-

tion algebra fto = D(©, ©) is the holonomy algebra of G, i.e., the Lie algebra of

the holonomy group Ψe.

PROOF. Since the curvature tensor R is parallel on G,

τoRe(X, Y)Z = RMX), τ(y)WZ) (X, Y, Z e ©)

holds for any piecewise differentiable curve from e to an arbitrary point x in G,

where τ denotes the parallel displacement along the curve. Then, by Theorem

9.1 in [9, III], the holonomy algebra § is generated by the set {Re(X, Y); X, Ye

©} of linear endomorphisms of ©. By the definition (7.5) of the ternary operation

of ©, Re(X, Y) = D(X, Y) for any X, Ye ©. Hence we get § = ft0. q. e. d.

PROPOSITION 7.6. Let G and G' be locally reductive spaces. Let (U,μ)

and (U',μr) be geodesic local Lie loops of Definition 4.1 with the identities eeG

and e' eG', respectively. Then (U,μ) and (U',μf) are locally isomorphic if and

only if the Lie triple algebras © = © e and ®' = © e, are isomorphic.

PROOF. Suppose that F :©->©' is an isomorphism of the Lie triple algebras.

Then, by Theorem 7.4 in [9, VI], there exists a local affine diffeomorphism φ

of a neighborhood 7 of e onto a neighborhood V of e' such that dφe = F. Hence

this map φ sends the parallel displacement of geodesies along any geodesic in V

to one in V. Therefore, for a normal neighborhood W of e contained in U n V,

the restriction of μ to W gives a local isomorphism of the geodesic local Lie loop

(W, μw) at e and the corresponding (φ(W), φ°μw) at e'.

Conversely, if a local isomorphism φ: W-*W9 WczU, W'aU', of the geodesic
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local Lie loops (U, μ) and (£/', μ') is given, φ sends every geodesic through e to a
geodesic through e' by Proposition 4.4. Moreover, since φ commutes with the
left translations by elements under correspondence, φ must send all parallel
displacements of geodesies along geodesies in W to those in W by Lemma 4.2.
Then it is shown that Fr

dφ(X)dφ(Y) = dφ(FxY) holds for any vector fields X, Y
on W, where F and V denote the linear connections of G and G', respectively.
Therefore, φ is a local affine diffeomorphism and so dφ: ©β->©;, preserves the
torsion and curvature, that is, dφ is an isomorphism of the Lie triple algebras.

q.e.d.

From Propositions 4.5 and 7.5, we have the following

THEOREM 7.7. Let G = A(G)/K(G) be a geodesic homogeneous Lie loop
with the canonical decomposition 3ϊ = © + 5ΐ. Then there exists a neighborhood
U of the identity e such that dLx>y belongs to the restricted holonomy group Ψ°

for any left inner mapping Lxy (x, y e U).
The holonomy algebra ofΨ^ is the inner derivation algebra Λo of the Lie

triple algebra & of G at e.

Also, the following theorem follows from Theorems 5.7, 7.4 and Proposition
7.6:

THEOREM 7.8. Two geodesic homogeneous Lie loops G and G' are locally
isomorphic if and only if their Lie triple algebras © and ©' are isomorphic.

As a corollary, we have the following by Theorems 6.4, 7.2 and Remarks
6.1,7.1:

COROLLARY 7.9. Two symmetric Lie loops G and G' are locally isomorphic
if and only if their Lie triple systems © and ©' are isomorphic.

REMARK 7.2. It is well known that the curvature tensor of the (—^connec-
tion of a connected Lie group vanishes identically. Therefore, Theorems 7.2,7.3,
Corollary 5.8 and Remark 7.1 show that, if G and G' are reduced to connected
Lie groups, Theorem 7.8 is reduced to the well known theorem in the theory of
Lie groups and Lie algebras.

REMARK 7.3. In T. Nόno [16], it has been proved that a finite dimensional
space © of vector fields on a differentiable manifold M is a Lie triple system under
the operation

IX, 7, Z] = [[X, Y], Z] (X, Y,Ze&)

if and only if the family G = {φa(t); a(t)e UcRn}, teR, of local 1-parameter
transformations φa(t), Φo — Φa(θ) = id> generated by elements of © satisfies the
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condition (2) of Example 1.5 in local, that is, if and only if G can be regarded as

a local symmetric Lie loop under the multiplication

KΦa(t)> Φb(s)) = Φa(t/2)ΌΨb(s)°Φa(t/2) »

for any local 1-parameter subgroups φa(φ ψb(s) of local transformations of M

belonging to G.
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