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1. Introduction

For a (real) Banach space V, in general, we denote by F* the dual space of
F, by \\'\\v and || | |F* the norms in Fand V*9 respectively, and by ( , -)v the natural
pairing between V* and F.

Let A be a (multivalued) operator from a Banach space V into V*9 that is,
to each veVa. subset Av of F* be assigned. Then we define

R(A) = \jAv
veV

and

G(A) = {[>, t?*] e Fx F* v e D(i4), a*

which are called the domain, the range and the graph of A9 respectively. An
operator A: V-* V* is called monotone if

(υ* — w*, ϋ~ w)γ > 0 for any [v, i;*], [w, w*] e G(v4).

If yl is monotone and there is no proper monotone extension of A, then A is

called maximal monotone.
As an important class of maximal monotone operators from a Banach space

V into V*9 there is a class of duality mappings. Let μ be a continuous strictly
increasing function from [0, oo) into itself such that μ(0) = 0 and μ(r) t oo as
r t oo. The mapping &μ\ V-*V* defined by

^ » = {t;*eF*; (*;*, v)v = μ(\\v\\v)\\v\\v and ||ι>*||κ* = μ(IMW}

is called the duality mapping of V into V* associated with the gauge function
μ. We know (cf. [6; Chapter 1]) that any duality mapping is singlevalued and
demicontinuous (i.e., continuous with respect to the strong topology of V and
the weak topology of V*) provided that V is reflexive and V* is strictly convex.
Also, it is well-known (cf. [16; Proposition 1]) that a monotone operator A:
V-* F* is maximal monotone if and only if the sum of A and at least one duality



526 Nobuyuki KENMOCHI and Toshitaka NAGAI

mapping of V into F* is surjective, provided that V is reflexive.
By symbols "_*_>" and "—£->" we means the convergences in the strong

and the weak topology, respectively.
Throughout this paper, let H be a Hubert space and X be a Banach space such

that X c J/, X is dense in H and the natural injection from X into H is continuous,
and suppose that X is uniformly convex and X* is strictly convex. Identifying
H with its dual space by means of the inner product ( , •)# in H, we have the
relations: XaHaX*. Let 0<T<oo, 2<p<oo and l/p+l/p' = l. As V we
take Lp(0, T; X) which consists of p-th power summable mappings u(t) of [0, T]

0 τ \I/P

\\u(ί)\\xΛ) . Then F* = ίX(0, T; X*) is the dual
rr /rτ \ I / P '

s p a c e o f K b y t h e pair ing ( , V = ) o ( % 0 A a n d || ||FHί ( l l 1 & * )We denote by ίF the duality mapping of X into X* associated with μ(r) = rp~1.
Then the mapping F of 1/(0, T; X) into IP' (0, T; X*) given by (Fu) (0 = ^1X0]
is also the duality mapping of 1/(0, T X) into ί/'(0, T X*) associated with
the same gauge function.

Let φ be a function on [0, T] x X such that for each t e [0, T], i^(ί; •) is a
lower semicontinuous convex function on X with values in (—oo, oo] and ψ(t; •)
3=oo such that for each t?el/(θ, T X), t^>ψ(t; v(t)) is measurable on [0, T].
We put

Dt = {zeX;ψ(t;z) < oo} for each * e [0, T]

and DH = the closure of Do in H, and define a function !F on Lp(0, T X) by

if veD(Ψ),
Ψ(v) = \ Jo

oo otherwise,

where D(Ψ) = {v e 1/(0, T; X); φ( v( )) eV(0, T)}.

Given uoeDH and /eLp '(0, T X*), we formulate the problem F[ι/ ,̂/, w0]
as follows: Find u e D(Ψ) Π C([0, T] iί) such that

( i ) u(0) = uo;

(ii) M>(««)e^(0,T;I*);

(iii) [T(μr -/, w - Ό)xdt < Ψ(υ)- Ψ(u) for every v e D(Ψ).
Jo

Such a function u is called a strong solution of V\jψ,f, M 0], while a function
ueD(Ψ) is called a weak solution of F[^,/, w0] if the following (iv) is satisfied:

f
(iv)

' for every v e D(^) n C([0, T] # ) such that υf e Lp'(0, T; X*).
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Now, for each uoeDH we consider the following operator Muo (resp. SUo) from

LP(0, T X) into W (0, T X*): [ u , / ] e G ( M J (resp. G(SU0)) if and only if u is

a weak (resp. strong) solution of V[]ψ,f, wo]

Roughly speaking, the relation fe Suo(u) implies that u is a strong solution

of the initial value problem

u'(t) + dψ(t;u(t))Bf(t) on [0,T],

where dφ(t; •) is the subdifferential of \j/(t; •)• Such a problem has been studied

by many authors (e.g., [1, 2,4, 5, 8,10,14,15,17]).

The aim of the present paper is to investigate the operators SUo and MUo.

In fact, we shall show that Muo is a kind of closure of SUo and is a maximal mono-

tone operator from L*(0, T X) into L*'(0, T X*). Our main result extends

Theorem II.2 in Brezis [5 Chapter 2] to the time-dependent case and has many

applications to initial-boundary value problems for nonlinear parabolic partial

differential equations (e.g., [5,7,11,12]).

2. Main theorem

Our main theorem is stated as follows:

THEOREM. Suppose that

(a) Ψ is lower semicontinuous, Ψ^oo and Ψ> — oo on Lp(0, T; X);

(b) there are subsets D of DH and Qι of Lp\09 T X*) with the following

properties: D is dense in DH, Qi is dense in Lp'(0, T; X*) and for each xeD

and ge@ there exists u e 1/(0, T; X) such that geFu + Sx(u).

Then we have:

( I ) IfuoeDHandueD(MUo), then u eC([0, T] H) and w(0) = u0.

(II) Let u0 be any element ofDH. Then [ M , / ] e G(MU0) if and only if there

are sequences \u0JczDH,{lunJn]}<=LP(0, T X)XLP'(0, T X*) such that [un9

/J G G(SU0J for each n, u0>n -^ u0 in H,un-^u in L*(0, T; X) and fn^->f

in L*'(0, T X*) as n->oo.

(III) For each uoeDH, MUQ is a maximal monotone operator from Lp(0,

T X) into LP'(0, T X*).

(IV) Let uOtieDH and [ui9fj eG(MUo,) ( Ϊ = 1 , 2 ) . Then for any s,t

e [ 0 , T ] withs<t,

REMARK 1. If X* is uniformly convex, then "/„ — ^ / " in the above (II)
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may be replaced by ' '/„ -̂ _» / " . This is easily checked in the proof of the theorem.

REMARK 2. Since Ψ is convex on Lp(0, T; X), the assumption (a) implies

that Ψ is weakly sequentially lower semicontinuous on 1/(0, T; X) and that there

are/* e Lp'(0, T; X*) and a number c such that

Ψ(v) > { T(f*, v)xdt + c for all v e L*(0, T; X).
Jo

COROLLARY 1. Suppose that there is a positive number C with the fol-

lowing property: For each s, ίe[0, T] with s<t and for each zeDs there is

zeDt such that

\\z-z\\x<C\t-s\

and

Then (I), (II), (III) and (IV) in the theorem hold.

In case X = H, the hypothesis in Corollary 1 can be replaced by a weaker

one:

COROLLARY 2. Suppose that X = H and that there is a positive non-de-

creasing function r-+C(r) with the following property: For each r>0, each s,

ίe[0, T] with s<t and for each zeDs with | | z | | H <r there is zeDt such that

\\2-z\\H<LC(f)\t-s\

and

φ(t;z) < φ(s;z) + C(r)\t-s\(l + \φ(s;z)\).

Then (I), (II), (III) and (IV) are valid.

In fact, these corollaries are consequences of the above theorem and results

in [8] and [10].

3. Proof of the theorem

In order to prove the theorem we prepare some lemmas.

LEMMA 1 ([10; Theorem 7.1]). IfuOtieDH and [ W J J G G ^ , ) (i = l, 2),

then for any s, t e [0, T] with s<t,
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This lemma suggests us that for each uoeDH the following operator SUo

from 1/(0, T X) into ί/'(0, T X*) is important: [M,/] e G(SUo) if and only if
there are sequences {u0JcDH and {[MM,/J}CLP(0, T;X)XLP'(0, T; X*) such
that [uM,/J e G(5M0 J for each n, u0)M -*-• w0 in H, un -^-> u in L*(0, T; X) and
/„ -^->/in L*'(0, T X*) as n->oo.

As for SMo we have

LEMMA 2. Suppose that (a) and (b) in the theorem are satisfied and let
u0 be any element of DH. Then:

(1) Ifue D(SU0), then ueD(Ψ)(] C([0, T] if) and u(0) = u0.
(2) // [u,/] e G(SM0), then the inequality

(3.1)

V - / , u-υ)xdt + y | | t t ( Γ ) - t ?

ί; e DCF) Π C([0, T] if) -wiίΛ υ' e L '̂(0, Γ;

PROOF. Let [u,/] be any element of G(SUQ). Then, by definition we find
sequences {u0JczDH and {[>„,/„]} such that [wn,/J e G(SM0 n), uo,M -^-> w0 in H,
un-?->u in L*(0, T; X) and /„ - ^ U / in L*'(0, T; X*) as n->oo. It follows from
Lemma 1 that {un} converges to u in H uniformly on [0, T], so that u e C([0,
T] H) and M(0) = UO. For each n we have

(«; -/»> "„ - ^)x^ί < Ψ(P) - y(f J whenever t; e D(Ψ ),
o

because /„ e SUOn(un). If veD(Ψ) n C([0, Γ]; if) and ι/eL*'(0, Γ; X*), then
we have by integration by parts

(3.2)

Now, note that by assumption there is at least one function heD(Ψ)f] C([0, T]
H) with h'eLP'(0, T X*); in fact, for each xoeD, D(SXo)*φ by assumption
(b) and any function in D(SX0) has such properties. Substituting this h for v in
(3.2), we see that {Ψ(un)} is bounded above and on account of (a) and Remark 2
we have

- oo < Ψ(u) < liminf Ψ(un) < oo ,

so that u e D(Ψ). Letting n->oo in (3.2), we obtain (3.1).
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COROLLARY. Suppose that (a) and (b) are satisfied and let u0 be any

element of DH. Then MUQ is an extension of SM0, i.e., G(SMO)c=G(MMo).

LEMMA 3. Let u0 be any element of DH. If [ M U / J eG(MUQ) and [u2,

/ 2 ] e G(SU0)9 then we have

(3.3)

PROOF. By the definition of SM0 there are sequences {uOttt}c:DH, {[u2n,

/ 2 J } such that [ i ι 2 i , J 2 J e G(SU0J, uOtn - ^ u0 in H, u2>n -+-+u2'm 1/(0, T; AT)

and /2>w — ^ Λ in £ p (0, T; X*) as n^oo. For each n we see that

and

By adding these two inequalities we get

(

so we have (3.3) by letting n->oo.

COROLLARY. For each u0 e DH, Suo is a monotone operator from Lp(0,

T; X) into L*'(0, T; X*).

This corollary is a direct consequence of Lemma 3 and the corollary of

Lemma 2.

PROOF OF THE THEOREM : To prove the theorem it is enough to show that

SUQ is a maximal monotone operator from Lp(0, T; X) into Lp'(0, T; X*) for each

uoeDH. Indeed, assume the maximal monotonicity of SUo for each uoeDH.

Then, by Lemma 3 we have MMo = SMO for each uoeDH, which implies (III),

simultaneously (II) by the definition of §uo and (I) by (1) of Lemma 2. More-

over, (IV) also easily follows from Lemma 1.

Since, for each u0 e DH, Suo is monotone by the corollary of Lemma 3, in

order to show the maximal monotonicity of SUo it is sufficient to prove that SUQ

+F is surjective.

Let u0 and / be any elements of DH"and Lp'(0, T; X*), respectively. Now,

choose sequences {wOn}cz£) and {/„} c Qι so that wOπ —s-̂ > u0 in H and /„ —*-•/

in Lp'(0, T X*) as n->oo. In view of assumption (b), for each n there exists
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uneD(SU0J such that /„ - Fun e SUQ n(wπ), or equivalently,

(3.4) \\u'u -fn + FuH9 un- v)xdt < Ψ(υ)- Ψ(un) for all veD(Ψ).

Jo

Taking h (the same function as in the proof of Lemma 2) as υ in (3.4), we have

by integration by parts

[T(h'-fH + FuH,un-h)xΛ+±\\un(T)-h(T)\\h
Jo I

Since

and

the above inequality yields that

Ψ(un)+\T\\un\\p

xdt
Jo

•\T\\uΛp

x-
ιW\χdt.

JO

Hence, by the assumption (a) and Remark 2 we see that {un} is bounded in Lp(0,

T X) and {Ψ(un)} is bounded. We apply Lemma 1 to !>„,/, ,-FuJ eG(S t t O n)

and [um,fm — Fum~] e G(SUo m ). Using the monotonicity of F we have

\Wn{t)-um{t)\\2H S 2\t(fn-FuH-fm + Fum9 un-um)xdτ+\\uOtn-uoJ
2

HJo

-iι I I I | |xέίτ4 ||tto,»-Wo.»lli >® as n, m > oo .

Hence {un} converges in H uniformly on [0, T] to a function u e C([0, T] H)

with u(0) = w0. Then u e LP(0, Γ; X), uπ - ^ > u in L"(0, T; X) as n->oo and

- o o < Ψ(u) < l iminf^(MJ < oo
n -+00

because of (a) and Remark 2 again. We may assume, taking a subsequence
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if necessary, that Fun -ΪL> g in ί/'(0, T; X*) as n-*oo for some g e L*'(0, Γ; X*).
Since ue D(Ψ) as was seen above, we infer from (3.4) and the monotonicity

of F that

(3.5) limsup{Γ(iι;, un-u)xdt + Ψ(un) - Ψ(u)\ < 0.
n-*oo U o )

From (3.4) again we obtain by integration by parts

\T(Funi Un-V)xdt<[\v\ Ό-Un)xdt+±\\uOtn-v(0)\\ii
Jo Jo £

+ Ψ(v)-Ψ(un)+\T(fn,un-v)xdt
Jo

for every v e D(Ψ) n C([0, T] //) with ϋ' e LP'(0, T; X*). Hence,

limsup\ (Funiun-u)xdt
n-*oo JO

<limsup\ (Fun,un-v)xdt+\ (g,v-u)xdt
n-*co JO JO

T(υ', v - u)xdt + Ψ(v) - Ψ(u) + Γ ( / - g, u - v)xdt
O JO

for every v e D(Ψ) n C([0, Γ] /ί) with ι?' e Lp'(0, Γ; Z*). In the last expression
of these inequalities, take v = un and let n-»oo. Then by (3.5) we have

(T

lim sup\ (Fun, un - u)xdt < 0.
JO

p
n-*co JO

This implies (cf. [6; Chapter 1]) that un -JU u in L^(0, T; X) and FMΠ - Ϊ U FM
in LP'(0. T; X*), since Lp(09 T; X) is uniformly convex. Thus by the definition
of SUo,f-FueSUo(u). As / was an arbitrary function in LP'(O,T;X*% we
conclude that Suo + F is surjective.

4. Application

In this section we give an application.

Let A be a singlevalued bounded pseudomonotone operator (see [3]) from
the closure of D{Ψ) in Lp(0, T X) into L"'(0, T X*) and suppose that there
exists w e i ) ^ ) n C([0, T] # ) with w' in L*'(0, Γ; X*) such that
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(Aυ, υ-w)xdt+Ψ(υ)

\\»\\LP(O,T;X)

as \\o\\LPiOtTiX) >oo, veD(Ψ) .

Then we have

PROPOSITION. Under the same assumption as in Corollary 1, for each

uoeDH and each /eί/'(O, T; X*) there exists u eD(Ψ) n C([0, T\\H) such

that u(0) = uo and

[T(υ'-f+Au,u-v)xdt-4r\\uo-v(0)\\2

H<Ψ(v)-Ψ(u)
Jo <£

for every υ e D(Ψ) Π C([0, T] H) with vf e L*'(0, Γ; X*).

PROOF. Since Muo is maximal monotone by Corollary 1, it follows from

a result in Brezis [3] that MUo + A is surjective for any uoeDH. Given any

feL»'(O9T;X*)9 there exists ueD(Ψ) Π C([0, Γ ] ; //) such that / - A u e M J u ) .

This implies the above inequality. The fact that M(0) = WO follows from (I) in the

Theorem.

EXAMPLE. Let Ω be a bounded domain in Rm (m>2) with smooth bound-

ary Γ and Γo be a closed subset of Γ. We set Q = (09T)xΩ, Σ = (0,T)xΓ

and Γo = (0, T)xΓ0. Given functions w0 on Ω, / o n β, / o n l and g on Z, we

consider the initial-boundary value problem of mixed type

(P)

du __ v _ !
dt ffiΎ:

w(0, •) = u0

du

on Ω9

on Σθ9

where v(x) = (v1(x), v2(x),. .,vM(x)) is the unit vector which is normal to Γ at

xeΓ and oriented toward the exterior of Ω.

Now, we give a weak formulation of the variational inequality associated

with (P). Place the following restrictions on αfc, uθ9 f9 I and g:

(a) α0, α l v . . , α m are bounded measurable functions on [ 0 , Γ ] x Ω such

that ock>Cί a.e. on [0, T] x Ω, /c = 0, 1,..., m, for some positive constant C x .

(b) uoeL2(Ω)9feLP'(Q) and 0 eL*'(0, Γ; ^ - W P ' . P ' ( D ) .

(c) Z is a bounded measurable function on [0, T~]xΓ such that

< C2\t-s\
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for all 5, t e [0, Γ], where C2 is a positive constant.
For each te [0, T], put K(t) = {ze W1>p(Ω);yz = l(t9 •) on Γo in the sense of

W*IP',P{Γ) *>} (y is the trace operator from ^ ' " ( Ω ) into W1/*'^ (Γ)) and
define

if

otherwise.

Then we can verify the hypothesis in Corollary 1 (see [11 § 3]). The weak varia-
tional formulation for (P) is of the following form: Find u,eD(Ψ) Π C([0, T];
L2(Ω)) such that w(0) = wo and

\ <v\ u-v>dt+ Σ
Jo fc=i

^ ^ dΓdt-{ e^u dΓdt

for every υeD(Ψ)Π C([0, Γ];L2(Ω)) with ϋ'eL^(0, T; (^' '(Ω))*), where
< , •> and ( , )r stand for the natural pairings between (H^ ^Ω))* and WltP(Ω)
and between W~ι/p''p'(Γ) and M^1/^''^), respectively. Applying the Proposi-
tion for the above φ and the operator A from Lp(0, Γ; Wι>p(Ω)) into L*'(0, T;

defined by

= f υwdxdt,

we see that this problem has a solution w. Moreover, if u has the property that
u' E Lp'(09 T; LP'(Ω)), then we can show that u is a solution of (P) in a generalized
sense(see[9;§l]and[ll;§3]).
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