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1. Introduction

For a (real) Banach space V, in general, we denote by V* the dual space of
V, by ||l and |||, « the norms in Vand V*, respectively, and by (-, -), the natural
pairing between V* and V.

Let A be a (multivalued) operator from a Banach space V into V*, that is,
to each ve V a subset Av of V* be assigned. Then we define

D(A) = {veV; Av # ¢},

R(A) = UAv

veV

and
G(A) = {[v, v*] e Vx V*;ve D(A), v* € Av},

which are called the domain, the range and the graph of A, respectively. An
operator A: V- V* is called monotone if

w*—w*,v—w), > 0 for any [v, v*], [w, w*] € G(4).

If A is monotone and there is no proper monotone extension of A4, then A4 is

called maximal monotone.

As an important class of maximal monotone operators from a Banach space
Vinto V*, there is a class of duality mappings. Let u be a continuous strictly
increasing function from [0, co) into itself such that u(0)=0 and u(r)t co as
r1 . The mapping & ,: V-V* defined by

F)={v*eV*; (% v)y=u(lvly)lvlly and [o*|y«=pn(lvl)}

is called the duality mapping of V into V* associated with the gauge function
u. We know (cf. [6; Chapter 1]) that any duality mapping is singlevalued and
demicontinuous (i.e., continuous with respect to the strong topology of V and
the weak topology of V*) provided that V is reflexive and V* is strictly convex.
Also, it is well-known (cf. [16; Proposition 1]) that a monotone operator A:
V- V* is maximal monotone if and only if the sum of 4 and at least one duality
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mapping of Vinto V* is surjective, provided that V is reflexive.

By symbols ‘“—£,” and ‘‘~—*-” we means the convergences in the strong
and the weak topology, respectively.

Throughout this paper, let H be a Hilbert space and X be a Banach space such
that X c H, X is dense in H and the natural injection from X into H is continuous,
and suppose that X is uniformly convex and X* is strictly convex. Identifying
H with its dual space by means of the inner product (-, )y in H, we have the
relations: XcHcX*. Let 0<T<o0,2<p<o and 1/p+1/p'=1. As V we
take LP(0, T; X) which consists of p-th power summable mappings u(t) of [0, T]
into X with norms<S:||u(z)n§dz)””. Then V*=Lr(0, T; X*) is the dual

1/p’

T T
space of V'by the pairing (, Jy = |, Jedt, and Il =({ - 15:r)
0

We denote by & the duality mapping of X into X* associated with u(r)=rr=1.
Then the mapping F of L?(0, T; X) into L?" (0, T; X*) given by (Fu) (1)=%[u(t)]
is also the duality mapping of LP(0, T; X) into LP’(0, T; X*) associated with
the same gauge function.

Let ¢ be a function on [0, T] x X such that for each te[0, T], ¥(¢;-) is a
lower semicontinuous convex function on X with values in (— o0, co] and yY(t; *)
x 00 such that for each ve L?(0, T; X), t—(t; v(t)) is measurable on [0, T].
We put

D,={zeX;y(t; z) < o0} for each te[0, T]
and Dy =the closure of D, in H, and define a function ¥ on L?(0, T; X) by

STt#(t;v(t))dt it veD(P),
‘I’(v)={ 0

00 otherwise,
where D(¥)={ve L?(0, T; X); y(-; v(:))e L'(0, T)} .
Given uge Dy and fe LP'(0, T; X*), we formulate the problem V[, f, uq]

as follows: Find u e D(¥)n C([0, T]; H) such that

(1) u(0) =uo;
(i) ' (= (d/dyu)eL” (0, T; X*);

(iii) S:(u’ —fu—v)ydt < P(v)—P(u) forevery veD(¥).

Such a function u is called a strong solution of V[, f, uy], while a function
u e D(P) is called a weak solution of V[, f, uy] if the following (iv) is satisfied:

[0 =1 u=oyedt=Lluo—v@N3<¥0)- )

@(iv) {
for every ve D(¥) n C([0, T]; H) such that v’ € LP’(0, T; X*).
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Now, for each uy e Dy we consider the following operator M, (resp. S,,) from
L»0, T; X) into L?" (0, T; X*): [u,f]e G(M,,) (resp. G(S,,)) if and only if u is
a weak (resp. strong) solution of V[, f, uy].

Roughly speaking, the relation fe S, (u) implies that u is a strong solution
of the initial value problem

[ w+op(t;u®)af(r) on [0,T],
U(O) = Up,

where 0y(t; -) is the subdifferential of Y(¢;). Such a problem has been studied
by many authors (e.g., [1, 2,4, 5,8, 10, 14, 15, 17]).

The aim of the present paper is to investigate the operators S,  and M, .
In fact, we shall show that M, is a kind of closure of S, and is a maximal mono-
tone operator from LP(0, T; X) into LP'(0, T; X*). Our main result extends
Theorem 11.2 in Brézis [5; Chapter 2] to the time-dependent case and has many
applications to initial-boundary value problems for nonlinear parabolic partial
differential equations (e.g., [5, 7, 11, 12]).

2. Main theorem

Our main theorem is stated as follows:

THEOREM. Suppose that

(a) Y is lower semicontinuous, ¥ x 00 and ¥> — oo on LP(0, T; X);

(b) there are subsets D of Dy and 2 of LP’(0, T; X*) with the following
properties: D is dense in Dy, 2 is dense in L?'(0, T; X*) and for each xeD
and g € 9 there exists u e LP(0, T; X) such that g € Fu+ S,(u).

Then we have:

(I) IfuoeDy and ue D(M,), then u € C([0, T]1; H) and u(0)=u,.

(II) Let ug be any element of Dy. Then [u, f]1e G(M,,) if and only if there
are sequences {uy,} <Dy, {[u,, f,1} =LPO, T; X)x L?'(0, T; X*) such that [u,,
f1eG(S,,,) foreach n, uy, —- uqy in H, u, —*> u in L0, T; X) and f, ¥ f
in L?'(0, T; X*) as n— 0.

(III) For each uge Dy, M, is a maximal monotone operator from L*(0,
T; X) into L' (0, T; X*).

(IV) Let uo;eDy and [u;,fleGM,, ) (i=1,2). Then for any s,t
€[0, T] with s<t,

s () = 2O < 1) = o +2[ D 120, wa (D) = e

RemARrk 1. If X* is uniformly convex,then ‘‘f, —*, f” in the above (II)
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may be replaced by “‘f, —=- f”. This is easily checked in the proof of the theorem.

REMARK 2. Since ¥ is convex on LP(0, T; X), the assumption (a) implies
that ¥ is weakly sequentially lower semicontinuous on L?(0, T; X) and that there
are f* e L7 (0, T; X*) and a number ¢ such that

T(U)ZST(f*, v)xdt+c for all veLr(0, T; X).
(1]

CoROLLARY 1. Suppose that there is a positive number C with the fol-
lowing property: For each s, te[0, T] with s<t and for each z € D, there is
%€ D, such that

I2—z|lx < Clt—s]
and
W(t; 2) < Y(s; 2)+ Cle—s|(1+ [l z[% + W (s; 2D -
Then (1), (IT), (111) and (IV) in the theorem hold.

In case X=H, the hypothesis in Corollary 1 can be replaced by a weaker
one:

COROLLARY 2. Suppose that X=H and that there is a positive non-de-
creasing function r—C(r) with the following property: For each r>0, each s,
te [0, T] with s<t and for each z € D, with ||z||g<r there is Z € D, such that

IZ2—z]lp < C()It—s]
and _
Y(t; 2) < Y(s; 2)+ C(nlt—sl(1+1Y(s; 2)).
Then (1), (I1), (11) and (IV) are valid.

In fact, these corollaries are consequences of the above theorem and results
in [8] and [10].

3. Proof of the theorem

In order to prove the theorem we prepare some lemmas.

LemMA 1 ([10; Theorem 7.1]). If uo;€ Dy and [u;, f1eG(S,,,) (i=1, 2),
then for any s, te [0, T] with s<t,

luy () —u(DIF < Nlus(s)—ua()l +2S:(f1(“)"f2(7), U (1) —ua(7))xdt.
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This lemma suggests us that for each u,e€ Dy the following operator §,,0
from LP(0, T; X) into L?'(0, T; X*) is important: [u,f]e G(S,,) if and only if
there are sequences {u,,} =Dy and {[u,, f,]} =LP(0, T; X)x LP'(0, T; X*) such
that [u,,f,]e€G(S,,,) for each n, uy, —— uyin H, u, = u in LP(0, T; X) and
fo = fin LP’(0, T; X*) as n— 0.

As for §, we have

LeEMMA 2. Suppose that (a) and (b) in the theorem are satisfied and let
uq be any element of Dy. Then:

(1) IfueD(S,), then ue D(¥)n C([0, T1; H) and u(0)=u,.

(@) If[u,f1€G(S,,), then the inequality

= umv)xdr + Ll -0l
(3.1)
— 5 luo— o) I3 < ¥(0) - ¥(w)

holds for every ve D(¥)n C([0, T]; H) with v' € L” (0, T; X*).

ProoF. Let [u,f] be any element of G(S,,). Then, by definition we find
sequences {uo,} =Dy and {[u,, f,]} such that[u,, f,]€ G(S,,,), o, —=> 4o in H,
u,—-»u in L?(0, T; X) and f, - f in L?P'(0, T; X*) as n—»o0. It follows from
Lemma 1 that {u,} converges to u in H uniformly on [0, T], so that u e C([0,
T1]; H) and u(0)=u,. For each n we have

ST(u;, —frs Uy—V)xdt < Y(v)—¥(u,) whenever veD(V),
0

because f, €S, (u,). If veD(¥)nC([0, T]; H) and v'eL” (0, T; X*), then
we have by integration by parts

[ 0= wy—v)xdt+ Llu(D—o(1) 13
3.2)

— 5 l0,a—vOIF< ¥ (@)~ ¥ (uy) .

Now, note that by assumption there is at least one function h e D(¥) n C([0, T];
H) with h'eLP'(0, T; X*); in fact, for each x,eD, D(S,)>¢ by assumption
(b) and any function in D(S,) has such properties. Substituting this h for v in
(3.2), we see that {¥(u,)} is bounded above and on account of (a) and Remark 2
we have

—o0 < Y(u) < liminf Y(u,) < oo,

so that u € D(¥). Letting n— oo in (3.2), we obtain (3.1).
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COROLLARY. Suppose that (a) and (b) are satisfied and let uy, be any

element of Dy. Then M, is an extension of S., i-e., G(8,)=G(M,,).
LEMMA 3. Let uy be any element of Dy. If [u,fi1€ G(M,,) and [u,,
f21€G(8,,), then we have

(.3) S:(fl —fr s —uy)xdt > 0.

PrROOF. By the definition of S, there are sequences {ug,} <Dy, {[Us.
f2,n]} SUCh that [u2,mf2,n] € G(Suo,,,)a uO,n — uO in H, u2,n — u2 in LP(O, T, X)
and f, , 2 f, in LP'(0, T; X*) as n—»oo. For each n we see that

T
st =2 xdt = Vg =tt0 a5 < ¥ Ca2,) = ¥ )
and
T

[ Woin— oz =)t < W)= Pz,
By adding these two inequalities we get

T 1 2

So(fl —fa,m U1 — Uz W) xdt = — —2—“140 —uo,nlliis

so we have (3.3) by letting n— co.

COROLLARY. For each uy,€Dy, S, is a monotone operator from L?(0,
T; X) into L¥ (0, T; X*).

This corollary is a direct consequence of Lemma 3 and the corollary of
Lemma 2.

PROOF OF THE THEOREM: To prove the theorem it is enough to show that
§,,o is a maximal monotone operator from LP(0, T; X) into L?'(0, T; X*) for each
uo€Dy. Indeed, assume the maximal monotonicity of S,, for each u,e Dy.
Then, by Lemma 3 we have M,,o=§,,o for each uy€ Dy, which implies (III),
simultaneously (II) by the definition of §,,o and (I) by (1) of Lemma 2. More-
over, (IV) also easily follows from Lemma 1.

Since, for each ug € Dy, S,, is monotone by the corollary of Lemma 3, in
order to show the maximal monotonicity of §,,0 it is sufficient to prove that §,,0
+ F is surjective.

Let u, and f be any elements of Dy and L?'(0, T; X*), respectively. Now,
choose sequences {u,,} =D and {f,} =2 sothat uy, —*-»uyin H and f, -5 f
in LP'(0, T; X*) as n—»oo. In view of assumption (b), for each n there exists
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u, € D(S,,,) such that f,—Fu,eS, (u,), or equivalently,

(3.4) S:(u;, — ot Fupy uy—0)ydt < ¥(0)—¥(u,) forall veD(¥).

Taking h (the same function as in the proof of Lemma 2) as v in (3.4), we have
by integration by parts

[ ot Py =Wyt LD = WD

— 2 lug, = hOIF<¥(R) ~ ¥(u,) .

Since

I # [un(O ]l x5 = lua(OI5*

and

(F[u (0], us(Dx = Ju (Dl %s

the above inequality yields that

T
W) + | g
< % "uo,n"'h(o) 17+ ¥(h)+ g:(”h/ s+ 1 fullxs) Ulunllx + 2l x) dt

r
+{ e pa e

Hence, by the assumption (a) and Remark 2 we see that {u,} is bounded in LP(0,

T; X) and {¥(u,)} is bounded. We apply Lemma 1 to [u,,f,—Fu,] € G(S,,,)

and [u,, f,—Fu,] € G(S,,,). Using the monotonicity of F we have

t
""n(t)—“m(t)ﬂz é Zgo(fn_Fun_fm"'Fum» “n-um)xdr+ ”uO,n_uO,m"lZI

T
<20 1 fu— Sl xallt =l xde + o, — ol — O 25 1, m — 0.

Hence {u,} converges in H uniformly on [0, T] to a function u e C([0, T]; H)
with u(0)=u,. Then ue L?(0, T; X), u, —*-» u in L?(0, T; X) as n—oo and

- < Y(u) < liminf ¥(u,) < o©

because of (a) and Remark 2 again. We may assume, taking a subsequence
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if necessary, that Fu, —*» g in LP’(0, T; X*) as n— oo for some g € L?'(0, T; X*).
Since u € D(¥) as was seen above, we infer from (3.4) and the monotonicity
of F that
T
(3.5) lim sup{go(u;, Uy —w)ydt + ¥(u,) — 'I’(u)} <0.
n—*w

From (3.4) again we obtain by integration by parts

T T
" P wy—o)yar<( @, o=t + L luo,i— 01

T
R ORLI RN TN
for every ve D(¥Y)n C([0, T]; H) with v'e L?(0, T; X*). Hence,

lim supST(Fu,,, U, —U)ydt
n-o 0
T T
< lim supSo(Fu,,, u,—v)xdt+ S (g, v—u)xdt
n=*oo 0
T T
SS V', v—u)xdt+ ¥(v)— Y’(u)+§ (f—g,u—v)xdt
V] 0

+ 5 luo—0() I

for every ve D(¥)n C([0, T]; H) with v'e L' (0, T; X*). In the last expression
of these inequalities, take v=u, and let n—»o00. Then by (3.5) we have

T
lim supS (Fu,,u,—u)xdt < 0.
n—o [

This implies (cf. [6; Chapter 1]) that u, —*» u in LP(0, T; X) and Fu, —*» Fu
in LP'(0. T; X*), since L?(0, T; X) is uniformly convex. Thus by the definition
of 8,,f—FueS,(u). As f was an arbitrary function in L?(0, T; X*), we
conclude that S, +F is surjective.

4. Application
In this section we give an application.
Let A be a singlevalued bounded pseudomonotone operator (see [3]) from

the closure of D(¥) in LP(0, T; X) into L* (0, T; X*) and suppose that there
exists we D(¥) n C([0, T]; H) with w’ in L?'(0, T; X*) such that
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S:(Av, D= w)ydt+ ¥ (v)

Wloonn o @ e, veDE).
P , T3

Then we have

PROPOSITION. Under the same assumption as in Corollary 1, for each
ugeDy and each feLP' (0, T, X*) there exists ue D(¥Y)n C([0, T]; H) such
that u(0)=u, and

[ 0=+ du, =)= L luo— 015 < ¥ @) - ¥ (@)

for every ve D(¥)n C([0, T]; H) with v' e L?' (0, T; X*).

Proor. Since M, is maximal monotone by Corollary 1, it follows from
a result in Brezis [3] that M, +A is surjective for any u,eDy. Given any
feLr(0, T; X*), there exists ue D(¥)n C([0, T]; H) such that f—AueM,(u).
This implies the above inequality. The fact that u(0)=u, follows from (I) in the
Theorem.

ExAMPLE. Let Q be a bounded domain in R™ (m>2) with smooth bound-
ary I' and I'y be a closed subset of I'' We set Q=(0,T)xQ, 2=(0, T)x I
and Z,=(0, T)xI',. Given functions u, on 2, fon Q, I on X and g on Z, we
consider the initial-boundary value problem of mixed type

ou m 6<ak ou Pzt?u

>+a (u[P2u=f inQ.

7 k=1 axk axk axk
u(0,?) = u on 2,
P) 0,°) = uo
u=I on X,
i 0
- o %’ g;‘ Vitg=e* onX—2,,

where v(x)=(v,(x), v,(x),..., V(X)) is the unit vector which is normal to I' at
x eI’ and oriented toward the exterior of Q.

Now, we give a weak formulation of the variational inequality associated
with (P). Place the following restrictions on o, u,, f, [ and g:

(a) ag, dy,-.., &, are bounded measurable functions on [0, T]xQ such

that o, >C, a.e. on [0, T] x @, k=0, 1,..., m, for some positive constant C,.
(b) uoeL*(Q), fe L (Q) and g € L¥'(0, T; W~1/7"-P'(I')).
(c) lis a bounded measurable function on [0, T] x I" such that

1t ) = IS, M =gy + 1CE ) = 1S, Wiwrorory < Calt =]
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for all s, t € [0, T], where C, is a positive constant.

For each te[0, T], put K(t)={ze W1-P(Q);yz=I(t,*) on I, in the sense of
Wiir.p(I') D} (y is the trace operator from W11:2(Q) into W1!/P»p (I')) and
define

S edl if zeK()and er*e L\(I'),
Y(t; z) = r
0 otherwise.

Then we can verify the hypothesis in Corollary 1 (see [11;§3]). The weak varia-
tional formulation for (P) is of the following form: Find u,e D(¥)n C([0, T];
L2(Q)) such that u(0)=u, and

T _ . u du P‘Zﬁu/(?u_(?u>
S0<v, u v>a't+k§l SQ“" axk‘ ax,\Ox,  dx, dxdt

+SQa0 ||~ 2u(u—v) dxdt
T
= fu=o) dxde = (g, yu=yo)rdt= L lug= 0Ol 220

sg v dl dt —S erv dIdt
r r

for every veD(¥)n C([0, T]; L?(Q)) with v eLr' (0, T; (W1-?(Q))*), where
<-,-> and (-, *)r stand for the natural pairings between (W!-2(Q))* and W' P(Q)
and between W-1/P.¢'(I') and W1/P"»p(I), respectively. Applying the Proposi-
tion for the above ¥ and the operator 4 from L?(0, T; W1.»(Q)) into L?'(0, T;
(W L-p(Q))*) defined by

= ov |P72 Jv Ow
<A, W>—k§1 Sth 6xk! axk Ox

dxdt +S ool|v|P~? vwdxdt,
k Q

we see that this problem has a solution u. Moreover, if u has the property that
u' e LP'(0, T; L?'(2)), then we can show that u is a solution of (P) in a generalized
sense (see [9; §1] and [11; § 3]).
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