Weak Solutions for Certain Nonlinear Timedependent Parabolic Variational Inequalities

Nobuyuki Kenmochi and Toshitaka Nagai (Received May 20, 1975)

1. Introduction

For a (real) Banach space V, in general, we denote by V^* the dual space of V, by $\|\cdot\|_V$ and $\|\cdot\|_{V^*}$ the norms in V and V^* , respectively, and by $(\cdot, \cdot)_V$ the natural pairing between V^* and V.

Let A be a (multivalued) operator from a Banach space V into V^* , that is, to each $v \in V$ a subset Av of V^* be assigned. Then we define

$$D(A) = \{v \in V; Av \neq \phi\},$$

$$R(A) = \bigcup_{v \in V} Av$$

and

$$G(A) = \{ [v, v^*] \in V \times V^*; v \in D(A), v^* \in Av \},$$

which are called the domain, the range and the graph of A, respectively. An operator $A: V \rightarrow V^*$ is called monotone if

$$(v^*-w^*,v-w)_v \ge 0$$
 for any $[v,v^*],[w,w^*] \in G(A)$.

If A is monotone and there is no proper monotone extension of A, then A is called maximal monotone.

As an important class of maximal monotone operators from a Banach space V into V^* , there is a class of duality mappings. Let μ be a continuous strictly increasing function from $[0,\infty)$ into itself such that $\mu(0)=0$ and $\mu(r)\uparrow\infty$ as $r\uparrow\infty$. The mapping $\mathscr{F}_{\mu}\colon V\to V^*$ defined by

$$\mathscr{F}_{\nu}(v) = \{v^* \in V^*; (v^*, v)_{\nu} = \mu(\|v\|_{\nu})\|v\|_{\nu} \text{ and } \|v^*\|_{V^*} = \mu(\|v\|_{\nu})\}$$

is called the duality mapping of V into V^* associated with the gauge function μ . We know (cf. [6; Chapter 1]) that any duality mapping is singlevalued and demicontinuous (i.e., continuous with respect to the strong topology of V and the weak topology of V^*) provided that V is reflexive and V^* is strictly convex. Also, it is well-known (cf. [16; Proposition 1]) that a monotone operator A: $V \rightarrow V^*$ is maximal monotone if and only if the sum of A and at least one duality

mapping of V into V^* is surjective, provided that V is reflexive.

By symbols " \xrightarrow{s} " and " \xrightarrow{w} " we means the convergences in the strong and the weak topology, respectively.

Throughout this paper, let H be a Hilbert space and X be a Banach space such that $X \subset H$, X is dense in H and the natural injection from X into H is continuous, and suppose that X is uniformly convex and X^* is strictly convex. Identifying H with its dual space by means of the inner product $(\cdot, \cdot)_H$ in H, we have the relations: $X \subset H \subset X^*$. Let $0 < T < \infty$, $2 \le p < \infty$ and 1/p + 1/p' = 1. As V we take $L^p(0, T; X)$ which consists of p-th power summable mappings u(t) of [0, T]into X with norms $\left(\int_0^T \|u(t)\|_X^p dt\right)^{1/p}$. Then $V^* = L^{p'}(0, T; X^*)$ is the dual space of V by the pairing $(\cdot, \cdot)_V = \int_0^T (\cdot, \cdot)_X dt$, and $\|\cdot\|_{V^*} = \left(\int_0^T \|\cdot\|_{X^*}^{p'} dt\right)^{1/p'}$.

We denote by \mathscr{F} the duality mapping of X into X^* associated with $\mu(r) = r^{p-1}$. Then the mapping F of $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$ given by $(Fu)(t) = \mathscr{F}[u(t)]$ is also the duality mapping of $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$ associated with the same gauge function.

Let ψ be a function on $[0, T] \times X$ such that for each $t \in [0, T]$, $\psi(t; \cdot)$ is a lower semicontinuous convex function on X with values in $(-\infty, \infty]$ and $\psi(t; \cdot)$ $\equiv \infty$ such that for each $v \in L^p(0, T; X)$, $t \to \psi(t; v(t))$ is measurable on [0, T]. We put

$$D_t = \{z \in X; \psi(t; z) < \infty\}$$
 for each $t \in [0, T]$

and D_H = the closure of D_0 in H, and define a function Ψ on $L^p(0, T; X)$ by

$$\Psi(v) = \begin{cases} \int_0^T \psi(t; v(t)) dt & \text{if } v \in D(\Psi), \\ \infty & \text{otherwise.} \end{cases}$$

where $D(\Psi) = \{v \in L^p(0, T; X); \psi(\cdot; v(\cdot)) \in L^1(0, T)\}$.

Given $u_0 \in D_H$ and $f \in L^{p'}(0, T; X^*)$, we formulate the problem $V[\psi, f, u_0]$ as follows: Find $u \in D(\Psi) \cap C([0, T]; H)$ such that

- (i) $u(0) = u_0$;

(ii)
$$u'(=(d/dt)u) \in L^{p'}(0, T; X^*);$$

(iii) $\int_0^T (u'-f, u-v)_X dt \le \Psi(v) - \Psi(u)$ for every $v \in D(\Psi).$

Such a function u is called a strong solution of $V[\psi, f, u_0]$, while a function $u \in D(\Psi)$ is called a weak solution of $V[\psi, f, u_0]$ if the following (iv) is satisfied:

$$\text{(iv)} \quad \left\{ \begin{array}{l} \int_0^T (v'-f,\,u-v)_X dt - \frac{1}{2} \|u_0-v(0)\|_H^2 \leq \Psi(v) - \Psi(u) \\ \\ \text{for every } v \in D(\Psi) \ \cap \ C([0,\,T]\,;\,H) \text{ such that } v' \in L^{p'}(0,\,T;\,X^*) \,. \end{array} \right.$$

Now, for each $u_0 \in D_H$ we consider the following operator M_{u_0} (resp. S_{u_0}) from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$: $[u, f] \in G(M_{u_0})$ (resp. $G(S_{u_0})$) if and only if u is a weak (resp. strong) solution of $V[\psi, f, u_0]$.

Roughly speaking, the relation $f \in S_{u_0}(u)$ implies that u is a strong solution of the initial value problem

$$\left\{ \begin{array}{ll} u'(t) + \partial \psi(t; u(t)) \ni f(t) & \text{on } [0, T], \\ \\ u(0) = u_0, \end{array} \right.$$

where $\partial \psi(t;\cdot)$ is the subdifferential of $\psi(t;\cdot)$. Such a problem has been studied by many authors (e.g., [1, 2, 4, 5, 8, 10, 14, 15, 17]).

The aim of the present paper is to investigate the operators S_{u_0} and M_{u_0} . In fact, we shall show that M_{u_0} is a kind of closure of S_{u_0} and is a maximal monotone operator from $L^p(0, T; X)$ into $L^p(0, T; X^*)$. Our main result extends Theorem II.2 in Brézis [5; Chapter 2] to the time-dependent case and has many applications to initial-boundary value problems for nonlinear parabolic partial differential equations (e.g., [5, 7, 11, 12]).

2. Main theorem

Our main theorem is stated as follows:

THEOREM. Suppose that

- (a) Ψ is lower semicontinuous, $\Psi \equiv \infty$ and $\Psi > -\infty$ on $L^p(0, T; X)$;
- (b) there are subsets D of D_H and $\mathscr D$ of $L^{p'}(0,T;X^*)$ with the following properties: D is dense in D_H , $\mathscr D$ is dense in $L^{p'}(0,T;X^*)$ and for each $x \in D$ and $g \in \mathscr D$ there exists $u \in L^p(0,T;X)$ such that $g \in Fu + S_x(u)$.

Then we have:

- (1) If $u_0 \in D_H$ and $u \in D(M_{u_0})$, then $u \in C([0, T]; H)$ and $u(0) = u_0$.
- (II) Let u_0 be any element of D_H . Then $[u, f] \in G(M_{u_0})$ if and only if there are sequences $\{u_{0,n}\} \subset D_H$, $\{[u_n, f_n]\} \subset L^p(0, T; X) \times L^{p'}(0, T; X^*)$ such that $[u_n, f_n] \in G(S_{u_{0,n}})$ for each n, $u_{0,n} \xrightarrow{s} u_0$ in H, $u_n \xrightarrow{s} u$ in $L^p(0, T; X)$ and $f_n \xrightarrow{w} f$ in $L^p(0, T; X^*)$ as $n \to \infty$.
- (III) For each $u_0 \in D_H$, M_{u_0} is a maximal monotone operator from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$.
- (IV) Let $u_{0,i} \in D_H$ and $[u_i, f_i] \in G(M_{u_{0,i}})$ (i = 1, 2). Then for any $s, t \in [0, T]$ with $s \le t$,

$$\|u_1(t)-u_2(t)\|_H^2 \leq \|u_1(s)-u_2(s)\|_H^2 + 2\int_s^t (f_1(\tau)-f_2(\tau),u_1(\tau)-u_2(\tau))_X d\tau.$$

REMARK 1. If X^* is uniformly convex, then " $f_n \xrightarrow{w} f$ " in the above (II)

may be replaced by " $f_n \xrightarrow{s} f$ ". This is easily checked in the proof of the theorem.

REMARK 2. Since Ψ is convex on $L^p(0, T; X)$, the assumption (a) implies that Ψ is weakly sequentially lower semicontinuous on $L^p(0, T; X)$ and that there are $f^* \in L^{p'}(0, T; X^*)$ and a number c such that

$$\Psi(v) \ge \int_0^T (f^*, v)_X dt + c$$
 for all $v \in L^p(0, T; X)$.

COROLLARY 1. Suppose that there is a positive number C with the following property: For each $s, t \in [0, T]$ with $s \le t$ and for each $z \in D_s$ there is $\tilde{z} \in D$, such that

$$\|\tilde{z} - z\|_{X} \le C|t - s|$$

and

$$\psi(t; \tilde{z}) \le \psi(s; z) + C|t - s|(1 + ||z||_X^p + |\psi(s; z)|).$$

Then (I), (II), (III) and (IV) in the theorem hold.

In case X = H, the hypothesis in Corollary 1 can be replaced by a weaker one:

COROLLARY 2. Suppose that X = H and that there is a positive non-decreasing function $r \to C(r)$ with the following property: For each r > 0, each s, $t \in [0, T]$ with $s \le t$ and for each $z \in D_s$ with $||z||_H \le r$ there is $\tilde{z} \in D_t$ such that

$$\|\tilde{z}-z\|_H \leq C(r)|t-s|$$

and

$$\psi(t; \tilde{z}) \leq \psi(s; z) + C(r)|t-s|(1+|\psi(s; z)|).$$

Then (I), (II), (III) and (IV) are valid.

In fact, these corollaries are consequences of the above theorem and results in [8] and [10].

3. Proof of the theorem

In order to prove the theorem we prepare some lemmas.

LEMMA 1 ([10; Theorem 7.1]). If $u_{0,i} \in D_H$ and $[u_i, f_i] \in G(S_{u_{0,i}})$ (i = 1, 2), then for any $s, t \in [0, T]$ with $s \le t$,

$$\|u_1(t)-u_2(t)\|_H^2 \leq \|u_1(s)-u_2(s)\|_H^2 + 2 \int_s^t (f_1(\tau)-f_2(\tau),\,u_1(\tau)-u_2(\tau))_X d\tau\,.$$

This lemma suggests us that for each $u_0 \in D_H$ the following operator \widetilde{S}_{u_0} from $L^p(0,T;X)$ into $L^p'(0,T;X^*)$ is important: $[u,f] \in G(\widetilde{S}_{u_0})$ if and only if there are sequences $\{u_{0,n}\} \subset D_H$ and $\{[u_n,f_n]\} \subset L^p(0,T;X) \times L^{p'}(0,T;X^*)$ such that $[u_n,f_n] \in G(S_{u_0,n})$ for each $n,u_{0,n} \xrightarrow{s} u_0$ in $H,u_n \xrightarrow{s} u$ in $L^p(0,T;X)$ and $f_n \xrightarrow{w} f$ in $L^p'(0,T;X^*)$ as $n \to \infty$.

As for \tilde{S}_{u_0} we have

LEMMA 2. Suppose that (a) and (b) in the theorem are satisfied and let u_0 be any element of D_H . Then:

- (1) If $u \in D(\widetilde{S}_{u_0})$, then $u \in D(\Psi) \cap C([0, T]; H)$ and $u(0) = u_0$.
- (2) If $[u, f] \in G(\tilde{S}_{u_0})$, then the inequality

(3.1)
$$\int_{0}^{T} (v'-f, u-v)_{X} dt + \frac{1}{2} \|u(T) - v(T)\|_{H}^{2} - \frac{1}{2} \|u_{0} - v(0)\|_{H}^{2} \leq \Psi(v) - \Psi(u)$$

holds for every $v \in D(\Psi) \cap C([0, T]; H)$ with $v' \in L^{p'}(0, T; X^*)$.

PROOF. Let [u, f] be any element of $G(\widetilde{S}_{u_0})$. Then, by definition we find sequences $\{u_{0,n}\} \subset D_H$ and $\{[u_n, f_n]\}$ such that $[u_n, f_n] \in G(S_{u_0,n})$, $u_{0,n} \xrightarrow{s} u_0$ in H, $u_n \xrightarrow{s} u$ in $L^p(0, T; X)$ and $f_n \xrightarrow{w} f$ in $L^p(0, T; X^*)$ as $n \to \infty$. It follows from Lemma 1 that $\{u_n\}$ converges to u in H uniformly on [0, T], so that $u \in C([0, T]; H)$ and $u(0) = u_0$. For each n we have

$$\int_0^T (u_n' - f_n, u_n - v)_X dt \le \Psi(v) - \Psi(u_n) \quad \text{whenever} \quad v \in D(\Psi),$$

because $f_n \in S_{u_0,n}(u_n)$. If $v \in D(\Psi) \cap C([0, T]; H)$ and $v' \in L^{p'}(0, T; X^*)$, then we have by integration by parts

(3.2)
$$\int_{0}^{T} (v'-f_{n}, u_{n}-v)_{X} dt + \frac{1}{2} \|u_{n}(T)-v(T)\|_{H}^{2} - \frac{1}{2} \|u_{0,n}-v(0)\|_{H}^{2} \leq \Psi(v) - \Psi(u_{n}).$$

Now, note that by assumption there is at least one function $h \in D(\Psi) \cap C([0, T]; H)$ with $h' \in L^{p'}(0, T; X^*)$; in fact, for each $x_0 \in D$, $D(S_{x_0}) \neq \phi$ by assumption (b) and any function in $D(S_{x_0})$ has such properties. Substituting this h for v in (3.2), we see that $\{\Psi(u_n)\}$ is bounded above and on account of (a) and Remark 2 we have

$$-\infty < \Psi(u) \leq \liminf_{n \to \infty} \Psi(u_n) < \infty,$$

so that $u \in D(\Psi)$. Letting $n \to \infty$ in (3.2), we obtain (3.1).

COROLLARY. Suppose that (a) and (b) are satisfied and let u_0 be any element of D_H . Then M_{u_0} is an extension of \tilde{S}_{u_0} , i.e., $G(\tilde{S}_{u_0}) \subset G(M_{u_0})$.

LEMMA 3. Let u_0 be any element of D_H . If $[u_1, f_1] \in G(M_{u_0})$ and $[u_2, f_2] \in G(\widetilde{S}_{u_0})$, then we have

(3.3)
$$\int_0^T (f_1 - f_2, u_1 - u_2)_X dt \ge 0.$$

PROOF. By the definition of \widetilde{S}_{u_0} there are sequences $\{u_{0,n}\} \subset D_H$, $\{[u_{2,n}, f_{2,n}]\}$ such that $[u_{2,n}, f_{2,n}] \in G(S_{u_0,n})$, $u_{0,n} \stackrel{s}{\longrightarrow} u_0$ in H, $u_{2,n} \stackrel{s}{\longrightarrow} u_2$ in $L^p(0, T; X)$ and $f_{2,n} \stackrel{w}{\longrightarrow} f_2$ in $L^p(0, T; X^*)$ as $n \to \infty$. For each n we see that

$$\int_0^T (u_{2,n}' - f_{1,n}u_1 - u_{2,n})_X dt - \frac{1}{2} \|u_0 - u_{0,n}\|_H^2 \le \Psi(u_{2,n}) - \Psi(u_1)$$

and

$$\int_0^T (u_{2,n}' - f_{2,n}, u_{2,n} - u_1)_X dt \le \Psi(u_1) - \Psi(u_{2,n}).$$

By adding these two inequalities we get

$$\int_{0}^{T} (f_{1} - f_{2,n}, u_{1} - u_{2,n})_{X} dt \ge -\frac{1}{2} \|u_{0} - u_{0,n}\|_{H}^{2},$$

so we have (3.3) by letting $n \rightarrow \infty$.

COROLLARY. For each $u_0 \in D_H$, \widetilde{S}_{u_0} is a monotone operator from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$.

This corollary is a direct consequence of Lemma 3 and the corollary of Lemma 2.

PROOF OF THE THEOREM: To prove the theorem it is enough to show that \widetilde{S}_{u_0} is a maximal monotone operator from $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$ for each $u_0 \in D_H$. Indeed, assume the maximal monotonicity of \widetilde{S}_{u_0} for each $u_0 \in D_H$. Then, by Lemma 3 we have $M_{u_0} = \widetilde{S}_{u_0}$ for each $u_0 \in D_H$, which implies (III), simultaneously (II) by the definition of \widetilde{S}_{u_0} and (I) by (1) of Lemma 2. Moreover, (IV) also easily follows from Lemma 1.

Since, for each $u_0 \in D_H$, \widetilde{S}_{u_0} is monotone by the corollary of Lemma 3, in order to show the maximal monotonicity of \widetilde{S}_{u_0} it is sufficient to prove that $\widetilde{S}_{u_0} + F$ is surjective.

Let u_0 and f be any elements of D_H and $L^{p'}(0, T; X^*)$, respectively. Now, choose sequences $\{u_{0,n}\} \subset D$ and $\{f_n\} \subset \mathcal{D}$ so that $u_{0,n} \xrightarrow{s} u_0$ in H and $f_n \xrightarrow{s} f$ in $L^{p'}(0, T; X^*)$ as $n \to \infty$. In view of assumption (b), for each n there exists

 $u_n \in D(S_{u_{0,n}})$ such that $f_n - Fu_n \in S_{u_{0,n}}(u_n)$, or equivalently,

$$(3.4) \qquad \int_0^T (u_n' - f_n + Fu_n, u_n - v)_X dt \le \Psi(v) - \Psi(u_n) \qquad \text{for all} \quad v \in D(\Psi).$$

Taking h (the same function as in the proof of Lemma 2) as v in (3.4), we have by integration by parts

$$\int_0^T (h' - f_n + Fu_n, u_n - h)_X dt + \frac{1}{2} \|u_n(T) - h(T)\|_H^2$$

$$- \frac{1}{2} \|u_{0,n} - h(0)\|_H^2 \le \Psi(h) - \Psi(u_n).$$

Since

$$\|\mathscr{F}[u_n(t)]\|_{X^*} = \|u_n(t)\|_X^{p-1}$$

and

$$(\mathscr{F}[u_n(t)], u_n(t))_X = ||u_n(t)||_X^p,$$

the above inequality yields that

$$\begin{split} & \Psi(u_n) + \int_0^T \|u_n\|_X^p dt \\ & \leq \frac{1}{2} \|u_{0,n} - h(0)\|_H^2 + \Psi(h) + \int_0^T (\|h'\|_{X*} + \|f_n\|_{X*}) (\|u_n\|_X + \|h\|_X) dt \\ & + \int_0^T \|u_n\|_X^{p-1} \|h\|_X dt \,. \end{split}$$

Hence, by the assumption (a) and Remark 2 we see that $\{u_n\}$ is bounded in $L^p(0, T; X)$ and $\{\Psi(u_n)\}$ is bounded. We apply Lemma 1 to $[u_n, f_n - Fu_n] \in G(S_{u_0, n})$ and $[u_m, f_m - Fu_m] \in G(S_{u_0, m})$. Using the monotonicity of F we have

$$\begin{split} \|u_n(t) - u_m(t)\|_H^2 &\leq 2 \int_0^t (f_n - Fu_n - f_m + Fu_m, \ u_n - u_m)_X d\tau + \|u_{0,n} - u_{0,m}\|_H^2 \\ &\leq 2 \int_0^T \|f_n - f_m\|_{X*} \|u_n - u_m\|_X d\tau + \|u_{0,n} - u_{0,m}\|_H^2 \longrightarrow 0 \quad \text{as} \quad n, \ m \longrightarrow \infty \; . \end{split}$$

Hence $\{u_n\}$ converges in H uniformly on [0, T] to a function $u \in C([0, T]; H)$ with $u(0) = u_0$. Then $u \in L^p(0, T; X)$, $u_n \xrightarrow{w} u$ in $L^p(0, T; X)$ as $n \to \infty$ and

$$-\infty < \Psi(u) \le \liminf_{n \to \infty} \Psi(u_n) < \infty$$

because of (a) and Remark 2 again. We may assume, taking a subsequence

if necessary, that $Fu_n \xrightarrow{w} g$ in $L^{p'}(0, T; X^*)$ as $n \to \infty$ for some $g \in L^{p'}(0, T; X^*)$. Since $u \in D(\Psi)$ as was seen above, we infer from (3.4) and the monotonicity of F that

(3.5)
$$\limsup_{n\to\infty} \left\{ \int_0^T (u_n', u_n - u)_X dt + \Psi(u_n) - \Psi(u) \right\} \le 0.$$

From (3.4) again we obtain by integration by parts

$$\int_{0}^{T} (Fu_{n}, u_{n} - v)_{X} dt \leq \int_{0}^{T} (v', v - u_{n})_{X} dt + \frac{1}{2} \|u_{0,n} - v(0)\|_{H}^{2}$$
$$+ \Psi(v) - \Psi(u_{n}) + \int_{0}^{T} (f_{n}, u_{n} - v)_{X} dt$$

for every $v \in D(\Psi) \cap C([0, T]; H)$ with $v' \in L^{p'}(0, T; X^*)$. Hence,

$$\begin{split} & \limsup_{n \to \infty} \int_0^T (Fu_n, u_n - u)_X dt \\ & \leq \limsup_{n \to \infty} \int_0^T (Fu_n, u_n - v)_X dt + \int_0^T (g, v - u)_X dt \\ & \leq \int_0^T (v', v - u)_X dt + \Psi(v) - \Psi(u) + \int_0^T (f - g, u - v)_X dt \\ & + \frac{1}{2} \|u_0 - v(0)\|_H^2 \end{split}$$

for every $v \in D(\Psi) \cap C([0, T]; H)$ with $v' \in L^{p'}(0, T; X^*)$. In the last expression of these inequalities, take $v = u_n$ and let $n \to \infty$. Then by (3.5) we have

$$\limsup_{n\to\infty}\int_0^T (Fu_n,u_n-u)_X dt \le 0.$$

This implies (cf. [6; Chapter 1]) that $u_n \stackrel{s}{\longrightarrow} u$ in $L^p(0, T; X)$ and $Fu_n \stackrel{w}{\longrightarrow} Fu$ in $L^p'(0, T; X^*)$, since $L^p(0, T; X)$ is uniformly convex. Thus by the definition of \widetilde{S}_{u_0} , $f - Fu \in \widetilde{S}_{u_0}(u)$. As f was an arbitrary function in $L^{p'}(0, T; X^*)$, we conclude that $\widetilde{S}_{u_0} + F$ is surjective.

4. Application

In this section we give an application.

Let A be a singlevalued bounded pseudomonotone operator (see [3]) from the closure of $D(\Psi)$ in $L^p(0, T; X)$ into $L^{p'}(0, T; X^*)$ and suppose that there exists $w \in D(\Psi) \cap C([0, T]; H)$ with w' in $L^{p'}(0, T; X^*)$ such that

$$\frac{\int_0^T (Av, v-w)_X dt + \Psi(v)}{\|v\|_{L^p(0,T;X)}} \longrightarrow \infty \text{ as } \|v\|_{L^p(0,T;X)} \longrightarrow \infty, v \in D(\Psi).$$

Then we have

PROPOSITION. Under the same assumption as in Corollary 1, for each $u_0 \in D_H$ and each $f \in L^{p'}(0, T; X^*)$ there exists $u \in D(\Psi) \cap C([0, T]; H)$ such that $u(0) = u_0$ and

$$\int_{0}^{T} (v' - f + Au, u - v)_{X} dt - \frac{1}{2} \|u_{0} - v(0)\|_{H}^{2} \le \Psi(v) - \Psi(u)$$

for every $v \in D(\Psi) \cap C([0, T]; H)$ with $v' \in L^{p'}(0, T; X^*)$.

PROOF. Since M_{u_0} is maximal monotone by Corollary 1, it follows from a result in Brèzis [3] that $M_{u_0}+A$ is surjective for any $u_0 \in D_H$. Given any $f \in L^{p'}(0,T;X^*)$, there exists $u \in D(\Psi) \cap C([0,T];H)$ such that $f-Au \in M_{u_0}(u)$. This implies the above inequality. The fact that $u(0)=u_0$ follows from (I) in the Theorem.

EXAMPLE. Let Ω be a bounded domain in R^m $(m \ge 2)$ with smooth boundary Γ and Γ_0 be a closed subset of Γ . We set $Q = (0, T) \times \Omega$, $\Sigma = (0, T) \times \Gamma$ and $\Sigma_0 = (0, T) \times \Gamma_0$. Given functions u_0 on Ω , f on Q, l on Σ and g on Σ , we consider the initial-boundary value problem of mixed type

$$(P) \begin{cases} \frac{\partial u}{\partial t} - \sum_{k=1}^{m} \frac{\partial}{\partial x_{k}} \left(\alpha_{k} \left| \frac{\partial u}{\partial x_{k}} \right|^{p-2} \frac{\partial u}{\partial x_{k}} \right) + \alpha_{0} |u|^{p-2} u = f & \text{in } Q. \\ u(0, \cdot) = u_{0} & \text{on } \Omega, \\ u = l & \text{on } \Sigma_{0}, \\ -\sum_{k=1}^{m} \alpha_{k} \left| \frac{\partial u}{\partial x_{k}} \right|^{p-2} \frac{\partial u}{\partial x_{k}} v_{k} + g = e^{u} & \text{on } \Sigma - \Sigma_{0}, \end{cases}$$

where $v(x) = (v_1(x), v_2(x), ..., v_m(x))$ is the unit vector which is normal to Γ at $x \in \Gamma$ and oriented toward the exterior of Ω .

Now, we give a weak formulation of the variational inequality associated with (P). Place the following restrictions on α_k , u_0 , f, l and g:

- (a) $\alpha_0, \alpha_1, ..., \alpha_m$ are bounded measurable functions on $[0, T] \times \Omega$ such
- that $\alpha_k \ge C_1$ a.e. on $[0, T] \times \Omega$, k = 0, 1, ..., m, for some positive constant C_1 .
 - (b) $u_0 \in L^2(\Omega), f \in L^{p'}(Q) \text{ and } g \in L^{p'}(0, T; W^{-1/p', p'}(\Gamma)).$
 - (c) l is a bounded measurable function on $[0, T] \times \Gamma$ such that

$$||l(t,\cdot)-l(s,\cdot)||_{L^{\infty}(\Gamma)}+||l(t,\cdot)-l(s,\cdot)||_{W^{1/p',p}(\Gamma)}\leq C_2|t-s|$$

for all $s, t \in [0, T]$, where C_2 is a positive constant.

For each $t \in [0, T]$, put $K(t) = \{z \in W^{1,p}(\Omega); \gamma z = l(t, \cdot) \text{ on } \Gamma_0 \text{ in the sense of } W^{1/p',p}(\Gamma)^{1}\}$ (γ is the trace operator from $W^{1,p}(\Omega)$ into $W^{1/p',p}(\Gamma)$) and define

$$\psi(t; z) = \begin{cases} \int_{\Gamma} e^{\gamma z} d\Gamma & \text{if } z \in K(t) \text{ and } e^{\gamma z} \in L^{1}(\Gamma), \\ \infty & \text{otherwise.} \end{cases}$$

Then we can verify the hypothesis in Corollary 1 (see [11; § 3]). The weak variational formulation for (P) is of the following form: Find $u \in D(\Psi) \cap C([0, T]; L^2(\Omega))$ such that $u(0) = u_0$ and

$$\begin{split} &\int_{0}^{T} < v', \ u - v > dt + \sum_{k=1}^{m} \int_{Q} \alpha_{k} \left| \frac{\partial u}{\partial x_{k}} \right|^{p-2} \frac{\partial u}{\partial x_{k}} \left(\frac{\partial u}{\partial x_{k}} - \frac{\partial v}{\partial x_{k}} \right) dx dt \\ &+ \int_{Q} \alpha_{0} |u|^{p-2} u(u-v) \ dx dt \\ &- \int_{Q} f(u-v) \ dx dt - \int_{0}^{T} (g, \gamma u - \gamma v)_{\Gamma} dt - \frac{1}{2} \|u_{0} - v(0)\|_{L^{2}(\Omega)}^{2} \\ &\leq \int_{\Gamma} e^{\gamma v} \ d\Gamma dt - \int_{\Gamma} e^{\gamma u} \ d\Gamma dt \end{split}$$

for every $v \in D(\Psi) \cap C([0, T]; L^2(\Omega))$ with $v' \in L^{p'}(0, T; (W^{1,p}(\Omega))^*)$, where $\langle \cdot, \cdot \rangle$ and $(\cdot, \cdot)_{\Gamma}$ stand for the natural pairings between $(W^{1,p}(\Omega))^*$ and $W^{1,p}(\Omega)$ and between $W^{-1/p',p'}(\Gamma)$ and $W^{1/p',p}(\Gamma)$, respectively. Applying the Proposition for the above ψ and the operator A from $L^p(0, T; W^{1,p}(\Omega))$ into $L^{p'}(0, T; (W^{1,p}(\Omega))^*)$ defined by

$$\langle Av, w \rangle = \sum_{k=1}^{m} \int_{Q} \alpha_{k} \left| \frac{\partial v}{\partial x_{k}} \right|^{p-2} \frac{\partial v}{\partial x_{k}} \frac{\partial w}{\partial x_{k}} dx dt + \int_{Q} \alpha_{0} |v|^{p-2} vw dx dt,$$

we see that this problem has a solution u. Moreover, if u has the property that $u' \in L^{p'}(0, T; L^{p'}(\Omega))$, then we can show that u is a solution of (P) in a generalized sense (see $[9; \S 1]$ and $[11; \S 3]$).

References

- [1] H. Attouch, Ph. Bénilan, A. Damlamian and C. Picard, Équations d'évolution avec condition unilatérale, C. R. Acad. Sci. Paris Sér. A-B 279 (1974), A607-A609.
- [2] H. Attouch and A. Damlamian, Problèmes d'évolution dans les Hilbert et applications, preprint.

¹⁾ For the definition, see [13; § 1] or [11; § 1].

- [3] H. Brézis, Perturbations non linéaires d'opérateurs maximaux monotones, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A566-A569.
- [4] H. Brézis, Un problème d'évolution avec contraintes unilatérales dépendant du temps,
 C. R. Acad. Paris Sér. A-B 274 (1972), A310-A312.
- [5] H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168.
- [6] F. E. Browder, Problèmes non linéaires, Montréal Univ. Press, Montréal, 1966.
- [7] G. Duvaut, Résolution d'un problème de Stefan (Fusion d'un bloc de glace à zero degré), C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A1461-A1463.
- [8] N. Kenmochi, The semi-discretisation method and nonlinear time-dependent parabolic variational inequalities, Proc. Japan Acad. 50 (1974), 714-717.
- [9] N. Kenmochi, Pseudomonotone operators and nonlinear elliptic boundary value problems, J. Math. Soc. Japan 27 (1975), 121-149.
- [10] N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math. (to appear).
- [11] N. Kenmochi, Initial-boundary value problems for nonlinear parabolic partial differential equations (manuscript).
- [12] J. L. Lions, Quelques méthodes de résolution de problèmes aux limites non linéaires, Dunod Gauthier-Villars, Paris, 1969.
- [13] W. Littman, G. Stampacchia and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa 17 (1963), 45–79.
- [14] J. J. Moreau, Problème d'évolution associé à un convexe mobile d'un espace hilbertien, C. R. Acad. Sci. Paris Sér. A-B 276 (1973), A791-A794.
- [15] J. C. Péralba, Un problème d'évolution relatif à un opérateur sous-différentiel dépendant du temps, C. R. Acad. Sci. Paris Ser. A-B 275 (1972), A93-A96.
- [16] R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970), 75–88.
- [17] J. Watanabe, On certain nonlinear evolution equations, J. Math. Soc. Japan 25 (1973), 446-463.

Department of Mathematics,
Faculty of Education,
Chiba University
and
Department of Mathematics,
Faculty of Science,
Hiroshima University