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In this paper all rings are assumed to be commutative with identity. If
A is a noetherian Hilbert ring which satisfies the second chain condition for
prime ideals, then the polynomial ring A[X] in an indeterminate X over A has
the second chain condition for prime ideals ([11], Theorem 1.14). However,
in Section 1, we show that A[ X] does not necessarily satisfy the first chain con-
dition for prime ideals, even though A is a noetherian Hilbert ring which satisfies
the first chain condition for prime ideals. If a ring A satisfies the first chain
condition for prime ideals, then as we know, for each prime ideal p in A, ht(p)
+dim (4/p)=dim(A4). However, it is unknown whether the converse of this
statement is true or not ([7], Remark 2.25). Moreover, in Section 1, we give a
noetherian integral domain such that the converse is false. Let 4 be a noetherian
semi local ring such that h#(p)+dim (A4/p)=dim (A4) for any non maximal prime
ideal p in A. Then it is known that ht(m)=dim (4) or ht(m)=1 for any maximal
ideal m in A. But it is unknown whether this assertion is true or not for a general
noetherian ring ([7], Remark 2.6). In Section 2, we give a noetherian integral
domain such that the above assertion is false. This example shows besides that
the statement b) and the statement c) of Remark 2.25 of Ratliff’s paper [7] are
not equivalent: Even if dim(A4/p)=dim(A4)—1 for each height one prime ideal
p in a noetherian integral domain A, the equality At(B)+dim(4/P)=dim (A4)
does not necessarily hold for any prime ideal P in 4. In Section 3, making use
of the example given in Section 2, we construct a non-catenarian local integral
domain D such that for each height one prime ideal p in D, ht(p)+dim (D/p)
=dim (D) (cf. [9], p. 232).

Throughout this paper the notation M <N (or N> M) means that M is a
proper subset of N.

The author wishes to express his gratitude to Professor H. Yanagihara for
his valuable advice and his comments in writing this paper.

1. It is known that if a ring A satisfies the first chain condition for prime
ideals, then for each prime ideal p in A, ht(p)+dim (A4/p)=dim (4) ([7], p. 1083).
Moreover, in [8], Ratliff proved that if A is a noetherian local domain, then the
converse of this assertion holds. However it is an open problem whether or not
the converse holds in general case ([7], p. 1085). The purpose of this section
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is to give a noetherian integral domain such that the converse is false.

For the convenience of the reader we cite here the following lemma which
was obtained by W. Heinzer ([4], p. 230).

LEmMMA 1. Let D, B and V be integral domains with the same quotient
field K such that D=BnV, Vis a rank one valuation ring with a rational value
group, Dc B K, and V is centered on a maximal ideal P in D. Then V=Dyg,
so B is a maximal ideal in D of height one. Moreover, B is a flat D-module.
Hence the non-zero ideals in B are in 1-1 inclusion preserving correspondence
with the ideals in D not contained in B, this correspondence being effected by
extension and contraction. In particular, B is a Hilbert ring if and only if D
is a Hilbert ring, and D is noetherian if and only if B and V are noetherian.

LEMMA 2. Let R be a noetherian integral domain, and let R’ be a finite
integral extension over R. If there exists a prime ideal B in R’ such that
ht(P N R)> ht(B), then R[Z] is not catenarian, where Z is an indeterminate.

Proor. If R[Z] is catenarian, then R satisfies the altitude formula by Theo-
rem 3.6 in [6]. Therefore, ht(*B)+tr.degg qnr(R'/B)=ht(P N R)+tr.degg (R").
Hence, ht(B)=ht(P n R) because R'/P is integral over R/(P N R) and R’ is integral
over R. This is a contradiction.

A ring R is said to be equicodimensional if every maximal ideal in R has
the same height dim (R).

LeEmMA 3. If R is an equicodimensional neotherian Hilbert ring, then
R[Z] is equicodimensional.

Proor. Let I be any maximal ideal in R[Z]. Since R is a Hilbert ring,
IMNR is maximal in R by Theorem 5 in [2]. Therefore ht(M N R)=dim (R)
by the assumption, and hence dim (R[Z])> ht(9)>dim(R)+ 1 because 3> (M
N R)R[Z]. Thus ht(IM)=dim (R[Z]).

NoTATION. We will retain the following notation for the remainder of
this section.

(1) K is a field of characteristic zero.

(2) Tis an algebraically independent variable over K.

(B) X=T, Y=T+T?*2!4+T3/3'+...=eT—1. It is well-known that X
and Y are algebraically independent over K.

@ A =KX, Ylgezpy N=X+2,)4,
V=K[[T]1n K(X,Y), v is a natural valuation of K[[T]], M=XV=TK[[T]]
NK(X,Y), Di=AnV, n=D,nR=VNRN, m=D, NnM=4AnM, i=nnm=RN
nNM, R,=K+i, B=K[X,Y,1/X], D=BnD;=BnV, R=BNR,, q=MnD,
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h=Dnn=DN, and =R n .

Remark. R, is the same as Nagata’s example ([5], Example 2, pp. 204-205)
in case m=0 and r=1.

LEMMA 4. The following statements hold.

a) X is integral over R, and R[X]=R+RX.

b) R+RX contains Y/X.

c) Let m, n be positive integers such that m>n. Then R+ RX contains
Xm=iyi| X" where 0<i<m.

d) We denote by f(m, k) the coefficient of T™** in Y™, where k>1, namely
Yr=Tm+f(m, )T + -+ f(m, )T +.... Let b, (X, Y)={Y"—X"—f(m,
DXm+t—... f(m,n—m)X"}/X"*1, where n>m. Then R+RX contains b,, (X,
Y).

Proor. a) Let u=(X+2)X. As u is an element of i(=IMNN), R
contains u. Therefore X is integral over R and R[X]=R+RX because X2
+2X—u=0.

b) Let d=(Y—X-—X?/2!)/X2. Then M contains d. Since d=(T3/3!
+ T4/4!+-..)/T?, v(d)>0. Therefore i contains d, and hence R+ RX contains
Y/X because Y/X=1+{(1/2)+d}X.

¢) If i>n, then (X™ 1Y)/ X"=Xm"iYi=n(Y/X)", and if i<n, then (Xm~iY?)/
Xn=Xm"n(Y/X)!. Therefore (X" {Y?)/X" is an element of R+ RX by our as-
sertion b).

d) Set g, (X,Y)=Y"—X"—f(m, )X"*!—...—f(m, n—m)X"—f(m, n—
m-+1)X"*tt. Since b, (X, Y)=f(m,n—m+1)+(g, (X, Y)/X"*)=f(m, n—m
+ D)+ {(Gmn(X, Y) = (@ma(—2, 0)/(=2)" )X 2} X+ 4+ {g, (=2, 0)/(—=2)"*2}X
and since i contains {(g, (X, Y)—(gm(—2,0)/(—2)"+2)X *+2}/X"*1, we have
b, (X,Y)eR+RX.

Lemma 5. D = R+RX.

Proor. Let f/X" be an arbitrary element of D, where fe K[X,Y]. We
may assume that the monomials whose degree is greater than n—1 don’t appear
in f by the assertion c¢) of Lemma 4. Namely f is of the form a, ¢ X +a,, Y+
+a,; XY+ ta,_ oX" 1 +a, 5, X" 2Y+--+ag,-,Y""'. The value of
f/X" is non-negative. Therefore if we replace X, Y by T, T+ T?2/2!+T3/3!+--.
respectively in f, then for every i=1, 2,..., n—1, the coefficient of T is zero,
namely a;+do,1=0, a30+ay,1+d0,2+4o, 1f(1 =0, a3 otazita;+dos

+ay f(1, 1)+ao 2f(2, ) +ao,f(1,2)=0,.. Z Ayt Z Aim—1-if(m—1—1i, 1)

m—Jj—1

+eee+ 2 atm ji- lf(m J_l .])+ -+ ZalZ |f(2 'sm 2)+a0,1f(1 m—l)
=0,.... Therefore al'o— aO,l, az’o——al,l ao’z ao’lf(l, 1), a3,o=—a2’1
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—a;,—ao3—ay, f(1, 1)— aozf(zl) ao,: f(1, 2),.. ,a...o——,Z Aism—i— Z:ai,
m—l-—if(m—l_l 1)— - Z atm j- if(m ]_l])_ _Za,z ,f(2 i, m—2)
—ap, f(1, m—=1),... We substltute —Za,m " mz Apmy—if(m—1—i, 1)

—v—ag f(1, m— l)forthecoefﬁmentamOofX’"lnf Thenweobtalnf—aOI(Y
—X—f(l, DX2—-—f(1, n=3)X""2—f(1, n-2)X" V+a, ,(XY-X2-f(1,
DX3 = = f(Ln=3)X"" D4t a;_j o (XFTIYIHL X f (41, )X 42—
—f(j+1, n—i=2)X"" D+ ta,_ 5 (XY =X""V) 4 tag - (VP 1— X1,
Therefore f/X"=aq b, ,—1(X, Y)+a,,by,—2(X, Y)+ag:b;,-1(X, Y)+a,,
1b1a-3(X, V)t ta 1bypi (X, V)t ta ;0100 1m-i4j-1(X, Y)+--
+a,_5,1bi (X, Y)+-+ap,_1b,~;,-1(X, Y), and hence f/X" is an element
of R+ RX by our assertion d) of Lemma 4. Thus D=R+RX.

LEMMA 6. The following statements hold.

a) qis a maximal ideal in D, and ht(q)=1.

b) D and R are noetherian Hilbert rings.

c) ht(h)=2, ht(j)=2 and qn R=j.

d) R[Z] is not catenarian, where Z is an indeterminate. In particular,
R[Z] does not satisfy the first chain condition for prime ideals.

e) R satisfies the first chain condition for prime ideals.

Proor. a) As KcD/qcV /M=K, D/q=K. Hence qis a maximal ideal
in D, and hence Lemma 1 implies that D, =V and that ht(q)=1.

b) Since B is a noetherian Hilbert ring and V'is noetherian, D is a noetherian
Hilbert ring by the assertion of Lemma 1. Since D is a finite integral extension
of R by Lemma 5, R is a Hilbert ring and is noetherian by Eakin-Nagata’s theorem.

¢c) qNR=MNDNR=MND, nDNR=mNDNR=mNR=BnmnR,
and mnNR,=1i. Hence we have qN R=j. Since hn K[X,Y]=NnDnK[X, Y]
=NNK[X, Y]=(X+2,Y)K[X, Y] and K[X, Y]=D<A, we have A=K[X,
Y]lx+21ED,SAg=A4, and hence A=D;. Therefore ht(h)=2. Since hNR
=DNnNR=nNR=BnNR;Nn and R;nn=i hnR=], and hence ht(j)=2
because D is integral over R and because ht(h)=dim (R)=2.

d) The fact that 2=ht(q n R)> ht(q)=1 implies that R[Z] is not catenarian
by the assertion of Lemma 2.

e¢) By Lemma 1, the canonical mapping Max (B)—Max (D)— {q} is bijection,
where Max (*) means the maximal spectrum of a ring #, i.e., the set of the maximal
ideals in a ring *. Since B is equicodimensional, the height of each element of
Max(D)—{q} is 2. Moreover since the canonical mapping Max (D)—Max (R)
is surjection and ht#(j)=2, R is an equicodimensional ring of dimension 2 because
a maximal ideal in D except q is height 2 and h#(j)=2. Thus R satisfies the
first chain condition for prime ideals because R is two-dimensional.
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REMARK. R is a Hilbert ring which satisfies the first chain condition for
prime ideals, but R[Z] does not satisfy the first chain condiiton for prime ideals.
However, for the second chain condition for prime ideals, the following statement
was obtained by H. Seydi ([11], Theorem 1.14): Let C be a noetherian Hilbert
ring. If C satisfies the second chain condition for prime ideals, then so does C[ X],
where X is an indeterminate.

In the remainder of this section, we assume that K is algebraically closed.

LEmMMA 7. Let B,,=D;N(X—a,Y—b)B,a+0, and let p,,=RnNP,,.
If (a, b)*(—2,0), then R, , is a regular local ring.

Proor. If b+0, then Y is an element of R—p,,. Hence R, , contains
X because X=XY/Y. Therefore R, ,2K[X,Y]. Since (X-—a, Y-b)K[X,
Y]=%P,, N K[X, YI=P,, N R,,, N K[X, Y]=p,,R,,, N K[X, Y], we have K[X,
Ylx-ay-0ER;,,EDg,,=K[X, Y] (x—4y-5, which implies that R, ,=K[X,
Y1x-ay-p- If a%2, then (X+2)X is an element of R but not of p,, because
i contains (X +2)X. Hence R,,, contains X because X =X2(X +2)/(X(X +2)).
Therefore we see similarly that R, =K[X, Y]x_ay-s. Thusif (a, b)+(-2,0),

R,,, is a regular local ring.

LemMmA 8. For each prime ideal Q in R[Z], ht(Q)+dim(R[Z]/Q=
dim (R[Z]).

Proor. Since R is an equicodimensional Hilbert ring of dimension 2,
every maximal ideal in R[Z] has the same height 3 by Lemma 3. Therefore
we may assume that Q is not maximal. Suppose that there exists a maximal
ideal N” in D[Z] such that QD[Z]=N" and N" n D="P, ,, where (a, b)*(—2, 0).
As W'D[Z]y, ,2QR[Z],, ,=QR,, [Z] and R, , is a regular local ring by the
assertion of Lemma 7, R[Z]y is a regular local ring, where R'=N"n R[Z].
Since R[Z] is equicodimensional and R’ is maximal in R[Z], the height of N’ is
3. Therefore 3=dim(R[Z]y)=ht(QR[Z]y.)+dim (R]Z]s /QR[Z]g) < ht(Q)+
dim(R[Z]/Q)<dim (R[Z])=3. Therefore dim(R[Z])=ht(Q)+dim(R[Z]/Q).
Now suppose that there does not exist a maximal ideal " in D[Z] such that
QD[Z]=N" and N" N D=P,;,, where (a, b)+(—2,0). Since R[Z] is a Hilbert
ring, Q= N N;, where N is maximal in R[Z]. By our assumption, for any A,
N, N R=j because N; N R is maximal in R by the fact that R is a Hilbert ring
(cf. [2], Theorem 5). Since A is an infinite set, Q={R[Z]. As ht(jR[Z])= ht(j)
=2 and dim(R[Z])/jR[Z])=dim (K[Z])=1, dim (R[Z])=ht(Q)+dim (R[Z]/Q).
Thus for each prime ideal Q in R[Z], ht(Q)+dim (R[Z]/Q)=dim (R[Z]).

By the above arguement, we obtain the following proposition which implies
that R[Z] is a counterexample to the assertion at the beginning of this Section.
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PrROPOSITION. For each prime ideal Q in R[Z], dim(R[Z])=ht(Q)
+dim (R[Z]/Q), but R[Z] does not satisfy the first chain condition for prime
ideals.

2. Let A be a ring. Consider the following properties of A.

1) For each non-maximal prime ideal p in A, ht(p)+dim(4/p)=dim (A).

2) For each prime ideal p in A, either ht(p)+dim(A4/p)=dim(A4) or p is
a maximal ideal of height one.

In [7], pp. 1076-1077, Ratliff has considered the following statements.
a) The statement 1) implies (in the noetherian case) that dim (4)< oco.
b) 1) and 2) are equivalent in general (noetherian) case.

In this section, we construct a counterexample to the statement b).

REMARK. If A is noetherian, then the statement a) is true. In fact, we
suppose that dim(4)=o0. Then for each non-maximal prime ideal p in A4,
dim (A4/p)=oco by the assumption. Let p; be a non-maximal prime ideal in 4.
There exists a maximal ideal m, in A such that m, >p, and ht(m,/p,) >2 because
dim (A4/p,)=00. Therefore, there exists a prime ideal p, in 4 such that m,>p,
=P

Similarly we can take prime ideals ps, pg,... such that p,cp,cpycp, -,
which contradicts the fact that A4 is noetherian.

LeEmMMA 1. Let C be a locally noetherian ring, and a,Sa,Sa; <. be
an ascending chain of ideals in C. If there exist only a finite number of maximal
ideals in C which contain a,, then a,=a,,,="--- for some n.

Proor. Let m,, m,,..., m, be the maximal ideals in C which contain a;.
Since C,,, is noetherian for each i=1, 2,..., r, a,C,,, =4q,;,C,,=--- for a sufficiently
large n. Let m be any maximal ideal in C other than m,,..., m,. Since a,C,,
=C,, 0,C,=0,,,C,=+-. Thusa,=q,; =--.

NoTtaTioN. 1) K is a field with cardinality < N.
2) Y, Y, Y, X, X,, X;,... are algebraically independent variables over

3) A=K[Y,, Y, Y;, X, X,,...],
P=(Y,, Y,, Y3)A.

4) F={feP;f is a prime element such that fA+Y,4 and X, does not
appear in f}. Since card(K)< ¥, card(4)=N,, and hence card(F)= N,.
Therefore we may set F={f;;i=1,2,3,...}, where fid=+ f;A if i+ j.

5) Let e(1,1) and e(1,2) be two positive integers such that e(1,1)+1 and
e(1,2)*1, and that X, ;, and X, ,) don’t appear in f;. Let e(2,1) and e(2, 2)
be two positive integers such that {1, e(1, 1), e(1,2)} P e(2, 1), e(2,2), and that
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X,.2,1y and X, ,, don’t appear in f,. By the same way as above, for each
integer n>2 we proceed inductively to choose two positive integers e(n, 1) and
e(n, 2) such that {1,e(1,1),e(1,2),...,e(n—1,1), e(n—1,2)} H e(n, 1), e(n,?2),
and that X, ;, and X, ,, don’t appear in f,.

6) We replace X1y Xe1,2) Xe2.1)--- Y X3, X3, Xg,... respectively,
and denote by Z,, Z,,... the rest of X,’s.

LEMMA 2. Let P;=(fX, X5;, X3;+1)4. Let ¢: A>R=K[Y,,Y,, Y3, X,,
X35os 24, Z,5,...]~2A/(X,A) be the canonical homomorphism. Then the fol-
lowing statements hold.

a) P;is a prime ideal in A.

b) For each non-zero element a of R, there exist only a finite number of
¢(P,)’s which contain a. In particular, for each element g of A but not of XA,
there exist only a finite number of P;’s which contain g.

c¢) Let P’ be the prime ideal in A generated by Y,, Y,, Y5 and X,. If

a is an ideal in A such that a= P’y UP,, then aCP’ or ac P, for somei. In

particular, if a is an ideal in A such that acPuy U P;, then ac< P’ or ac P; for
some i.

d) Let T=A—P'U JP, and let S=A—PU \JP, Then, T-'A and
i=1 i=1
S~1A are noetherian. l

PrROOF. a) As f;is a prime element and X, X,; and X,;,, don’t appear
in f;, P; is a prime ideal in A.

b) Let Ry=K[Y,,Y,,Y5,Z,,Z,,...]. Let m be a positive integer such
that Ry[ X, X,,..., X,,] contains a. It suffices to show that there exist only a
finite number of i’s such that m<2i and ¢(P;) contains a. Suppose that ¢(P))
(=(f, X35, X2:4+1)R) contains a, where m<2i. Therefore a=h,f,+h,X,;
+h3X,;44, Where hy, hy, hyeR. Since X,; and X,;,, don’t appear in a and
fi» by substituting 0 for X,; and X,;,,, we see that f; devides a. This implies
that our assertion holds by the facts that f, is a prime element and that f; and f;
are relatively prime if i =i= Jj.

C) ¢(0)C¢(P)U U ¢(Pl) (Yl’ YZ, YS)RU U(fu X2n X2l+1)R Suppose
that ¢(a) is finitely generated namely ¢(a)= (hl, .»h9R. Let r and t be two
positive integers such that R, =K[Y,, Y,, Y3, X,, X3,..., X,, Z4,..., Z,] contains
hy,..., hy, and let N be a positive integer satsifying r<2N. Since (Y;, Y;, Y3)R

N
contains f; for any i, ¢(a)NR;<=(Y;, Y, Y3)R U i\_jl(Rl N (fi» X2i X214+ 1)R).
Therefore ¢(a) N R, =(Y;, Y,, Y3)R, or ¢(a) N R, =R, N (f;, X3i X34+ 1)R so that
(Y, Y,, Y;)R2hy,..., hy or (f;, X35 X2i41)R3 hy,..., h, Hence ¢(a)=$(P") or
d(a)= ¢d(P;) for some i. Next suppose that ¢(a) is not finitely generated. Let
¢(a)=(hy, h,,...)R (Note that ¢(a) is generated by a countable number of the
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elements of R). Let b,=(hy,..., h,)R. If (Y, Y,, Y;)RDd(a), there exists a
positive integer n, such that for each n>n, (Y,, Y,, Y;)R3Db,, whence there
exists a positive integer i(n) such that b, = ¢(P,,)) for each n>n,. The set {i(n);
n=ngy, ny+1,...} is finite since there exist only a ﬁnite number of ¢(P;)’s which
contain h; by our assertion b). Hence ¢(a) (= U b ) is contained in ¢(P;)
for some i. Thus for any ideal a in A4 satisfying a CP’ U U P,, we have ¢(a) = p(P")
or ¢(a)< ¢(P;) for some i so that ac P’ or a= P, for some i

d) Every maximal ideal in T~'A4 is of the form T-!P’ or T~ 1P, for some
i by our assertion c), and hence T-14 is locally noetherian. Let B, =B,<:-- be
an ascending chain of ideals in T~ !4, and let b;=%3,n A. If there exists a positive
integer n, satisfying b, & X4, then by our assertion b) there exist only a finite
number of maximal ideals in T-'4 which contain B,,. Therefore 8,=3,,,
=... for some n by Lemma 1. If b,=X,A4 for any n, b, is of the form X2,
where ¢, is the ideal in 4 such that ¢, £X,4. As a(1)>a(2)=a(3)=:--, a(m)

=a(m+1)=.-- for some m, whence T '¢c,=T !¢, ,S--. Since ¢,EX,4,
by applying the similar method as before, we see that T-!¢,=T " 1¢,,,=--- for
some r. Therefore B,=B,,;=---. Thus we conclude that T~14 is noetherian.

Also S~1A4 is noetherian since S~ 14A=S"1(T"14).

LEMMA 3. Let B=S"'A. Let H={e,Y?+e,X;;e,€S,meN and e,
€ A} and let S, be the multiplicatively closed set generated by X, and all the
elements of H. Let Q=(Y,, Y;)A and let U;={p e Spec(A4); P,op, ht(P;/p)=1
and p d X,}. Then the following statements hold.

a) (Y,,Y;,X)ANS=g.

b) gnS;=4g.

c¢) Let g be any element of K[Y,, Y,, Y;] such that g and f; are relatively
prime. Then, P; $ g.

d P,NnH=g¢ for any i.

e) Let p be any element of@ U, Then S7'(S™'p) is a maximal ideal of
height 3 in ST!B. =

f) S7YS™'Q) is a maximal ideal of height 2 in S7'B.

Proor. a) Let h be an arbitrary element of (Y,, Y3, X,)4. We can
express h=X h,+h,, where h, €A, h,e(Y,, Y3)A and X; doesn’t appear in
h,. If h,=0, then he P, for any i, whence S  h. If h,=0, then there exists
at least one prime divisor of h, which is of the form f;, so that P; contains h, and
hence S  h. Thus (Y,, Y3, X,)A N S=4.

b) Suppose that Q contains an element e, Y7+e,X,; of H. Since ¢(e Y7
+e,X,)e(Y,, Y5)R, ¢(e;)Y?e(Y,, Y3)R. Therefore ¢(e,) €(Y,. Y3)R, and hence
e, €(Y,, Y3, X,)A. However this contradicts our assertion a).

c¢) Suppose that P; contains g. Then we can write g=h,fi+h, X, +h;X,,
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+hyX5;4+,, Where hy,...,h,eA. Since X,, X,; and X,,,, don’t appear in f;
and g, by substituting 0 for X,, X,; and X,;,,, we see that f; divides g. This is
a contradiction.

d) Suppose that P; contains an element e; Y7+e,X, of H. Then P;3e, Y%
since P; contains X,. This is impossible because P; does not contain e, and Y,.
Thus P,n H=¢ for any i.

e) Since pnH=¢g and p X, for each element p of U,, pnS,;=0. hit(p)
=ht(P;)—1=3 because A is catenarian. Since dim(B)=4 and since every
maximal ideal of height 4 in B is of the form S~!P; for some i by our assertion
c) of Lemma 2, we have dim(S7'B)=3. Thus S7!(S™!p) is a maximal ideal
of height 3 in S7!B.

f) If P,oQ, then P; contains Y,, Y3, X,, X,;, X,;+,, Whence ht(P;)>5.
This contradicts h#(P;)=4. Therefore to prove that S7(S™'Q) is a maximal
ideal in S7!B, it suffices to show that for any prime ideal Q' in A such that Q
cQ'cP’, we have Q' NS, +¢. Let g be an element of Q' but not of Q. We
may assume that Y, and Y; don’t appear in g. If Y; does not appear in g, then
g is of the form g,X7%, where g, & P'. Hence Q'3X,. Thus Q'nS, +g.
Now suppose that Y; appears in g. Then g is of the form u, Y% +u,X,, where
uy, u€A. We may assume that X, does not appear in u; and that ;4 3 u,.
Therefore P does not contain u;. By our assertion b) of Lemma 2, we may as-
sume that Py,..., Py, are totality of P;’s which contain u;. Let P;),..., Pj
be the totality of P;’s such that X,; or X,;,, appears in u,. Let r be a positive
integer such that Y,+ Y% is relatively prime to each fiyy,..., fimy fic1ys-+ s fics)-
Then P;;yU -+ U Pypmy U Pji5yU -+ U Pjy does not contain Y,+ Y5 by our as-
sertion ¢). Let t be a positive integer such that P;;y U -+ U P;, does not contain
Y (Y,+Y53)+u;. (Proof of the existence of such an integer ¢: Suppose that
PjyU -+ U P, contains Y4 (Y, + Y%)+u, for any positive integer . Then some
P;q, contains Y{V(Y,+ Y%5)+u, and Y{2(Y,+ Y%)+u,, where t(1)<#(2). Hence
Pj4 contains Y{V(1—Y{2~*D)(Y,+Y%) so that P, contains 1— Y4(2)-#(1)
because Y; and Y,+ Y5 are not contained in Pjy,. This contradicts the fact
that P;u,=(Y;, Y5, Y3, X4, X,,...)4.) Then Py QIP,. does not contain Y}(Y,
+Y%)+u,. Indeed, PP Y4 (Y,+ Y%)+u, since P> Y, and P$u;. And if for
some i=+i(1), i(2),..., i(m), j(1),..., j(s), P; contains Y4(Y,+ Y3)+u,, then Y4(Y,
+Y4y)+u,=h fi+h,X{+h;X5;+hy X5y, where hy,..,h,eA. As X, X,
and X,;,; don’t appear in u,, by substituting 0 for X, X,; and X,;,,, we see
that u, is of the form f;h, — Y4(Y,+ Y%) so that P> u,. This is a contradiction.
For each i(k), Pyuy® Yi(Y,+Y%5)+u, since Py du; and Piyyd Y (Y,+ Y5).
Thus S contains Y'(Y,+ Y%5)+u,. Therefore Hn Q' contains (Y4{(Y,+ Y%)
+u,)Y?+u,X,. Thus S;nQ'+¢. Since ht(Q)=2, the height of S71(S™1Q)
is 2. Thus the proof is completed.
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Now we obtain the following proposition which gives our desired example.

PrOPOSITION. For each non-maximal ideal q in S7!B, ht(q)+dim (S7!B/q)
=3. However, S{'B has a maximal ideal of height 2.

Proor. Let q (=S7'(S™'p), where p € Spec(A4)) be a non-maximal prime
ideal in S7!B. To prove that ht(q)+dim(S7'B/q)=3, we may assume that
ht(q)=1 because S7!B is three-dimensional. Since 4 is a unique factorization
domain, p=Af for a suitable prime element f of A. If fe P; for some i, then
Lemma 5 of [1] implies that a maximal element with respect to the inclusion rela-
tion in the family {p’eSpec(4);p'=P,p’sf and p’HX,} has the height 3,
and hence dim(S7!B/q)=2 by our assertion €) of Lemma 3 and by the fact that
B is catenarian. If fe P’, then we can express f=g+hX,, where g, he A. Since
fis a prime element and f is an element of q, g is not zero. We may assume
that X, does not appear in g. Therefore, ge P. If g has a prime divisor f; for
some i, P; contains f, whence dim(S7!B/q)=2. If any f; isn’t a prime divisor of
g, then g is of the form Y7%g,, where g, € A—P. Since f is not an element of
H, S does not contain g. Therefore P;3 g, for some i because g, € 4A—P. Hence
P;>f, so that dim(S7!B/q)=2. Thus for each non-maximal prime ideal q in
S7'B, ht(q)+dim(S7'B/q)=3. S71(S71Q) is a maximal ideal of height 2 in
S1'B by f) of Lemma 3. Thus our assertion is proved.

RemARK 1. Every prime ideal of height one in S7!B is contained in some
maximal ideal of height 3 by the proof of the above Proposition. Therefore
S7!B does not have a maximal ideal of height one. Moreover, we see that for a
noetherian ring E the following statements of Remark 2.25 in [7] are not equiva-
lent: b) For each prime ideal p in E, ht(p)+dim (E/p)=dim(E). c) For each
height one prime ideal p in E, dim (E/p)=dim (E)—1.

REMARK 2. If every maximal ideal of height 3 in S7!B is of the form
S71(S~1p) for some element p of U U,, then by using Corollary 10.5.8 in [3],
p. 106, we see that S7!Bis a Hllbert ring.

3. In [9], p. 232, Ratliff gave the following conjecture.

H-conjecture: If R is a noetherian local domain such that ht(p)+dim (R/p)
=dim (R) for each height one prime ideal p in R, then R is catenarian.

In this section, making use of the example constructed in the previous sec-
tion, we give a non-noetherian local domain D such that D is not catenarian, but
for each height one prime ideal n in D, ht(n)+dim (D/n)=dim (D).

LEMMA 1. Let K be a field and let C be a noetherian integral domain over
K. Let D=K+ZC[[Z]], where Z is an indeterminate, and let W=ZC[[Z]].
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Then the following statements hold.

a) D isa local ring whose unique maximal ideal is R.

b) M=./DZ. In particular, N is a minimal prime ideal of DZ.

c) Let V={neSpec(D);ncR}. Let p(p)=pC[[Z]11nD for each prime
ideal p in C. Then p: Spec(C)—-V is injective.

d) ht(p)=ht(p(p)) for each prime ideal p in C.

e) Let uin)={geC[[Z]];Zgen} for each element n of V. Then pu(n)
is a prime ideal in C[[Z]].

f) For each element n of V, Zp(n)=n and nD,=p()C[[Z]]1[1/Z]. In
particular, pu: V—Spec(C[[Z]]) is injective, and ht(n)= ht(u(n)) for each element
nof V.

g) up(p)=pC[[Z]] for each prime ideal p in C.

h) Let w' be a prime ideal in C[[Z]]. Then Zv' is prime in D if and only
if n’ does not contain Z. In particular, for each maximal ideal M in C[[Z]],
ZM is not prime in D.

i) ht(N/p(m))=1 for each maximal ideal m in C.

j) dim(D)=dim(C)+1.

Proor. We see obviously that the assertion a), b), ¢), f) and g) hold.

d) Since D,=C[[Z]][1/Z], p(p),=vCI[Z]][1/Z]n D,=pC[[Z]]1[1/Z],
and hence ht(p(p))=ht(p(p)z) = ht(p) because C is noetherian.

e) Suppose that fg belongs to u(n), where f, ge C[[Z]]. Then na Zfy,
whence na (Zf)(Zg). Butnis prime in D. Consequently either Zfen or Zg e
n. It follows that either fe u(n) or g e u(n). Hence u(n) is prime in C[[Z]].

h) First suppose that Zn’ is prime in D. If n’ contains Z, then Zn’ con-
tains Z2, whence Zn'sZ because Zn’ is prime in D. Hence n's1. This is a
contradiction. Next suppose that n’ does not contain Z. Let (Zf)(Zg) be an
element of Zn’, where f, g € C[[Z]]. Then Zfg belongs to n’, whence n’ s fg by
our assumption. Therefore either n'sf or n’ag. It follows that either Zn' s Zf
or Zn'sZg. Thus Zn' is prime in D. Finally, the radical of C[[Z]] contains
Z so that the last assertion is obvious.

i) Suppose that there exists a prime ideal n in D such that p(im)cncN.
Then mC[[Z]]=up(m)< pu(n) by our assertion €), g). It follows that u(n) is
maximal in C[[Z]] since m is maximal in C. On the other hand, Zu(n)=n by
the assertion f), this contradicts the assertion h).

j) We may assume that dim (C)< oo by the assertion d). Set n=dim (C).
Let m be a maximal ideal of height n in C. Since Mt > p(m), ht(N)>n+1 by the
assertion d). Let n be any element of V. The assertion f) and h) imply that
u(n) is not maximal in C[[Z]], whence ht(n)<dim (C[[Z]])=n+1 by the asser-
tion f). Hence ht(M)<n+1. Thus ht(N)=n+1.

LemMA 2. Let C be a noctherian integral domain and let B be a prime
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ideal in C. Let a be a non-zero element of B. Then there exists a prime ideal
p in C such that ht(p)=ht(B)—1 and p>a.

Proor. We prove the assertion by induction on ht(B). Set n=ht(B).
If n=2, then Np,=0, where p, is a prime ideal of height one contained in %,
whence p,pa for some A. Assumethatn>2. Let P=p,>p; > >Dp,_,DP,—1
50 be a chain of prime ideals in C. Similarly, we may assume that p,_; does
not contain a. Then, applying the induction assumption to B/p,_,, we obtain
a prime ideal p such that ht(p)=n—1 and p does not contain a.

LemMA 3. (Samuel, [10], Theorem 2.1) Let C be a regular unique fac-
torization domain. Then C[[Z]] is also a regular unique factorization do-
main.

We are now able to state:

PROPOSITION. Let the notation be the same as in Section 2. Let C
=S71'B and let D=K+ZC[[Z]], where Z is an indeterminate. Then D is a
non-catenarian local domain, and dim (D/n)=3 for each height one prime ideal
nin D.

ProoF. C has a maximal ideal of height 2 and a maximal ideal of height
3 by the assertion e) and f) of Lemma 3 of Section 2. Hence the assertions d)
and i) of Lemma 1 imply that D is not catenarian. Let n be a prime ideal of height
one in D. Since C is a regular unique factorization domain, so is C[[Z]] by
Lemma 3. Hence u(n)=(c+Zg(Z))C[[Z]], where ceC and g(Z)e C[[Z]].
Since ¢+ Zg(Z) is a prime element and since n does not contain Z, c is not zero.
Let m be a maximal ideal in C of height 3 containing ¢. The existence of such
m follows from the proof of Proposition of Section 2. Let 9=mC[[Z]]
+ZC[[Z]]. Since ht(M)=4 and C[[Z]] is catenarian (cf. [11], p. 24), Lemma 2
implies that there exists a prime ideal n} in C[[Z]] such that ht(n})=23, n} > u(n)
and n) does not contain Z. Hence there exists a chain of prime ideals 0< u(n)
cnjycny in C[[Z]] by the fact that C[[Z]] is catenarian. Therefore 0OcncZny
cZn, <N is a chain of prime ideals in D by our assertion f), h) of Lemma 1.
Thus dim (D/n)=3.

ReMARK. Since K is algebraically closed in C, D is a normal integral
domain.
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