
HIROSHIMA MATH. J.
5 (1975), 461-471

Codivisorial and Divisorial Modules over
Completely Integrally Closed Domains (II)

Mieo NISHI and Mitsuo SHINAGAWA

(Received May 19, 1975)

Introduction

In our paper [5], we have introduced an operation on modules over a com-
pletely integrally closed domain, which we called "divisorial envelope", and we
have studied some basic properties of the divisorial envelope of a codivisorial
module and also developed a theory of codivisorial and divisorial modules which
shows us that the intrinsic nature of codivisorial and divisorial modules over a
Krull domain is similar to that of modules over a Dedekind domain.

The fundamental theorem of finitely generated abelian groups is based on
the fact that the ring of rational integers is a principal ideal domain, in other
words, a ring in which every ideal is free. It is well known that the above theorem
is generalized to finitely generated modules over a Dedekind domain which is
characterized by the property that any ideal is projective. It seems plausibe to
the authors that the theorem can be formulated for modules over a Krull domain
as far as we are concerned with codivisorial and divisorial modules. In fact,
in [3], N. Bourbaki dealt with the case of noetherian Krull domains. The main
purpose of this Part II is to introduce the notion of an essentially finite module
over a Krull domain and develop a theory of invariants by making use of the
divisorial envelope.

§ 3. Divisorial equivalence

Throughout this §, A is always a strongly integrally closed domain, unless
otherwise specified.

PROPOSITION 30. Let f: M->iV be a homomorphism of A-domules and
p: M-+M/M, q: N-+N/N be the canonical projections.

( i ) There is a unique homomorphism /*: M/M-+N/N such that f*p = qf.
(ii) Iffis pseudo-injective, then f * is injective, and if f is pseudo-isomor-

phic, then so is /*.
(iii) / / / is pseudo-isomorphic and M is divisorial, then / * is an isomor-

phism.

PROOF. The existence of / * follows from Prop. 3 and the uniqueness is
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clear.

Suppose first that / is pseudo-injective. Since M is contained in f~ι(N),

we have the following exact sequence

0 — V K e r ( / ) — > / - 1 ( # ) — > f t .

This implies, by Prop. 6 (ii), that f~ί(ft) is pseudo-null; therefore M^f'1^).

Thus / * must be injective. If, moreover, / is pseudo-surjective, then Coker (/)

is pseudo-null; since the induced homomorphism of Coker (/) to Coker (/*) is

surjective, Coker (/*) must be pseudo-null. This completes the proof of (ii).

Finally, suppose that M is divisorial. Then M^M@MjM by Coroll. 2 to

Prop. 15, and therefore MjM is also divisorial. The assertion (iii) follows from

Coroll. 1 to Prop. 11.

PROPOSITION 31. Let A be a completely integrally closed domain and

M, N be A-modules. Let i be the canonical injection of M to D(M). If N is

codivisorial, then

4(i, D(N)): Hom^(D(M), D(N)) > Hom Λ (M, D(N))

is an isomorphism.

PROOF. Since N is codivisorial, so is D(N) by Prop. 4. On the other

hand, D(M)/M is pseudo-null by the definition of a divisorial envelope D. There-

fore Ήom/1(D(M)/M,D(iV))=0, which implies that HomA(i, D(N)) is an injec-

tion. By Prop. 8, we can see that HomA(i, D(N)) is a surjection.

COROLLARY. Letf: M-+N be a homomorphism of modules over a strongly

integrally closed domain A. Then there exists a unique homomorphism /**

of D(M/M) to D(N/N) such that f**i=jf, where ί(resp.j) is the canonical

homomorphism of M (resp. N) to D(M/M) (resp. D(N/N)). Moreover, if f is

a pseudo-isomorphism, thenf** is an isomorphism.

PROOF. The homomorphism induces the homomorphism /* of MjM to

N/N by Prop. 30. Applying Prop. 31 to /*, we can obtain a homomorphism

f** of D(MIM) to D(N/N) such that f**i=jf

It is easy to see that, similarly to the proof of Prop. 31, Hom(i,D(N/N))

is an injection. This shows the uniqueness of /**.

Suppose now that / is a pseudo-isomorphism. Then, by Prop. 30, /* is a

pseudo-isomorphism (/* is necessarily injective). Since the canonical injection

of MjM to D(M/M) is an essential extension, /** must be an injection. Since

both /* and the canonical injection of NJN to D(N/N) are pseudo-surjective,

so is the composition of them by Coroll. 2 to Prop. 6. We can conclude from

this fact that /** is a pseudo-surjection. Since a pseudo-isomorphism of codi-
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visorial and divisorial modules is an isomorphism by Coroll. 1 to Prop. 11,/**

must be an isomorphism.

In Lemma 2 ([5]), we have shown that, for non-zero fractional ideals α, b

of a Krull domain A, α : b = α : b , namely D(UomA(b: a)) = HomA(D(b), D(ά)).

More generally, for A-lattices M, N, if N is divisorial, then D(N: M) = N: M = N:

D(M) i.e., D(HomA(M9N)) = UomA(D(M%N)(Sce H. Bass [1], Coroll. 8.4, p.

151). Here we shall generalize the above fact for codivisorial modules over a

strongly integrally closed domain.

PROPOSITION 32. Let M and N be codivisorial A-modules. If M is a

submodule of a finitely generated A-module L, then we have

D(HomΛ (M, N)) s Homκ(Z)(JV), D(M)).

PROOF. By Prop. 31, we have only to prove

D{HomA (M, AT)) £ Hom x (M, D(N)).

Consider the exact sequence

0 > Hom^ (M, N) > HomΛ (M, D(N)) > HomA (M, D(N)/N).

Since N is codivisorial, so is D(N); therefore, by Coroll. to Prop. 7, Hom^(M, N)

and Hom^ (M, D(N)) are codivisorial. Also, by Cor. 3 to Prop. 8, Hom κ (M,

D(N)) is divisorial. Since a pseudo-isomorphism of codivisorial modules is an

essential extension, it suffices to show that HomA (M, D(N)/N) is pseudo-null.

Generally, for a submodule M x of a finitely generated ^4-module M 2 and a

pseudo-null ^-module Nl9 we shall show that HomA(Ml9Nί) is pseudo-null.

Put N2 = E(Nί). Then N 2 is pseudo-null by Th. 2. Let {x1?..., x j be a system

of generators of M2 and/be a homomorphism of M 2 to N2. Then O(/) = O(/(x1))

Π ••• fl O(/(xπ)). Since each O(f(xJ) is equivalent to 4 , so is O(/) by Coroll.

1 to Th. 1. Hence Hom A (M 2 , N2) is pseudo-null. Therefore, HomA(M1, N2)

is pseudo-null, because it is a homomorphic image of Hom A (M 2 , N2)9 and

Hom^ίM!, Nι) must be pseudo-null because it is isomorphic to a submodule of

HomA(Mί9N2).

REMARK 8. Let φ be the canonical homomorphism of HomA(M, N) to

H o m ^ M , D(N)). φ is not necessarily pseudo-isomorphic.

EXAMPLE 3. Let (A, m) be a noetherian normal local domain of Krull

dimension ^ 2 . Put AΓ=θ?=imw, M = D(N)=®D(mn) = ®A (See Coroll. 4 to

Th. 3). Let p be the canonical projection of HomA(D(N),D(N)) to Coker(φ).

Then O(p(lD(N)))={aeA;alD(N)(D(N))c:N}==AnnA(D(N)IN)= 0 m" = 0. There-

fore Coker(φ) is not pseudo-null.
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DEFINITION 7. Let M and N be A-modules. We say that M is divisorially
equivalent to N if there exists a pseudo-isomorphism of D(M) to D(N).

PROPOSITION 33. (i) M is divisorially equivalent to N if and only if
D{MjM) is isomorphic to D(N/N). In particular, the "divisorial equivalence"
is an equivalence relation.

(ii) If f is pseudo-isomorphic to N, then M is divisorially equivalent to N.

PROOF. The "if" part follows from the facts that D(M)^D(M)®D(M/M),
D(N)^D(N)®D(N/N) by Coroll. 2 to Prop. 15 and D(M), D(N) are pseudo-null
by Th. 2. The "only if" part follows from Prop. 30.

The last assertion follows immediately from Coroll. to Prop. 31.

§ 4. Codivisorial and divisorial modules over a Krull domain (continued)

1. From now on, A is always a Krull domain and K is the quotient field of
A. Let M be an >4-module. We shall denote by tA(M), or simply t(M) unless
there is fear of confusion, the torsion part of M. In view of the fact that any
module over a Dedekind domain is divisorial, the following theorem is a gener-
alization of the well-known fact that the injective dimension of any module
over a Dedekind domain is at most 1.

THEOREM 5. Let M be a divisorial torsion module. Then injdim^M)

PROOF. By Coroll. 2 to Prop. 15, M^M®M/M and M is injecitve. Hence
we may assume that M is a codivisorial and divisorial torsion module. There-
fore M=®Mp, where p runs over the elements of Ass^M) by Th. 4. On the
other hand, EA(M)^®EA(Mp) by Coroll. 4 to Th. 3. Since AssA(EA(Mp))
= AssA(Mp) = {V} and EA(M,) = D(EA(Mp)) = EA(Mp\ by Th. 4, EA(Mp)
= EAp(Mp) by Prop. 26. Therefore EA{M)IM^®EAp{M^)jMp. Since Ap

is a principal valuation ring, EAp(Mp)/Mp is ^-injective and therefore ^-injec-
tive. Since each EAp(Mp)/Mp is a codivisorial ^-module by Coroll. to Prop. 23,
EA(M)/M is an injective ^4-module by [2], Prop. 2.7, namely inj dim^ (M)^ 1.

COROLLARY 1. Let M be a divisorial torsion A-module. Then R2JV(M)

= 0.

The assertion follows immediately from Th. 5 and the definition of R2JV.

COROLLARY 2. Let N be a codivisorial and divisorial A-module and M
be a divisorial torsion submodule ofN. Then N/M is codivisorial and divisorial.

PROOF. NjM is codivisorial by Coroll. 1 to Prop. 11. Since
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is exact by Prop. 10 and R2jr(M) = 0 by the above

corollary, we have R1J^(N/M) = 0 by noting that N is divisorial and hence

R1Λr(N) = 0 by Prop. 11. Therefore N/M is divisorial again by Prop. 11.

COROLLARY 3. Let M be a codivisorial Λ-module. Then M is divisorial

if and only if t(M) and M/t(M) are divisorial.

PROOF. The "if" part follows immediately from Coroll. 1 to Prop. 11.

Assume now that M is divisorial. Since t(M) is divisorial in M, t(M) is divisorial

by Coroll. 1 to Prop. 6. The above Cor. 2 leads to the last assertion.

2. I. Beck showed in [2] that a direct sum of codivisorial and injective

modules over a Krull domain is still injective. The following result is a gener-

alization of the above fact.

PROPOSITION 34. Let Λ be a directed set and {MλJλtfl}λφeΛ be an

inductive system of codivisorial A-modules. If each Mλ is divisorial, then so is

PROOF. Consider the exact sequence

0 >\Jm t(Mλ) > liπj M A > lim MJt(Mλ) > 0.

Since t(Mλ) and Mλ/t(Mλ) are divisorial for any λ by Coroll. 3 to Th. 5 and lug MA

is codivisorial by Prop. 29, we may assume that each MA is a torsion module or

a torsion-free module.

Case 1: Suppose that each MA is a torsion module. Let p be the canonical

projection of ® M A to ljrrjMA. Put JV = Ker(/?). Then we have the exact
λeΛ

sequence

0 > N > 0 Mλ > ljnj Mλ > 0.

Since l_imMΛ is codivisorial by Prop. 29, N is divisorial in ®Mλ. Since ®Mλ

is divisorial by Coroll. to Th. 3, N is divisorial by Coroll. 1 to Prop. 6. There-

fore linj Mλ is divisorial by Coroll. 2 to Th. 5.

Case 2: Suppose that each Mλ is torsion free. Then E(Mλ)^Mλ®AK.

Since Mλ is divisorial, £(M A )/M A ^M A ® A K/M A is codivisorial. Therefore

HίQ(MA®xiC)/liigMA^!iπj(MA(g)κK/MA) is codivisorial by Prop. 29. Namely,

liπjMA is divisorial in Hnj(Mλ®AK). Since \m±(Mλ®AK) ^QmιMλ)®AK,

\jπι(Mλ®AK) is divisorial and hence !imMA is divisorial by Coroll. 1 to Prop. 6.

COROLLARY 1. Let A be a directed set and {MA,/A μ}A μ e y l be an inductive

system of codivisorial and injective A-modules. Then linjMA is ίnjecίtve.

The assertion follows from Prop. 34 and the fact that an inductive limit of
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divisible modules is divisible.

COROLLARY 2. Let A be a directed set and {Mλ9fλφ}λφeΛ be an inductive

system of A-modules. If Λ 1 ^ ( M λ ) = 0 for every λ, then Λ1^Γ(lmjMΛ) = 0.

PROOF. By Remark 4 and Prop. 29, Hr4MA/ljπjMA^lirrjMA/MA. Since

each MJMλ is codivisorial and divisorial by Prop. 3 and Coroll. 1 to Prop. 15,

liπj MA/liπj Mλ is divisorial by Prop. 34 and hence R1

tA
r(\mιMλ) = 0 again by

Coroll. 1 to Prop. 15.

COROLLARY 3. Let Λ be a directed set and {Mλ,fλffl}λμeΛ be an inductive

system of A-modules. Then

DQmMλJUMλ) s mD{Mλl$lλ).

PROOF. By Remark 4 and Prop. 29, liπjMA/ljrj5MA^ljigMA/MA and

hence we may assume that each Mλ is codivisorial. By Prop. 31, there exists

a unique homomorphism gλμ of D(Mλ) to D(Mμ) for λ<μ such that gλμiλ=iμfχμ

where iλ (resp. iμ) is the canonical injection of Mλ (resp. Mμ) to D(Mλ) (resp.

D{Mμ)). Hence {D(Mλ)9gλμ} is an inductive system over A and {iλ} is an mor-

phism of {Mλifλtμ} to {D(Mλ)9gλμ}. Since each Mλ is codivisorial, each D(Mλ)

is codivisorial by Prop. 4 and hence lug D(Mλ) is codivisorial by Prop. 29. Since

(liπj D(Mλ))p = Hrn D{Mλ\ = liπj Mλp = (HIQ MA)p by Coroll. 2 to Th. 3 and

Coroll. to Prop. 23, (lirrj iλ9 liπj D(Mλ)) is an essentially isomorphic extension of

liπiMΛ by Coroll. to Prop. 18 and Coroll. to Prop. 20. Therefore D(liiijMλ)

^liπj (D(Mλ)) by Prop. 13 because linjD(Mλ) is divisorial by Prop. 34.

LEMMA 3. Let B be a noetherian ring and {Mλ,/λj/i}A>μeyl, {Nλ, gλίβ}λtμeΛ

be inductive systems of B-modules over a directed set A and {ίλ} be a morphίsm

of {Mλ,fλμ} to {Nλ,gλtfl}. If iλ is an essential extension for any λ, then so is

lim iλ.

PROOF. Take a non-zero element x of liπjiVA. Then there exists an

element λ0 of A and an element xAo of Nλo such that gχo(xχo) = x where gλo is

the canonical homomorphism of Nλo to lύijiVA. Let A0 = {λeA\λ^λ0} and

put Xλ = gχOtχ(xχo) for any λeA0. Then Ao is cofinal in A and gλ(xλ) = x for any

λ e Ao where gλ is the canonical homomorphism of Nλ to liπj Nλ. Since 0(xλ)

c0(x A 0 if λKλ'iλiλ'eAo) and liπj0(xA) = 0(x), 0(x) = 0(xAl) for some λ^Ao

because B is noetherian. Therefore Bxλί^Bx. Since iλί is an essential ex-

tension, Bxλί n ί A l (M A l )^0 and hence 0Φgλί(Bxλl Π ίλί(Mλί))ςzgλι(Bxλί)

OgχJxXMχ^^Bx n(liπjίA)(liπjMA). This implies that lmj iλ is an essential

extension.

PROPOSITION 35. Let {MλJλJλtμeΛ9 {Nλ9 gλ>μ}λ,μeΛ be inductive systems
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of codivίsorial A-modules over a directed set A and {/A} be a morphism of {Mλ,
fλ,μ} to {Nλ, gλtμ\. If iλ is an essential extension for any λ, then linj iλ is an es-
sential extension.

PROOF. By Coroll. to Prop. 20 and Prop. 29, it is sufficient to show that
lirn iλp is an essential extension for any element p of Ht^A). Since Ap is a
principal valuation ring, the assertion follows from Lemma 3.

3. Now we study a relation between a divisorial envelope and the torsion
part.

PROPOSITION 36. Let M be an A-module. Then

D(t(M)) £ t(D(M)) and D(M/t(M)) s D(M)/D(t(M)).

PROOF. First we shall show the assertion in the case that M is codivisorial.
Let p be an element of Ht^A). Then tA(D(M))p = tAp(D(M)p) = tAp(Mp) = tA(M)p

by Coroll. 2 to Th. 3. Therefore t(D(M)) is an essentially isomorphic extension
of t(M) by Prop. 18 and Coroll. to Prop. 20. Hence D(t(M)) s t(D(M)) by Prop.
13 and Coroll. 3 to Th. 5. In what follows, we identify D(t(M)) with t(D(M)).
Consider the following commutative diagram

0 > t(M) > M -P-> Mlt(M) >0t(M) >

1
D(t(M)) > j

M

I-
D(M

-P-> Mjt(M)

)-^D(M)lD(t(M))0 > D(t(M)) > D(M) -^ D(M)/D(t(M)) > 0,

where i is the canonical injection of M to D(M) and p (resp. q) is the canonical
projection of M (resp. D(M)) to M/t(M) (resp. D(M)/D(t(M))). Then there
exists a homomorphism / of Mjt{M) to D(M)/D(t(M)) such that qi=fp. Since
D(M)/D(t(M)) is divisorial by Coroll. 3 to Th. 5, it is sufficient to show that /
is an essentially isomorphic extension by Prop. 13. / i s injective because M
0 D(t(M)) = t(M). Hence we can consider Mjt{M) as a submodule of D(M)/

D(t(M)) through/. Let p be an element of Ht^A). Then by Coroll. 2 to Th. 3,
(DA(M)IDA(tA(M))p = DA(M)p/DA(tA(M))p = Mp/tA(M)p = (M/ί^M)),. Therefore
the assertion follows from Coroll. to Prop. 18 and Coroll. to Prop. 20.

Now we consider the general case. By Coroll. 2 to Prop. 15, D(M)^D(AΪ)
®D(M/M) and D(M) = D(M). Hence D(M) £ t(D(M)). Therefore t(D(M))
^D(M)0ί(D(M/M)). Since M/J0" is codivisorial, ί(D(M/M))^Z)(ί(M/Λ?)) and
hence t(D(M)) £ D{M)®D(t(Mjfiί)). On the other hand, since iί? s ί(M), D(ί(M))
^D(M)0D(ί(M)/M) by Coroll. 2 to Prop. 15. It is easy to see that ί(M/i\?)
= t(M)/M. Therefore D(t(M))^D(AΪ)®D(t(MIM)), namely
Since it is obvious that M/t(M)^M/M/t(MIM), Z)(M/ί(M))

because M/Jίϊ is codivisorial. On the other hand, D{M)j
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D(t(M)) ̂  D(M)®D(MjM)/D(M)®D(t(MIM)) * D(M/M)/D(ί(M/M)). Hence
D(M/t(M)) ̂  D(M)/D(t(M)).

§ 5. A Theory of invariant factors over a Krull domain

1. Throughout this section A stands for a Krull domain and K the quotient
field of A.

DEFINITION 8. Let M be anA-moule. We say that M is essentially finite
if M/t(M) is an A-lattίce and t(M)p = 0 for almost all primes of Ht1(A) and
lp(t(M)p)< oo for any p of Htλ(A), where lp(tM)p) is the length of the Ap-
module t(M)p.

REMARK 9. It is easy to see that a finitely generated A-module is essentially
finite and that an essentially finite module over a Dedekind domain is finitely
generated.

PROPOSITION 37. The following statements concerning an A-module M
are equivalent:

( i ) M is essentially finite.
(ii) MjM is essentially finite.
(iii) D(M) is essentially finite.
(iv) D(M/M) is essentially finite.

PROPOSITION 38. Let S be a multίplicatiυely closed subset of A. If M
is an essentially finite A-module, then so is S~ιM as an S~ι A-module.

PROPOSITION 39. Let 0-+L->M-+N-+0 be an exact sequence of A-mod-
ules. Then M is essentially finite if and only if L and N are essentially
finite.

PROOF. The assertion is obvious if M is a torsion module. First we suppose
that M is essentially finite. Since t(M) is essentially finite torsion module, t(L)
is also essentially finite. We put L' = L/t(L), M' = M/t(M) and N' = N/t(N)
respectively. Then we have the following commutative diagram

0
I

t(L)
i
L

ϊ
V
I
0

0
1

—> t(M) -^ i
I

• M - 5 J *

> M ' >
-I
0

0
I

'•(*

I
Λ

4
0

(*)
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where each pt is the canonical homomorphism and the first two rows and all

columns are exact. Since 0-»L'-*M' is exact and M' is an ^4-lattice, we can

readily see that Lr is also an ^-lattice. Thus L is essentially finite. Next we shall

prove that N is essentially finite. Note first that, since p3 is surjective and M'

is an ^-lattice, N' is also an ^4-lattice. To show that t(N) is essentially finite, by

applying Snake Lemma to the last two columns, we consider the exact sequence

0 > t(L) > L - U K e r ( p 3 ) -*-* Coker (pO > 0 (•*)

where δ is the connecting homomorphism. Since M' is an ^4-lattice, Ker(/?3)

is also an A -lattice; therefore L'^Im(/) is a sublattice of Ker(j?3), because Coker

(Pi) is a torsion module. By [4], Prop. 5.2, L'p = (Ker(p3))p for almost all

primes p of Ht^A) and, hence, (Coker(p1))p = 0 for almost all primes p of Ht^A).

It is also easy to see that /p(Coker (pi)p)< oo for any p e Ht^A). Thus Coker (pt)

is essentially finite. Now the conclusion follows immediately from this fact.

Conversely we suppose that L and N are essentially finite. We can readily

see that t(M) is essentially finite by observing the first row of the commutative

diagram (*). We can obtain the following exact sequence from (**):

0 > U > Ker(j?3) -*-> Coker (pO > 0.

Since t(N) is essentially finite, Coker (pt) is an essentially finite torsion module.

Therefore Coker (Pι)p=0 for almost all primes of Ht^A), namely Lf

p = Ker(p3)p

for almost all primes p of Htx{A). Again by [4], Prop. 5.2, Π Ker(p3) ί J is an A-

lattice, because L' is an ^-lattice, where p runs over the primes of Ht^A). Since

Ker (p3) is contained in the above intersection, Ker (p3) is an ^[-lattice. Now we

consider the exact sequence:

0 > KerQ?3) > W > N' > 0.

Let Ft be a free submodule of M' which has the same rank as that of M'. Put

F' = F Π Ker(/?3) and F" = p3{F). Then it is easy to see that F ® K = Ker(p 3 )®K

and F"®K = N'®K. Hence rank ( F ) = rank (Ker (p3)) and rank (F") = rank (JV')

Therefore KQΪ(P3)P = F 'p and N'p = Fp for almost all primes p of Hί^A). This

implies that Mp = Fίp for almost all yeHt^A). By the preceding argument,

we can see that M' is an ^4-lattice. This completes the proof.

2. It is well known that the torsion part of a finitely generated module over

a Dedekind domain is a direct summand. N. Bourbaki showed, in [8], §4,

n°4, Th. 4, that a finitely generated module M over a noetherian Krull domain is

pseudo-isomorphic to t(M)®M/t(M). However, it seems to the authors that

the finiteness condition "noetherian" is rather unnatural. By noting that any

module over a Dedekind domain is divisorial, we shall formulate a theorem in
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view of the principle stated in Part I.

THEOREM 6. Let M be an essentially finite A-module. Then D(M)
= D(t(M))®D(M/t(M)).

PROOF. By Coroll. 2 to Prop. 15, Prop. 36 and Prop. 37, we may assume
that M is codivisorial and divisorial. By Prop. 36, t(M) is divisorial. Hence
ί(M) = ©ί(M)p where p runs over the primes of AssA(t(M)). Since Ap is a prin-
cipal valuation ring and Mp is a finitely generated A p -module by Remark 9 and
Prop. 38, t(M)p is a direct summand of Mp. Let φp be the canonical projection
of Mp to t(M)p and ip be the canonical homomorphism of M to Mp. Since
t(M) is codivisorial and essentially finite, AssA(t(M)) is a finite set. Hence φ
= ®φpip is a homomorphism of M to t{M)—@t{M)p. We can see that the
restriction of φ to t(M) is the identity map. Therefore t(M) is a direct summand
ofM.

The following theorem is also a generalization of the fact that a finitely
generated module over a Dedekind domain can be decomposed to a direct sum
of primary cyclic modules and a projective module uniquely up to isomorphisms.

THEOREM 7. Let M be an essentially finite A-module. Then M is divi-
sorially equivalent to Θίe/v4/p(jni)θiV where {p^ίe/} is a finite subset of
Ht^A), N is a divisorial lattice and p\ni) means the symbolic ntth power of
Pi. Furthermore the set of pairs {(ni9 p f); iel} is uniquely determined up to
permutations and N is uniquely determined up to isomorphisms.

PROOF. By Prop. 33 and Prop. 37, we may assume that M is codivisorial
and divisorial. Then, by Th. 6, M^t{M)@Mjt{M) and M/t(M) is a divisorial
lattice by Coroll. 3 to Th. 5. On the other hand, t(M)=@t(M)p where p runs
over the primes of AssA(t(M)) and AssA(M) is a finite set of primes of height 1.
Since Ap is a principal valuation ring and t(M)p is a finitely generated ^-module
by Remark 9, t(M)p^®jeI(p)Ap/pnJAp, where /(p) is a finite set. Furthermore
it is well known that (n J) j e / ( ) ) ) is uniquely determined up to permutations. Since
D(A/v(nJ))^Aplp

nJAp by Th. 4, M is divisorially equivalent to θ^/p (" j )ΘM/
r(M), where p runs over the primes of AssA (t(M)) and j runs over the set /(p).
The last assertion is clear.

The results stated for noetherian normal domains in Bourbaki [3], §4, n°5
and n°Ί can be generalized to the case of Krull domains by replacing "pseudo-
isomorphism" by "divisorial equivalence" and "finitely generated" by "es-
sentially finite",
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