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Introduction

Let q be a continuous function from [0, oo) to (0, oo). In studying oscillation

for

(1) u<m> + gιι = 0 ,

and related equations, many authors have recognized that the even and odd order

cases have some fundamental differences. See, for example, A. G. Kartsatos

[6], T. Kusano and H. Onose [10], G. Ladas, V. Lakshmikanthan, and J. S.

Papadakis [11], Y. G. Sficas [15], Sficas and V. A. Staikos [16], and G. H. Ryder

and D. V. V. Wend [14]. On the other hand, Ladas, Lakshmikantham, and

Papadakis [11], Sficas and Staikos [16], and the present author [12] have observed

that, for some purposes, the odd and even order cases coalesce if one replaces

(1) by

(2) u^ + (-l)mqu = 0.

For example, the present author [12] has shown that

[<Otm'1q(t)dt < oo
Jo

is a necessary and sufficient condition for the existence of a bounded nonoscil-

latory solution of (2), irrespective of the parity of m.

In the even order case, it is known that

(3) [™tln-2q{t)dt = oo
Jo

implies that every solution of

(4) u(2") + qu = 0

is oscillatory (see, for example, G. V. Anan'eva and V. I. Balaganskii [2], H. C.

Howard [4], I. T. Kiguradze [8], V. A. Kondrat'ev [9], and C. A. Swanson

[17, p. 175]). If (3) fails, the present author [13] has found two continuous
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functions φ and φ from [0, oo) to [0, oo) such that if

is oscillatory then every solution of (4) is oscillatory, and such that if

is nonoscillatory then there exists a nonoscillatory solution of (4). Thinking of

(4) as one case of (2), the purpose of the present work is to obtain analogies to

these last results in the other case, i.e.,

(5) u<2n+ί>-qu = 0

where n is a positive integer.

Results

Before stating our results, we need to discuss some properties of nonoscil-

latory solutions of (5). First, there always is a nonoscillatory solution of (5).

This is clear from the Volterra integral equation

(6) f/(0 = l+τ=Λ

the solution of which is everywhere positive and satisfies (5). If u is the solution

of (6) then routine examination shows that w ( k ) >0 on (0, oo) for fc=l, . , 2n + l.

We shall obtain herein results which ensure that under certain circumstances

this is the only type of nonoscillatory solution which (5) may have.

Now suppose u is an eventually positive solution of (5). (Every nonoscil-

latory solution of (5) is either eventually positive or eventually negative, and

since (5) is linear it suffices to consider the eventually positive case.) Since u

is eventually positive, ui2n+1) is eventually positive. Since u(2n+ί) is eventually

positive, w(2/l) is eventually one-signed. Since w ( 2 n ) is eventually one-signed,

U2n-i j s eventually one-signed. Continuing this, we see that there is c>0 such

that none of u, u\ u",..., W ( 2 M ) has any zeros in [c, oo).

LEMMA 1. Let u be an eventually positive solution of (5), and find c>0

such that none of u, u\ u"9...9 M ( 2 M ) has any zeros in [c, oo). Then (i) and (ii)

are equivalent.

(i) u<*> > 0 on [c, oo) for k = 1, 2,..., In.

(ii) w ( 2 n ) > 0 on [c, oo).

For expository convenience, we shall defer the proof of Lemma L In
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light of Lemma 1, and our earlier comments regarding (6), one sees that the re-
levant question, with regard to oscillation and nonoscillation, is: Are there
eventually positive solutions u of (5) with ui2n) eventually negative'!

THEOREM I: If

(7) ί0^2"-^ q(t)dt =oo,
Jo

then there is no eventually positive solution u of (5) with u{2n) eventually
negative.

THEOREM 2: If (7) fails, and the second order equation

(8)

is oscillatory, then the conclusions of Theorem 1 are true.

THEOREM 3: If the second order equation

(9) >

is nonosdilatory, then there exists an eventually positive solution u of (5)
with w(2rt) eventually negative.

Next we have a comparison theorem. Theorems 1, 2, and 3, taken to-
gether, create the impression that for "large" q the conclusions of Theorem 1
hold and for "small" q the conclusions of Theorem 3 hold. Theorem 4 rein-
forces this idea. Note that Theorem 4 is related to a recent even order result
of A.G. Kartsatos [7].

THEOREM 4. Let p be a continuous function from [0, oo) to (0, oo) such
that p(t)>q(t) whenever t>0, and suppose the conclusions of Theorem 1 are
true. Then

(10) ϋ<2n+1>-jpι? = 0

has no eventually positive solution v with u ( 2 π ) eventually negative.

Since (5) is linear, if one wishes to think of nonoscillatory solutions instead
of eventually positive solutions, one may ask: Are there nonoscillatory solutions
u of (5) with uu{2n) eventually negative! When put this way, one sees that our
work here is related to, but independent of, third order work of G. Villari [18],
[19]. Since we know that (5) always has a nonoscillatory solution, Theorems
1 and 2 can be thought of a restricting the possible asymptotic behaviors of such
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solutions. Put another way, our results can be thought of as saying that in a cer-
tain sense there are not "very many" nonoscillatory solution of (5). On the
other hand, we have not yet ensured the existence of oscillatory solutions. Fur-
thermore, if Q is the solution space of (5), and if, whenever l<fc<2n + l, zk is
the solution of

(Π) ^ ^ ( F ^

on [0, oo), then each zk is a nonoscillatory solution of (5) and {zί9 z2,..., z2n+ι}
is a basis for Q. The following theorem clarifies this situation.

THEOREM 5. Statements (iii) and (iv) are equivalent.
(iii) // u is an eventually positive solution of (5) then u(2n) is eventually

positive.
(iv) There is a In-dimensional subspace of Q each member of which is

oscillatory.
Furthermore, if (iii) and (iv) are true and m is an integer in [0, 2/i], then

there is a basis for Q consisting of m oscillatory members and 2n+\ — m
nonoscillatory members.

If n = 1 (the third order case), our theorem follows from results of S. Ahmad
and A. C. Lazer [1] and G. D. Jones [5]. These authors have also shown that
in the third order case the existence of a single nontrivial oscillatory solution
implies that if u is a nonoscillatory solution then uu ( 2 n ) is eventually positive.
The following fifth order example shows that this fails in general.

EXAMPLE. Suppose r is in (0,1). Now

(r + 2 ) ( r + l ) r ( r ~ l ) ( r - 2 ) < r ( r - l ) ( r - 2 ) ( r - 3 ) ( r - 4 ) .

Thus α > γ where

α = max{r(r- l)(r-2)(r-3)(r-4): 0 < r < 1}

and

y = max{r( r- l ) ( r-2)( r-3)( r-4) :2< r < 3}

= max{r + 2)( r+l) r ( r- l ) ( r-2) : 0 < r < 1} .

Suppose γ<β<oc9 n = 2, and q is given by q(t) = β(t +1)~5. Since the polynomial
equation

(12) p(p
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has two complex roots, we see that (5) has a nontrivial oscillatory solution.

On the other hand, (12) has a real solution p in (0,1); and u given by u(ή = (t+ iy

is a positive solution of (5) with u""(t) = p(ρ-l)(ρ-2)(ρ-3)(t+l)p-*<0 when-

ever ί>0. The example is complete.

From Theorems 1, 2, 4, and 5, corollaries can be drawn giving conditions

ensuring the existence of a 2n-dimensional subspace of Q consisting solely of

oscillatory solutions. We leave this to the reader.

PROOF OF LEMMA 1. It is clear that (i) implies (ii), so we shall show that the

failure of (i) implies the failure of (ii). Suppose (i) fails. Let j be the largest

integer such that w ( Λ )>0 on [c, oo) if k<j (where we write w = w(0)). By hypoth-

esis, j<2n + l, and since u ( 2 " + 1 ) > 0 on [c, oo), we see jφ2n. Now u( / + 1 ) < 0

on [c, oo), so u{j) is bounded. If j+l<k<2n, and M ( f c )u ( k + 1 )>0 on [c, oo),

then u(k) is either positive and increasing or negative and decreasing. In either

case, u(k~1) is unbounded. Clearly now, if j +1 < m < /c, then w(m~1} is unbounded,

so uij) is unbounded. But uiJ) is bounded, so w ( f c )ι/ ( k + 1 )<0 on [c, oo) ifj+l<k

<2n. Since W ( 2 M + 1 ) > 0 , this says u ( 2 n ) < 0 on [c, oo). Although this completes

the proof of the lemma, let us note that other observations can be made. In

particular, it is clear that if j + l < / c < 2 n then u ( k ) < 0 on [c, oo) if k is even and

w(fc)>0 on [c, oo) if k is odd. Since w ( j + 1 ) < 0 on [c, oo), this says j + 1 is even

andj is odd. This last fact will be used without further comment in the remainder

of our proofs.

LEMMA 2. Let u be an eventually positive solution of (5) with U ( 2 M ) even-

tually negative. Let c and j be as in the Proof of Lemma 1. Then

(13) (-1)*+

whenever t>c and j+l<k< 2n, and

(14) u"\t) > (2n-j)l

whenever t>c.

PROOF. Since u ( f e )w ( k + 1 )<0 on [c, oo) if j + l<k<2n, we see u(k)(oo) =

l i m ^ ^ w ^ O exists if j<k<2n. Furthermore, if j+l<k<2n, u(fc)(oo) =

since u(k\co) and w(fc~1}(oo) both exist. Now, if τ>t>c,
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SO

= <\°q(s)u(s)ds9

and (13) is true if k = 2n. Suppose j + 2<m<2n9 and (13) is true for k = m.

Now, if τ<t<c,

so

and (13) is true for k = m — 1. By induction, the first part of the proof is complete.

For (14), the same procedures suffice, but we have inequality because we have

not shown w( /)(oo) = 0, only uu\oo)>0. This completes the proof.

PROOF OF THEOREM 1. We shall assume the existence of an eventually posi-

tive solution u of (5) with w(2/l) eventually engative, and show that this violates

(7). Let u be such a solution. Let c and j be as in the Proof of Lemma 1, and

suppose 7 > 1 . Now u(k)>0 on [c, oo) if l < / c < j , so

(15) κ(0 >jj^

if t>c. This, and (14) say

uu){c)-jiϊ^\ys-c)2n~jq^

Since uu)>0, uu~1) is increasing, so

and we see

(16)
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If 7 = 1,

u'(c) > ( 2 w i i )

and again (16) holds. But (16) implies the failure of (7), so the proof is complete.

PROOF OF THEOREM 2. Again, let u be an eventually positive solution of (5)
with M ( 2" ) eventually negative. Let c and j be as in the Proof of Lemma 1,
and suppose7>1. Now, from (13) and (15), if t>c,

2n-j- 01(7-2)1

so

(17)

if t>c. If j=l then

whenever ί>c, so (17) holds in either case. Let υ be given on [c, oo) by ι (ί)
= u^\t)/u(j'1 >(ί), and note that v(t) > 0 if t > c. Now

Ό'(t) =

if ί>c, so (17) says

(18)
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if t>c. But a classical result of A. Wintner [20] (see also [17, Theorem 2.15,
p. 63]) says that the existence of a positive solution of (18) on (c, oo) implies
nonoscillation for (8), and the proof is complete.

PROOF OF THEOREM 3. Suppose (9) is nonoscillatory, and let w be an even-
tually positive solution of (9). Find c>0 such that w(t)>0 if t>c. Now w'>0
on [c, oo). If τ>t>c,

w'{t) = *'W+(2nl)

so

w\t)

(2/1-1)

Now standard iteration techniques say that there is a continuously differentiate
function u from [c, oo) to [w(c), oo) such that w(c) = w(c), such that u(t)<w(t)
whenever ί>c, and such that

(19) w'W = T ^ Λ T

if t > c. Now In - 1 differentiations of (19) yield

(20) u^2n\t) =

and then (5). Thus u solves (5) on [c, oo), and (20) says w ( 2 r t )<0 on [c, oo).
Clearly u can be extended to a solution of (5) on [0, oo), and this solution satisfies
the requirements of Theorem 3, so the proof is complete.

PROOF OF THEOREM 4. We shall show that if there is an eventually positive
solution υ of (10) with υ(2n) eventually negative then there is an eventually positive
solution u of (5) with w(2/l) eventually negative. Suppose υ is an eventually posi-
tive solution of (10) with ι;(2π) eventually negative. Find c>0 such that none of
v, v\ v",..., U ( 2 M ) has any zeros in [c, oo), and let j be the largest integer such that
ι;(fc)>0 on [c, oo) if k< j . Suppose j > l . Let/be given on [c, oo) by
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Note that f(t) > 0 if t > c and

(21) υ(t) = / W + *
U~ι)

if t > c. Now (21) and the adaptation of (14) to v yield

ds

if ί>c. Now standard iteration arguments yield the existence of a continuous
function u from [c, oo) to [0, oo) such that u(t)<v(t) if t>c and

(22)

if ί>c. Since w>0 on [c, oo), (22) says u>f on [c, oo), so w has no zeros in
[c, oo). Now j differentiations of (22) yield

(23)

if t>c, and 2n— j differentiations of (23) yield

(24) w<2">(0 = - f

and then (5) if t>c. Now u can be extended to a solution of (5) on [0, oo), and
this solution is eventually positive. Also, (24) says that u ( 2 w ) is eventually negative,
so the proof is complete if j> 1. If j = 1, then

V'{t)~ (2/1-1)1

if ί>c, so

d s

whenever t>.c. Arguments virtually identical to those above can now be used
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to complete the proof if 7 = 1, and we desist.

LEMMA 3. Suppose (iii) is true, let {wm}%=0 be a Q-υalued sequence, and

suppose w(

0

k)(t)=\imm^QOw(m)(t) whenever t>0and /c = 0, 1,..., 2n + l . Sup-

pose that {τm}%=ί is a [0, co)-valued sequence with I i m m _ 0 0 τ m = o o and wm(τm) = 0

whenever m>\. Then w0 is oscillatory.

PROOF. Suppose w0 is not oscillatory. We can, and do, assume w0 is even-

tually positive. According to (iii) and Lemma 1, there is c > 0 such that w(

o

fe)(0

> 0 for t>c, k = 0, 1,..., 2n + l. Clearly now there is an integer j with

for fc = 0, 1,..., 2n + l and with τj>c. NOW

(25) wj(t) = ^ £

whenever t > c. But since

whenever t > c, standard iteration methods say that the solution of (25) is positive

on [c, co). But Wj(τj) = 0, so we have a contradiction and the proof is complete.

The technique in the proof of (iii)->(iv) in Theorem 5 is an adaptation to

our present circumstance of a circle of ideas used by S. P. Hastings and Lazer

[3], Ahmad and Lazer [1], and Jones [5].

PROOF OF THEOREM 5. Suppose (iv) is true and (iii) is false. Let u be an

eventually positive solution of (5) with w ( 2 π ) eventually negative, and let M be

a 2π-dimensional subspace of Q, each member of which is oscillatory. Find

c > 0 such that w>0 and W ( 2 M ) < 0 on [c, oo). Since u is not in M and M is 2n-

dimensional, every member of Q is of the form au + y, where y is in M. Find

a such that zt = au + y. Now aΦO, since zx is not in M. Also, a>0, for other-

wise zt(t)<0 whenever t>c and y(t)<0. It follows from the discussion preceed-

ing Lemma 1 that if y ( 2 n ) is nonoscillatory then y is nonoscillatory, so j ( 2 π ) is

oscillatory. Nowz (

1

2 n ) = αM ( 2 n ) + / 2 n ) , so z[2n)(t)<0 whenever t>c and y(2n\t)

<0, since α > 0 . But z[2n\t)>0 whenever ί > 0 , so we have a contradiction,

and the proof of (iv)-*(iii) is complete.

Suppose (iii) is true. If k and j are positive integers, \<k<2n, let a(k,j)

and b(k,j) be real numbers such that

(26) a(k,j
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and

(27) a(k9 j)zk(j) + b(k, j)z2n +ί(j) = 0.

From (26), there is a subsequence {Ji}fLι of the positive integers such that

<xk = lim ,_,«£!(£,./,)

and

exist for each /c. For /c=l,...,2n, let yk = oίkzk + βkz2n+ι. Let M'= span {>>!,...,

y2 π}. It is an immediate conclusion of (27) and Lemma 3 that each member of

M is oscillatory. To verify dim(M) = 2n it suffices to show linear independence

for {}>!,..., y2n} By (26), α£ + /?£ = l for each /c, so each yfc is nontrivial. Also,

ockβk Φ 0 for each k, for otherwise some yk would be nonoscillatory. If {y {,..., y2n}

is linearly dependent then there is an integer j such that yj is a linear combination

of Jiί , yj-i But the linear independence of {zί9...,z2n+ί} says this is impos-

sible, so {yί9...9 y2n} i s linearly independent, dίm(M) = 2n, and the proof of (iϋ)->

(iv) is complete.

Finally, suppose (iii) and (iv) are true, and let m be an integer in [0,2n]. If

m = 0, recall that {zl9..., z2n+ί} is a basis, and we are through. Suppose m > l ,

and let {yί9.. ,y2n} b e a s above. We claim that {yί9...9 ynv z m + 1 , . . . , z2n+ί}

is a basis, and to show this it suffices to verify linear independence. Suppose

^iv s^2w+i a r e numbers and

ί = 0,

(28) dίyί + — + dmym + d2n+ίz2H+ι = -dm+ίzm+ί d2nz2n

The left side of (28) is in span {z1?..., zw, z2n+ί} and the right side of (28) is in

span{zm+ί,...9z2n}9 so

(29)

and

(30) d I H + 1 z m + 1 + " . + d 2 l lz 2 l l = 0.

The linear independence of {zί9...9 z2n+ί} and (30) yield

dm+ί = •.. = ^ 2 n = 0.

If d2n+1φ0, then (29) says that z2n+ί is in M and is hence oscillatory. Thus

d2n+1=0. Now (29) says
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Since {yx,..., ym) is linearly independent, this says

dί = - = dm = O,

and the proof is complete.
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