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Introduction

The principal oriented bordism module Ω*(G) of a group G is denned to be

the module of all equivariant bordism classes of closed principal oriented (smooth)

G-manifolds. Ω*(G) is a module over the oriented bordism ring Ω*9 and this

module Ω*(G) and the unoriented one $l*(G) are studied by several authors.

The purpose of this paper is to determine the ί^-module structure of Ω*(Hm),

m^2, where Hm is the generalized quaternion group generated by two elements

x and y with two relations

χ2
m~1

 = yl a n ( J χyχ = y^

that is, the subgroup of the unit sphere S3 in the quaternion field H generated by

x = exp(πi/2m~1) and y=j.

The group Hm acts freely on the unit sphere S4n+3 in the quaternion (n +1)-

space Hn+1 by the diagonal action am(q, (qθ9..., qn)) = (qqo> — > Mn) (<1> ^ e H ) ,

and we obtain the principal oriented Hm-manifold

(0.1) (αw, S 4 " + 3 ) ( n ^ O ) .

Also, the element x = exp(π//2m"1) generates the cyclic subgroup Z2m of order 2m,

and this group acts on the unit sphere S2n+ί in the complex (n + l)-space Cn+1

by the diagonal action x(zo,...,zΠ) = (xz o,. . .,xzΠ)(z ίeC). We denote this

Z2m-manifold by (Tm, S2n+1). Hence we obtain the extension

(0.2) iJTm9S*"+*) (n^O),

by the inclusion im: Z2m<^Hm, which is the disjoint union Z 2 x 5 4 / ί + 1 with the i n -

action given by

x(ε, z) = (ε, xεz), y(ε, z) = (-ε , εz) (ε = ± 1, z e S 4 » + 1 ) .

Let π be the set of partitions ω = (α l 9 . . . , ar) with unequal parts aj9 none of

which is a power of 2. By the consideration of K. Kawakubo [6], there is a

Z2-manifold
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(T, JV(ω)) for ω e π

such that N(ω) represents Wall's generator g(ώ) of the oriented bordism ring Ω*

and N(ω) admits an orientation reversing involution Γ(cf. §5). By using this

manifold and S2n+1, we can consider the principal oriented ifm-manifold

(0.3) βm(n, ω) = (βm9 S 2«+ 1 x 5 2 « + 1 x JV(ω)) (n ^ 0, ω e π ) ,

whose action βm of Hm is given by

j5M(x, (z, z', ιι)) = (xz, χ - V , II), J5M()% (*, *', tι)) = (-z ' , z, 7iι),

for z, z' eS2n+1 and w e N(ω). (This definition is suggested by K. Shibata.)

For any //2-manifold M, we denote by yM the manifold M with the new

H2-action x*m = ym, y*m = xm (meM), and we can consider its extension kmyM

by the inclusion km: H2<=Hm, km(x) = x2m~2, km(y) = y. Therefore, we obtain

the principal oriented //m-manifolds

(0.4) kmγi2(T2, 5 4 M + 1 ) ( n ^ O ) ,

(0.5) kmγβ2(n,ω) (n ^ 0, ω e π ) ,

from the #2-manifolds of (0.2) and (0.3).

Finally, we consider the extension

(0.6) ΐ E 4 B + 3 W(ω) {n ^ 0, ω e π)

of the bordism class £ 4 n + 3 J^(ω)eΩ*(Z2), due to K. Shibata [7], by the inclusion

i:Z2czHm,i(-l)^x2rn~1=y2.
Then, we have the following

THEOREM 7.5. The principal oriented bordism module Ω*(Hm) of the

generalized quaternion group Hm (m^2) is the direct sum

where 2m9 Qm, Q'm and 9CBTO are ί/?e Ω%-submodules of Ω*(Hm) generated by the

bordism classes (represented by the Hm-manifolds) of (0.1), (0.2-3), (0.4-5)

and (0.6), for n^0 and ωeπ, respectively.

Furthermore, we study the relations among the generators in these Ω%-

submodules and obtain the Ω^-module structure of Ω*(Hm) in Theorem 8.12.

We prepare in § 1 some results for the homology of Hm. In § 2, we study the

unoriented bordism module 9l*(Hm) by using the isomorphism

9t,(ff J S 9i*®H*(Hm; Z2) (cf. [3, (19.3)]),
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and determine the free 9t*-module structure of yi*(Hm) (Theorem 2.13). Also,

we study the module W^NS1) of the normalizer NSι of S 1 in S3 (Proposition

2.19).

We recall in §3 the results of [5] for the oriented bordism module Ω*(Z2m).

By using these results and the isomorphism

ΰ*(HJ = ΣP+q=nHP(Hm; Ωq) (cf. [3, Th. 14.2]),

we study in §4 the ί2*-submodules £ m and 2Bm in Theorem 7.5 and the submodules

3 m and 3 m generated by the bordism classes of (0.2) and (0.4), respectively. We

define the Z2-manifold (T, N(ω)) in § 5 and the ifm-manifold βjn, ω) of (0.3)

in §6, and prove our main results in §§7-8.

The author wishes to express his gratitude to Professors M. Sugawara and

T. Kobayashi for their valuable suggestions and reading this manuscript carefully,

and also to Dr. K. Shibata for his useful suggestions.

§ 1. The homology of Hm

The generalized quaternion group Hm (m^2), generated by

x = Qxp(πί/2m~1) and y — j ,

acts freely on the infinite dimensional sphere Sco = \JnS
4-n+3 by the action of (0.1),

and an //m-equivariant C^-decomposition of S00 is given in [4, §2] as follows:

500 = {qe4i+*9 qefι+t\s = 0, 3; t = 1, 2; ε = 1, 2; qeHm}9

= (y-l)e4l

9

(1.1)

ejι+2 = (xy+l)eiι+1 +(x-l)eV,

l+3 = (x-l)eiι+2-(xy-l)eiι+2.

This induces a CW-decomposition of the classifying space S°°/ifm of Hm:

S*>/Hm = {e%ι+\ e\»*\s = 0, 3; t = 1, 2; β = 1, 2},

(1.2)

l,m ~ Δ el,m ze2,m > ce2,m ~^el,m 9 θem — U.

Therefore, we have
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LEMMA 1.3. ([2, Ch. XII, § 7], [4, § 2]) The homology groups of the

generalized quaternion group Hm are given by

for k =

Z2m+ile*ι+3'] for fe = 4/ + 3,

0 otherwise,

( Z2[>*] for k = 41, 4/ + 3,
Hk(Hm;Z2) =

{ Z2[_e\tm\®Z2[ek

2tm\ for k = 4/+1, 4/ + 2,

where Zt[e~\ means the cyclic group of order t generated by the homology class

of the cell e.

Now, consider the cyclic subgroup Z 2 m generated by the element x. Then,

(1.1) induces the CPF-decomposition

S°°/Z2m = {e4l+s, ye4l+s, e%ι+t\s = 0, 3; t = 1, 2; ε = 1, 2}

with the boundary formulae obtained by setting x = l in those of (1.1). There-

fore, we see easily that the generators of the homology groups

(1.4) H 2 l + 1 ( Z 2 m ; Z) = Z 2 m [ z 2 ί + 1 ] , Hk(Z2m; Z 2 ) = Z2{_z^

are given by

Z4Z = £4ί> Z4/+1 = eV+ί > z4l + 2 = ( l + ^ ί ' 4 " 2 * z4/ + 3 = ( l + J 7 ) ^ ^ 3 ,

and that the extension and the transfer homomorphisms

(1.5) / „ . : Hk(Z2m Λ) • Hk(Hm Λ), ίJm,: Hk(Hm Λ) • Hk(Z2m Λ)

(Λ = Z or Z 2), induced by the inclusion

(1.6) ίM: Z 2 M > Hm, Im ίm = Z 2 , [ x ] ,

have the following properties for the generators in Lemma 1.3 and (1.4).

LEMMA 1.7. (i) For k = 4l and Λ = Z2, /mHί is isomorphic and ίίmHί is trivial.

(iii) For k = 4l + 2 and Λ = Z2, im* is trivial and

(iv) For k = 4l + 3, ίm H.(z4 ί + 3) = 2 ^ / + 3 and tim* is epimorphic.
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Also, we consider the cyclic subgroup Z 4 of H2 generated by the element y.

Then, (1.1) for m — 2 induces the CW-decomposition of 5°°/Z4 by setting )> = 1,

and we see easily that the generators of (1.4) for m = 2 are given by

z 4 ί + 3 =

and that the extension and the transfer homomorphisms

(1.8) j2*:Hk(Z4;Λ)-^Hk(H2;Λ), tj2*: Hk(H2; A) — > Hk(Z4; A)

(A — Z or Z 2), induced by the inclusion

(1.9) j 2 : Z* > H29 Im/ 2 = Z 4 | > ] ,

have the following properties.

LEMMA 1.10. (i) For k = 4l and Λ = Z2,j2* is isomorphicandtJ2* is trivial.

(ϋ) J2 (*4!+i) = e ί ί r ; tJ2*(eV,+

2

1) = 2z4l+u tj^e^t1) = 0.

(iii) For /c = 4/ + 2 and Λ = Z2,j2* is trivial and

τj2*\el,2 ) — z4l+2 — ίj2*\e2,2 )•

(iv) For k = 4l + 3, j2%(z4ι+3) = 2e2

ι+3 and tj2% is epίmorphic.

Now, consider the automorphism

(1.11) γ:H2 > H2, γ(x) = y, γ(y) = x.

LEMMA 1.12. For the isomorphism

y*:H4l+2(H2;Z2) • HΛι+2{H2; Z2)

induced by y, we have

7*(eV,+22) =

PROOF. Set y * « 2 + 2 ) = βε*?ίί22 + bεej1^2. Since γoi2=j29 we have the

commutative diagram

2l Z2) -2i_> H4l+2(H2; Z2)

H4l+2(Z4;Z2) ^U H4l+2(Z4',Z2).

Therefore we see that a2 + b2 = 0 by Lemmas 1.7 (iii) and 1.10 (iii), and so that

a2 = b2 = 1 since γ* is isomorphic. This result and the equality y*y*(e2

vι

i~2~
2)==e2

vι

t~2~
2

show that ax = 1, bt =0, as desired. q.e.d.
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Let

(1.13) kl9m:Hι—+Hm9 km = k2>m:H2—*Hm, (2 g I ^ m),

be the inclusions such that khm(x) = x2m~\ kUm{y) = y.

LEMMA 1.14. For the extension homomorphism

km*: Hk(H2 A) > Hk(Hm; A) (A = Z or Z 2 , m > 2),

induced by km and the generators of Lemma 1.3, we have the following equalities:

K (P4l\ — p4l fr (P4l+1\ — O U (P4l+ί\ — p4l+\Km*\e2 ) ~ em Ϊ Km*\el,2 ) ~ U? Km*\e2,2 ) ~~ e2,m »

Km*\e\,2 ) — el,m > Km*Ke2,2 ) ~ U> Km*\e2 ) ~ Z em

PROOF. Consider the ifw-equivariant C^-decomposition (1.1) and the

Hm_^equivariant CPF-decomposition

Soo = {qe>*ι**9 qe'*ι+<\s = 0, 3; t = 1, 2; ε = 1, 2;

of [4, § 2]. Then, we see easily by the definition in [4, § 2] that

Therefore the extension homomorphisms fcϊis = fcm_lm*: H^Hjn^^, A)^Hk(Hm; A)

are given by

K (pA-l \ — P4l k (p4-l+l Λ — O Ir ίp4-l+l \ _ p4-l+ί
K*\em-l) — em » K*\el,m-\) ~ U» K*\e2,m-\) ~ e2,m

κ*\el,m-l) — el,m J K*\e2,m-l) " U J κ*\em-l ) ~

These show the desired results since km = km-ltmo>~ok2 3 . q.e.d.

Finally consider the inclusion

(1.15) j m = kmoj2 = kmoγoi2: Z 4 > Hm, Imjm = ZA\y~\ .

Then, by Lemmas 1.10 and 1.14, we see that the extension homomorphism

U: Hk(Z4 A) — > Hk(Hm A) (A = Z or Z 2)

satisfies the following

LEMMA 1.16. (i) jm% is isomorphic for k = 4l and A = Z2, and is trivial for

i (Ύ \ — P4l+1 / (Ύ \ _
Jm*\Z4l+ ί) — e2,m •> Jm*\Z4l+3) ~
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§2. The unoriented bordism modules 9i*(HJ and ϊ

For a given compact Lie group G, an rc-dimensional principal G-manifold (G,

Bn) = (oc9 B") is a pair of a compact (smooth) 72-manifold Bn and a free (smooth)

action α: GxBn-+Bn, and two closed principal G-manifolds (G, Mn) and (G, Nπ)

are G-equivariantly bordant, if there is a principal G-manifold (G, β n + 1 ) with

(G, Bn+ί) = (G, MnΌNn). Denote by the G-bordism class of (G, M") by [G,

M"], and the collection of all such classes by 9lM(G). $ln(G) is a module with

respect to the disjoint union, and the direct sum

(2.1) 9t»(G) = Σ £ i 9l»(G) (/ = dim G)

is the principal unoriented G-bordism module. For the unit group e,

is the Thorn bordism ring with respect to the multiplication induced by the cartesian

product MxN, and ^^(G) of (2.1) can be given a structure of (left) 9l*-module

by

[N][G, M] = [G, N x M ] ,

where G acts on NxM by g(n, m) = (n, #ra) (cf. [3, §§2, 19]).

For an element [G, M] e ^ Λ (G), let / : M/G-+BG be the classifying map of

the principal G-bundle M->M/G. Put / = dimG. Then we see easily the follow-

ing result in a way similar to the case of a finite group G ([3, § 19]):

(2.2) There is an isomorphism

of ^-modules of degree -I, defined by φ[G9 M] = [MlG,f], where $

is the 9l*-module in [3, §8].

The element μ[G, M']=f*(M/G)eHn_ι(BG; Z2) is defined, where M/Ge

Hn_ι(M/G; Z 2) means the fundamental class. Using [3, (8.1)] and (2.2), we have

(2.3) μ: 9ln(G) > Hn_£BG\ Z 2 ) is epimorphic.

For a base {cn>i} of Hn(BG;Z2), we can take Cn+hίeMn+ι(G) with μCn+hi
= cn,i by (2.3). Then a homomorphism of Sft^-modules

ft: 91*®H*(BG; Z 2)

is obtained by ft(l®cn}ί) = C n + Z ι , and



120 Yutaka KATSUBE

(2.4) (cf. [3, (19.3)]) h is an isomorphism of9l*-modules.

Let if be a subgroup of G. For the inclusion i: HaG, consider the extension

homomorphism

(2.5) i:9tn(tf) ><Sln(G)

defined by i[H, M] = [;'(//, M)], where i(H, M) is the principal G-manifold con-

sisting of the quotient manifold {Gy.M)jH of GxM by (g, m)^{gh~ι, hm) and

the G-action on (GxM)/H given by g'[g, m~] = [<g'g, ni]. Consider also the

transfer homomorphism

(2.6) tt:9UG)—+

denned by restricting the G-action on H by the inclusion i: HcG.

Now, we study the ίί^-module structure of 9l^(Hm) (m ̂  2).

We consider the principal Z2-manifolds

(2.7) (a, S") (a is the antipodal action),

and the principal Z2m-manifolds

l(a,S") ( l : Z 2 c Z 2 . ) ,
(2.8)

(Tm, S 2 « + 1 ) , Tm(x, ( z 0 ) z l 5 . . . , z π ) ) = (xz0, xzlf..., x z n ) .

For any principal H2-manifold (H2, M), denote by

(2.9) γ(H2, M)

the manifold M with the new action g*m = y(g)m (g eH2, meM), where γ: H2

H2 is the automorphism (1.11).

Now we consider the principal //m-manifolds

im(Tm, S 2«+ 1) (ίm: Z2mczHm of (1.6)),

jm(T2, S 2 " + 1 ) (jm: Z^Hm of (1.15)),

(2.10) i(a, S") (i = imol: Z2<= Z2m<= Hm),

(βm, S 2 » + 1 x S 2 ' + 1 ) ,

2 , S2n+1 xS 2 " + 1 ) (fcm: H 2 c //m of (1.13)).
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LEMMA 2.11. Consider the Z^manifold (Z4, S2n+1 xS2n+1) with y(z, z')

= (-z\z) for the generator yeZ4. Then μ[Z 4, S2n+1 x 5 2 n + 1 ] e

/ f 4 r ι + 2 (Z 4 ; Z 2) is non-zero, where μ: ?lHί(Z4)-^//H{(Z4; Z2) is ί/ie homomorphism

of (2.3).

PROOF. By using the Z4-equivariant CW-decomposition S 2 π + 1 x S 2 π + 1

= {e\x.eι

±), we see easily that μ[Z 4, S 2 π + 1 x S 2 π + 1 ] is non-zero in
+ 1 xS 2 » + 1 )/Z 4 ; Z 2 ) = t f 4 / 1 + 2 ( Z 4 ; Z 2). q.e.d.

For the homomorphism

μ: 9ln(HJ — #„(#„, Z 2) (m ^ 2)

of (2.3) and the bordism classes of the manifolds in (2.10), we have the following

lemma, where e's are the generators in Lemma 1.3.

LEMMA 2.12. (i) μ[am, S 4«+ 3] = e;*«+3,

(ii) μimlTm, S 4 » + 1 ] = eί«+i,

(iii) μjmίT2,S^^ = ei::K

(iv) μi[α, S 4"] = e%\

(v) μ[/Sm,S 2»+ 1xS 2«+»] = e ^ + 2 ,

2 for m = 2,
(vi)

m > 2.

PROOF. We have (i) from (1.2). Since μ is natural for maps, (ii), (iii) and

(iv) follow from Lemmas 1.7, 1.16 and [5, Prop. 1.7 (i)]. (vi) follows from (v),

Lemmas 1.12 and 1.14. Therefore, it is sufficient to prove (v).

(v) Consider the commutative diagram (cf. [3, § 20])

Then we see that

β = μlβm,S2»+iχS2»+^*O in H4n+2(Hm;Z2),

since ίJm*tf) = μ[Z 4, S 2 n + 1 x S 2 " + 1 ] ^ 0 by the above lemma. On the other

hand, we see that tim*(β) = O since tim(βm, S2n+ί x S2n+i) is the boundary of ( Z 2 w ,

D 2 M + 2 X S 2 M + 1 ) , where D 2 M + 2 is the disk bounded by S2n+i and Z2m acts on
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D2n+ixS2n+i ty x ( z ? z ') = (χZ, x~ιz'). Therefore, we see β = e^+2 by Lemma

1.7 (iii). q.e.d.

By (2.4) and Lemmas 1.3 and 2.12, we have immediately

THEOREM 2.13. yi*(Hm) (m^2) is a free 9l*-module with basis
[«», S*" + 3 ] , im[Tw, S*»+1], ; M [ T 2 , S 4 - + 1 ] , i[α, S4»], [Jβm, S*»+i χ S 2 » + 1 ] ,

LEMMA 2.14. (i) By the extension homomorphism klm: 9
^/^m) induced by kUm: Hι^Hm o/(1.13), the free ^-submodule

z, S2"+ 1 xS2«+1],Λ[T2, S4«+ 1]|W ^ 0}} c 9UH,)

is mapped isomorphically onto the free 9l*-submodule

^*{{kmyίβi, S2«+1 xS 2«+ 1], j m [Γ 2 , S4«+1]|n ^ 0}} c 9l,(HJ.

(ii) βy ί/ie transfer homomorphism tklm: ^(H^-^ίΛ^H^, the free 91*-
submodule

S 2 " + 1 xS 2 » + 1 ], im[Γm, S4«+1]|n ^ 0}} c

is mapped isomorphically onto the free ^l^-submodule

ft. S2»+1 xS 2»+ 1], fir,, S4»+1]|n ^ 0}} c 9l

PROOF. By Theorem 2.13, (i) is clear and (ii) follows immediately from
the facts that kkmok^km, kι>moj^jm and tkιjβm, S 2"+ 1 x S2"+ 1] = Γjβ,, S2»+1 x
S2»+1] and tklmim\Tm, S4»+1] = iJ[Γi, S*-+>]. q.e.d.

For the transfer homomorphism tjm: ^(H^^yi^Z^) induced by the inclu-
sion j m : Z4.cHm of (1.15), we have

LEMMA 2.15. tjjβm, S2»+1 xS 2»+ 1] = l[a, S4"+ 2] + Σ 2^o V O , S2«],
/or some fe^eSΊ*, where I:

PROOF. Since μtjjβm, S 2 " + 1 x S 2 n + 1 ] ^ 0 by Lemma 2.11, we can write

= Ha, S4«+2] + ΣpoVEfl, S2«] + Σβ

2="o^[T

by [5, Prop. 1.7, Th. 1.22]. Consider the transfer homomorphism tt: ^^(^4)
-»9t*(Z2). Then, ί,ίym[j8m, S 2 κ + 1 x S 2 n + 1 ] = 0 and ίz/[α, S2«] = 2[α, S2«] = 0
(q^O). Therefore, T,\«oyq{a9 5

2«+ 1] = 0 in 9t+(Z2). By [3, Th. 23.2], ^ = 0
(q ̂  0) in 91*. Hence, we have the desired result. q. e. d.
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Let NSι be the normalizer of S1 in S 3 . For the rest of this section, we study

the free ^-module structure of yi^NS1). Consider the fiber bundle

RP(2) > BNS1 > BS\

where RP(2) = S3/NSί is the real projective plane. Consider the homology

spectral sequence {E*tq} for this bundle. Then

E2

q,q = Hp(BS* A)®Hq(RP(2); A) (A = Z or Z 2 ) ,

and so this spectral sequence is trivial. Hence, we have immediately

PROPOSITION 2.16. The homology groups of the classifying space BNS1

of NS1 are given by

ί Z 2 for k^3 (4),
Hk(BNS1;Z2)=\

1 0 for k = 3 (4).

Now, we consider the principal S1-manifolds

^o , o , c^zo,...? zn) — ̂ cz0,..., czn) i c e ύ ,

and the principal NS1 -manifolds

(α, S 4 M + 3 ) , a(q, (qθ9...9 qn)) = (qqθ9..., qqn) (qeNS1),

(2.17) (β, S2n+1xS2n+1),

iiS^S2"*1) (i S1 c NS1).

Then we have easily by definition the following

LEMMA 2.18. For the transfer homomorphism

t:

induced by the inclusion /i^czJVS1, we have

ω tΓff 94/1+3Ί — Γ/y C4n+3Ί * Γβ C2n+1 v e2n+lΊ _ Γfl C2/1+1 γ C2«+1Ί

PROPOSITION 2.19. M^NS1) is a free ^-module with basis {[α, S 4 w + 3 ] ,

ilS\ S 4 M + 1 ] , lβ, S2n+ί x S 2 "

PROOF. We have the desired result from (2.4), Theorem 2.13, Proposition



124 Yutaka KATSUBE

2.16 and Lemma 2.18. q. e. d.

Also, by Lemma 2.18, Theorem 2.13 and Proposition 2.19, we have

LEMMA 2.20. The transfer homomorphism t in Lemma 2.18 is mono-

morphic.

§3. Preliminaries to the oriented bordism module Ω*(G)

The principal oriented G-bordism module and the oriented bordism ring

β«.(G) = Σ%*oΩH(G) and Ω* = Ω,(e) = Σ?=cA

are defined in the same way as $l*(G) and 9t* in § 2, provided that manifolds are

oriented and G-actions preserve the orientations (cf. [3, §§2, 19]). Ω*(G) is a

module over Ω*, and there are homomorphisms

(3.1) r: Ω,(G) > 91,(0, r: Ω* > 91*,

obtained by ignoring the orientations. Also, the augmentation homomorphism

(3.2) fi,: Ω,(G) > O,, ε*[G, M] = [M/G],

defines the direct sum decomposition of ί^-modules:

Ω#(G) = β ^ φ Ω , , fi,(G) = Kerε*.

It is known that

(3.3) (Rohlin's Theorem, cf. [3, Th. 16.2]) There are exact sequences

Ωn(G) ^ ΩB(G) - ^ 9lΛ(G), Ωn ^ > Ωn ^ > 9i».

Let H b e a subgroup of G. For the inclusion i: iίc=G, the extension homo-

morphism

(3.4) i:ΩH(H) > Ωn(G)

and the transfer homomorphism

(3.5) ti:Ωn(G)^

are defined in the same way as (2.5) and (2.6) (cf. [3, § 20]).

Wall's results on Ω* can be stated as follows: Let π denote the set of parti-

tions ω = ( α l v . . , ar) with unequal parts aj9 none of which is a power of 2, and set

\ω\ = r. Let ω Π ω\ ω©ω' and co,- e π for ω, ω' eπ be the intersection, the sym-



Principal Oriented Bordism Modules of Generalized Quaternion Groups 125

metric difference and the partition obtained from ω = (α,,..., ar) by omitting aj9

respectively. Then

THEOREM 3.6. (C. T. C. Wall [9]) The oriented bordism ring Ω* is the

quotient ring of the integral polynomial ring

Z{hΛk, g(ω)\k ^ 0, ω e π ]

by the ideal generated by the elements

2g(ω\ Σjg(aj)g(ωj)

g(ω)g(ω')-ΣjKωj n ω'

where Λ(ω) = / / w /ί4flr for ω = (au...9 ar).

We study in [5] the principal oriented Z2k-bordism module Ω*(Z2k) (A:>1).

Consider the following elements in Ω*(Z2k):

[7 ; ,S*" + 1 ] (in (2.8)),
(3.7)

2 + i ( l :Z 2 cZ 2 k ),

the second of which is the extension of E2n+ΐW(ω) e Ω*(Z2) defined by K. Shibata

[6, §§3, 4],

Λn,k(ω) = Σjg(aj)lE2»+ * W(ωj) (|ω| ̂  2),

(3.8) Bn,k(ω, ω') = ΣjKωj Π ωf)g(aJ)lE2"+*W(ωJθω')

-g(ω)lE2n+1W(ωf),

for ω, ω' e π, where g(ω)lE2n+1W(φ) = 0.

THEOREM 3.9. ([5, Th. 2.18]) The principal oriented Z2u-bordism module

Ω*(Z2k) (k>ί) is the direct sum

β * ( Z 2 k ) = ξ>k ® © k ,

where the submodule § k is the quotient module of the free Ω^-module

\n £ 0}}

by the submodule generated by the elements 2 f e[T f c,S2 w + 1] (w^O), and (5Λ is the

quotient module of the free Ω^module

Ω*{{lE2n+ίW(ω)\n ^ 0, ωeπ}}

by the submodule generated by the elements 2lE2n+ίW(ω) and Λnk(ω) ( |ω |^2),
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Bn>k(ω, ω% (n^O, ω, ω ' e π ) , o/(3.8).

By [5, Th. 2.22], Rohlin's Theorem (3.3) and the above theorem, we see the

following proposition for the homomorphism r: Ω%(Z2k)->yi%(Z2k) of (3.1).

PROPOSITION 3.10. (i) rlE2n+ίW(ω) = rg(ω)(Σt)±ha2jlla, S 2

where a2j is defined by ao = 1 and ΣIj=oa2jί^P(^m~2/)] = 0 in $l*for any m ^ 1.

(ii) The submodule ©fc o/ Ω*(Z2k) in the above theorem is mapped by r

monomorphically into 9t#(Z2i<).

§4. Some 42*-submodules in Ω*(Hm)

Now, we begin to study the principal oriented bordism module Ω*(Hm) of

the generalized quaternion group Hm (raΞ>2).

For our purpose, we use the following theorem which follows immediately

from [3, Th. 14.2] and Lemma 1.3.

THEOREM 4.1. The canonical homomorphism

Θ: Ωn(Hm) — > ΣP+q=nBp(Hm; Ωq) (m ^ 2)

of [3, § 14] is isomorphic.

We see easily that the canonical homomorphisms θ are natural by the proof

of [3, pp. 39-41], and so we have the commutative diagram

9 ί Π ( Z 2 m ) ^ - Un(Z2m) -±+ H'n
im I «m I in,, I

(4.2) St,(Hm) ^ - Un(HJ -4-> Hlm ® Hl,m © H% φ Hl,m

where r's are the orientation ignoring homomorphisms of (3.1) and ίm:

j m : Z4<=:Hm are the inclusions of (1.6) and (1.15), and

Hεn,l = Σ Λ l f f i ; ^-4,-εX (fe, / ̂  2, 8 = 0, 1, 2, 3).

LEMMA 4.3. In Ω*(Hm) (m^2), we have the following relations.

(i) The elements [αm, S 4 « + 3 ] , im\Tm, S 4 « + 1 ] and j m [T 2 , 5 4 » + 1 ] of (2.10)

of order 2 m + 1 , 2 and 2, respectively.

(ii) x[am, S 4 w + 3 ] = 0
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x*XTm, S 4«+ 1] = 0 if and only if xelΩ^

xJmίT2, S4n+1~] = 0 if and only if xe2Ω*,

for xeΩ*.

PROOF. Consider the natural homomorphisms

(4.4) μ' Ωn(G) > Hn(G; Z)

defined for finite groups G in the same way as μ of (2.3). Then, we see easily that

μim[_Tm9 S
4«+ 1] = im

by (1.2), the proof of [5, Lemma 2.13 (i)] and Lemmas 1.7 and 1.16.

(i) We see that the order of [αm, S 4 " + 3 ] is 2m+1 by the first equality of (*),

Lemma 1.3 and Theorem 4.1.

Since θ&Tk, S*»+^)eH'4\+Uk@H'ά+Uk by [5, Prop. 2.14 (ii)], we have

0 ( y X , , S 4 « + 1 ] ) , θ(jmlT2, S 4 « + 1 ]) 6 H\n+Um

by the commutativity of the diagram (4.2) and Lemmas 1.7 and 1.16. These and

the last two equalities of (*) and Lemma 1.3 show the rest of (i).

(ii) By (i), it is sufficient to prove the necessity. Since the bordism spectral

sequence of BHm is trivial (cf. [3, Th. 15.2]), there is a commutative diagram

^1{HJ —*—> J2n+lilczΩ2n+ι+1{Hm)

l{Hm; Z) -^ H2n+ι(Hm; Q f)

by [3, §7], where fc's are the homomorphisms defined by the multiplication and

μ is the one in (4.4), and the lower K is monomorphic. Therefore, we have the

desired results by using (*), Lemma 1.3 and the structure of Ωt. q. e. d.

LEMMA 4.5. By the composition roim in (4.2), the submodule in Ω^(Z2m)

generated by the elements lE4-n+3W(ω) (n^O, ω e π ) in (3.7) is mapped mono-

morphically into yϊ*(Hm), and

riJE*n+3W(ω) = riE*n+3W(ω) = rg(ω)(Σj"o2<t2jίla,SHn+ί)~2jΊ),

where / = /m°/: Z2czZ2mCiHm and the coefficients a2j are the ones in Proposition

3.10.
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PROOF. The equality follows from Proposition 3.10 (i). Then, we have

the desired results from Proposition 3.10, [5, Prop. 1.7 (i)], Theorem 2.13 and the

facts that im°r = roίm and ao = l. q. e. d.

Let

(4.6) A: Ωn(Hm) —* Ωn.4(Hm), A: Kn(Hm) — • Kn-4(Hm)

be the Smith homomorphisms defined as follows (cf. [3, §26 and (34.7)]): For

a principal (oriented) Hm-manifold (Hm9 M"), we can take a differentiable equi-

variant map φ: (Hm, Mn)-*(αm, S4N+3) which is transverse regular on S4N~ί,

since S4N+3/(xm is the (4AΓ + 3)-skeleton of BHm9 where (αw, S 4 N + 3 ) is the one in

(2.10) and 4iV + 3>n. Then,

It is easy to see that A is a homomorphism of Ω*- (91*-) modules, and

LEMMA 4.7. (i) J[αm, S 4 " + 3 ] = [αm, S 4 " " 1 ] ,

(ϋ) Aim\Tm, S4«+ 1] = iw[Tm, S 4 - 3 ] ,

(in) AJΆ S*n+1l=jmLT2, 5 4 - 3 ] .

PROOF, (i) is clear.

(ii) Consider the composition

/ : Hm x S4n+1 l x / l > H m x S 4 w + 3 l x / 2 > 7/w x S 4 M + 3 α - > S 4 M + 3 ,

where /i(z0,..., Z 2 B ) = ( 0 , z 0,..., z2l l), /2(z0,. ^ 2 π + 1 ) = (z0, zy1,..., z2n, zi^+x).

Then, it is easy to see that/(^, z)=f(qx~1, xz), and so/induces an //m-equivariant

differentiable map

/ : / m ( Γ w , S 4 « + 1 ) - ^ ( α w , S 4 « + 3 ) ,

which is transverse regular on S4"'1. Therefore, we have (ii).

(iii) In the same way, we have the desired result by considering the composi-

tion

/ : Hm x S*"+1 — ^ Hm x S4«+ 3 l x / 3 > Hm x 5 4 " + 3 *m > S*»+3

9

Where /3(XO, y0, Xu yί9...,X2n> yin * ̂ 2n+l, y2n+l)=(*O> ^ 1 ? Jθ , J l , ^ 2 « , ^2«+l5

Now, we have the following

THEOREM 4.8. (i) The Ω^-submodule 2m generated by {[αm,
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in (2.10) is the quotient module of the free Ω^-module

β ίίlAπ, S 4 n + 3 ] | t t ^ 0}}

by the submodule generated by the elements 2m + 1[αm, S 4 " + 3 ] (n^O).

(ii) The Ω^-submodules 3 m and Zm generated by {ίm[Tw, S 4 / 1 + 1 ] |n^0}

and {jm[T2 > iS 4 w + 1 ] |n^0} in (2.10), respectively, are the quotient modules of the

free Ω^-modules

β J { U T w , S 4 » + 1 ]I^O}} and fi*{{;m[T2, S 4 » + 1 ] |n £ 0}}

by the submodules generated by the twices of the generators.

(iii) Consider the extension

iE*"+3W(ω)=iJE*"+3W(ω), for n ^ 09 ω e π ,

of the class of (3.7) by ίm:Z2mczHm. Then the Ω^-submodule 2Bm generated by

these elements is the quotient module of the free Ω^-module

Ω*{{iE*n+*W(ω)\n ^ 0, ω e π}}

by the submodule generated by the elements 2iE4n+3W(ω), imA2n+1,m(co)

and imB2n+1,m(ω> ω 'X ( w ^ 0 , ω» ω 'eπ) , which are the extensions of (3.8).

PROOF, (i) Assume that

L*m, S 4<+ 3] = 0 (

Then, the image of the left hand side of this equality by A" = Ao--oA (rc-times)

of (4.6) is equal to xn[am, -S3] by Lemma 4.7 (i). And so, we have xne2m+1Ω*

by Lemma 4.3 (ii). Therefore, we have (i).

(ii) We have the desired results in the same way as (i) by Lemmas 4.7 and

4.3 (ii).

(iii) By Lemma 4.5 and Theorem 3.9, this result follows immediately.

q. e.d.

Denote by %A the order of a group A.

PROPOSITION 4.9. (i) The submodule £ w + 3 m + 3 m + $Bm in Ω*(Hm) is the

direct sum

β* θ 3 M θ 3™ θ 3BM.

(ii) *(flM n Ωn(Hj) = *Hlm9 *(3W n Ωn(Hm)) = *(3m n ύn(Hj) = ( ^ j 1 / 2

*(WmnΩn(Hm)) = *Hlm.

(iii) By the isomorphism Θ in (4.2), 2k2m Π Ωn(Hm) is mapped isomorphically
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onto 2*Hlm(k*l).

(iv) For the transfer homomorphίsm t: Ωn(Hm+ί)-*Ωn(Hm) induced by

/c w > w + 1 : Hm<=:Hm+ί o/(1.13), we have the exact sequence

0 —^ 2- + 1 £ m + 1 — , fim+1 _ U £ m — > 0.

PROOF, (i) Assume that

ΣxHl*m, S*»+^+ΣynimlTm9 5 4 « + 1 ] + ΓzJ m [T 2 , S ^ + i ] + w = 0 ,

where w = I1w/ιϊΈ
4M+3Pf(ω)GΪBm. We consider the image of this equality by

r: Ωn(Hm)-+9ln(Hm). Then, by Theorem 2.13 and the equality of Lemma 4.5,

we see that rxn = ryn = rzn = 0 in 91* for any n and rw = 0. The last equality and

Lemma 4.5 show w = 0. Also, we have yn9 zn e 2Ω* by (3.3) and so ynim[_Tm,

S4n+1~] = ZnJmlT2, S
4 n + 1 ] = 0 by Lemma 4.3.

(ii) There is a group homomorphism

φ: Hlm®Hlm —> ( f i m θ 3 m θ 3 J Π Ωn(Hm) ,

defined by <p(^ z + 3®x) = x[αm, S 4 I + 3 ] , φ(βf, I;1®x) = xim[ΓM, S 4 / + 1 ] and φ

®x) = xjm[T2, 5 4 / + 1 ] ( x e Ω J . By Theorem 4.8 (i) and (ii), it is clear that φ is

isomorphic. Therefore, we have the first two equalities.

Now, 2Bm Π Ωn(Hm)π r(2Bw n Ωn(Hm)) by Lemma 4.5. Furthermore, by using

Theorem 2.13 and the equality π Έ 4 ' " 1 W(ω) = rg(ω)(Σjίo<*2jil<*, S 4 / " 2 >]) (αo = 1)

of Lemma 4.5, we see easily that r(2Bm Π Ωn(Hm)) corresponds bijectively to

Σ i K T o r Q I I . 4 / ) « Σ i ( 5 4 i ( H M , Q l l - J ) = Hj i I I I by sending K Σ J Σ Λ . O ^ 4 1 " 1 ^ ) )

e r(2Bm Π fiΛ(ifm)) to ΣiΣωK*!.ω0(ω)) e ΣiKTor ΩΠ_4Z).

(iii) By Theorems 4.8 (i), 4.1 and Lemma 1.3, we have immediately the

desired result.

(iv) Since ί [α m + 1 , S 4 M + 3] = [αm, S 4 ϊ I + 3 ] , we have (iv) by Theorem 4.8 (i).

q. e.d.

§ 5. Some Z2-manifolds

Let CP(n) be the complex projective n-space, and P(2m + 1, n) be the Dold

manifold obtained from 5 2 m + 1 x CP(n) by the identification

(zo,...,zw, ηθ9...,ηn) = (-z 0 , . . . , -zm,η0,...9ηn) (zi9 ηteC).

Then, we have the Z2-manifold (τ, P(2m + 1, n)) where τ is the involution given

by τ[zθ9...9zm-ί9zm9ηθ9...9ηn] = [zθ9...9zm-l9zm9ηo,...,ηn]. Furthermore, we

set

Q(2m + 1 , n) = (Sι x P(2m + 1 , n))/(α x τ ) .
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By C. T. C. Wall [9], the subalgebra Sit* of 91*, consisting of all classes of

manifolds whose first Stiefel-Whitney classes wx are integral, is given as follows:

(5.1) ®ϊ* = Z2lX2l9 X2l.u (X2j)
2\l * 2*],

where X 2 , ( 2 s + 1 ) _ 1 = [P(2 '- l , 2's)], X2r(2s+1) = IQ(2'-19 2's)] and X2j =

[RP(2Jy], the real projective 2 >-space. Also, there is a homomorphism

(5.2) d.m* >Ω*

obtained by sending the class of M to the class of the submanifold N of M dual to

wx(M)9 and the homomorphism

(5.3) ef = rod-.m*—>m*

is a derivation such that d'X2l = X2l_u d'X2l.t=0 and d'(X2J)
2=0.

Put X(ω) = X2ai'"X2ar for ω = (Λl5..., ar)eπ. Then

(5.4) #(ω) = dX(ω) for any ωeπ,

where #(ω) is the element in Theorem 3.6.

By the consideration of K. Kawakubo [6], we can define the orientable mani-

fold N(ω), which represents g(ω) and admits an orientation reversing involution,

as follows: Define an orientation reversing involution T on P(2m + 1, 2ή) by

T[z0, zί,..., zm, η0,..., η2n] = [ z 0 , z l 9 . . . , z m , ηo,...9 η2n].

Set N 2 r ( 2 s + 1 ) = ρ ( 2 r + 1 - 1 , 2 r + 1s) which admits an involution T induced by 1 x T.

Furthermore, for any ω = (al9..., ar)eπ, a1<a2<- <ar, we can consider the

involution T= Tx 1 x ••• x 1 on JVfll x ••• x JVflr. Also, the map p: Nai x ••• x JVαr

->SX is defined by p([tu wj,..., [ίr, wr]) = ί? ίr

2, and it is easy to see that p is

transverse regular on 1 eS1 and realizes w^Λ/^ x ••• xiVJ. Therefore, the sub-

manifold iV(ω) = p " 1 ( l ) of Naιx "XNar represents g(ω) of Theorem 3.6 by

(5.4). (This construction is due to Anderson [1] and Stong [8].) Now, we

obtain a Z2-manifold

(5.5) (ZN(ω)X T=T\N(ω),

where the involution T reverses the orientation on N(ω). It is easy to see that

(5.6) (T, N(ώj) = (T, P(2' + 1 - 1 , 2'+1s))

if |ω| = l a n d ω = (2'(2s + l)).

LEMMA 5.7. There is an oriented differentiable manifold W with an

orientation reversing involution T' such that
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PROOF. The desired result follows in the same way as the proof that 2[iV(ω)]

= 2flf(ω) = 0 in Ω* (cf. [9, Lemma 1]). q.e.d.

§ 6. Some new Hm-manifolds

Let G be a group, and (G, M o) be a given closed (not necessarily principal)

G-manifold. Then for any principal G-manifold (G, M), the product M x M o

is a principal G-manifold by the action g(m9 n) = (gm, gή) for g eG, meM, n e

M o . This G-manifold (G, M x M o) is denoted by

(6.1) (G,M)x(G,M0).

Then the following lemma is clear.

LEMMA 6.2. For a given closed G-manifold (G, M o),

9WG) > 9WG), [G, M] > [(G, M) x (G, M o ) ] ,

is a homomorphism of ^-modules.

Now, for the Z2-manifold (T, N(ω)) of (5.5), we define the #m-manifold

JV(ω) by the action

x - u = M, y u = Tu for the generators x, y e Hm,

which is again denoted by (T, N(ω)). By taking the products (6.1) of

this J7w-manifold and (βm9 S
2n+ί x S2n+1) in (2.10), we define the principal

oriented //nj-manifolds

βm(n, ω) = (βm9 S 2 « + 1 x S 2 w + 1 x N(ω))
(6.3)

= (/?„, S 2 » + 1 x S 2 « + 1 ) x ( T , ΛΓ(ω)),

due to K. Shibata. By using y of (2.9), we consider also

(6.4) kmyβ2(n, ω) (km: H2 c= Hm of (1.13)).

LEMMA 6.5. The bordism classes [βm(n, ω)] and kmy\β2(n, ω)] of the

above manifolds are contained in Ω*(Hm).

PROOF. Since Ήm is the normal subgroup of Hm+U there is a principal

Z2-bundle

Z 2 >S2n+ί xS2n+ιxN(ω)lβm > S2n+ί xS2n+1 xN(ω)lβm+ι.

So, lS2n+1xS2n+ιxN(ω)/βm] = 2lS2n+ιxS2n+1xN(ω)/βm+1'] in Ω* by [3,
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(19.4)]. Furthermore, since S2n+X xS2n+1 x N(ω)lβm+1 is odd-dimensional, its

class belongs to TorΩ* by Theorem 3.6. Therefore, we have ε#[βm(n9 ω)] = 0

by2Torί2* = 0. Also,

**kmγ[β2(n, ω)] = e,[j52(n, ω)] = 0

by(i). q.e.d.

In the commutative diagram

(6.6)

of the transfer homomorphisms and the orientation ignoring homomorphisms,

we have

LEMMA 6.7. (i) rί i mίm[TM, S 4 » + 1 ] = 0.

(ii) rtJm[βm9 S2n+1 x S2»+ 1 x N(ω)] = riiay[j52, 5 2 w + 1 x S2n+i x JV<ω)]

•(Hi) r[βm9 S2n+ίxS2n+ίxN(ω)'] = rg(ω)[βm9 S2«+

or some Λ e 9 l * ,

PROOF, (i) It is clear that rtjmim\_Tm, S4n+ 1 ] = /[α, S 4 / ι + 1 ] , which is zero by

[5, Prop. 1.7 (ii)].

(ii) The first equality is clear by the definitions (6.3) and (6.4). By applying

the homomorphism of Lemma 6.2 for (G, M0) = (T, N(ω)) to the equality of

Lemma 2.15, we have

rtJm[βm9 S2»+ί x S 2 " + 1 xiV(ω)] = ΣUtxbqLKa9 S 2^)x(Γ, N(ω))], (b2n+ί=l).

On the other hand, there is a Z4-equivariant dififeomorphism

φ: l(a, 52«) x (T, N(ω)) > /(α, S2^) x JV(ω)

defined by φ([l, s], M) = ( [ 1 , s], II), φ([y, s], w) = ([y, s], TM). Thus the last

sum is equal to

rlNiωmΣ^VbJla, S2*]) = rg(ω)tJm[βm9 S2»+ί xS 2«+ 1]

by Lemma 2.15 and the definition of iV(ω).

(iii) First, we consider the principal NSι-manifolds
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(6.8) (β, S2n+1xS2n+1xN(ω)) = (β, S2n+1 x 5 2 n + 1 ) x ( T , N(ω)),

where (T, N(ω)) is the NS1 -manifold N(ω) with the action c u = u, j u — Tu.

Then it is clear that r[/?m, 5 2 w + 1 x S 2 w + 1 x N(ω)] = ί[j5, S 2 w + 1 x S 2 M + 1 xiV(ω)],

where ί: ^ ( i V S 1 ) - ^ * ^ ™ ) is t n e transfer homomorphism. Hence,

r[βm9 S2»+1 x S 2 » + 1 xN(ω)2 =

by Proposition 2.19 and Lemma 2.18. The image of this equality by tjm is equal

to rg(ω)tJm\βm9 S 2 - + 1 x S 2 » + 1 ] = rx Ii i m[jiM, S2l+ί xS^^ + Σz^Ja^ 5 4 ί + 3 ] by

( i ) a n d (ii). Since μί J m [α l l l ,S* I + 3 ] = μ ί i 2 [ α 2 , S 4 I + 3 ] = ί i 2 # μ [ α 2 , S * I + 3 ] ^ O in

H4l+3(Z4; Z 2) by Lemmas 2.12 (i) and 1.10 (iv) and μί/Jβm, 5 2 / + 1 x S 2 ί + 1 ] ^ 0

by Lemma 2.11, we have xn = rg(ω), xt = 0 (l±?n) and zz = 0 by (2.4). q.e.d.

LEMMA 6.9. (i) \βm S2n+ιxS2n+ix N(ω)] e Ω * ( # w ) is o/order 2.

(ii) x[j5m, S 2 w + 1 x 5 2 M + 1 x A Γ ( ω ) ] = 0 (/" and only if xelΩ^ for xeΩ*.

PROOF. ( i ) follows from Lemmas 5.7 and 6.7 (iii), Theorem 2.13 and the

fact that rg(ω)*0 in SR*.

(ii) By Lemma 6.7 (ii), rtjmx[βm, S2n+ί xS2n+1x ΛΓ(ω)] = rxrg(ω)tjn[βm,

S 2 w + 1 x S 2 w + 1 ] e 9 l * ( Z 4 ) . Therefore, if x[/U>, ω)] = 0, we have rxrg(ω) = 0

by Lemma 2.15 and [5, Prop. 1.7 (i)], which implies rx = 0 since 9i* is a poly-

nomial ring over Z 2 and rg(ώ)^0. Therefore, we have xe2Ω* by Rohlin's

Theorem (3.3). q.e.d.

§7. Some new 42*-submodiiles of Ω*{Hm)

We consider the Ω^-submodules

(7.1) G m and Ώ'm of Ω*(HJ (m ^ 2)

generated by {[βm, S2n+i xS2n+i xiV(ω)], im{Tm, S 4 n + 1 ] | n ^ 0 , ωeπ) and

{femy[)52, 5 2 n + 1 x S2n+1 x iV(ω)], j w [ T 2 , 5 4 / l + 1 ] | n ^ 0, ω e π}, respectively, where

the manifolds are those in (2.10), (6.3) and (6.4).

LEMMA 7.2. For the induced isomorphism

y:Ωn(H2)—+Ωn(H2)

ofy o/(l . l l), we have yQ2 = Q 2 and y Q ' 2 = Q 2 .

LEMMA 7.3. (i) 2£i m =2Q^ = 0.

(ii) The orientation ignoring homomorphism r: Ω*(Hm)->9t*(Hm) maps

and Q'm into the free $l%-submodules
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S 2 " + 1 x S 2 " + 1 ] , U T m , S*»+1]|n g; 0}}

and

κ*{{kmylβ2, s 2 n + 1
 X S 2 « + 1 ] , ; J T 2 , s* +»]|n > 0}},

respectively.

(iii) Furthermore, r is monomorphic on Qm and Q'm.

(iv) By the extension homomorphism km: Ω*(H2)^>Ω*(Hm)9 Q2 is mapped

isomorphically onto Q'm.

PROOF, (i) follows from Lemmas 4.3 (i) and 6.9 and the fact that Q'm
= /cwyG2.

(ii) follows from Lemma 6.7 (iii) and the naturality.

(iii) Consider the commutative diagram

i 1

where ί's are the transfer homomorphisms of kmm+ί: Hmc:Hm+ί. Assume

rq = 0 for q e Qm.

Since ί/ m + 1 [T w + 1 , S 4 « + 1 ] = Ϊ W [ Γ W , S 4 « + 1 ] and t[βm+l9 S2"^ x S 2»+ 1 xiV(ω)] =

[βm9 S2n+ίxS2n+1x N(ω)], there is an element q'e&m+ί such that tq' = q. Then,

we see that

rq' = 0

by (ii) and Lemma 2.14. Hence, q'e22m + ί by (3.3), Lemma 1.3, (4.2) and

Proposition 4.9 (iii). Therefore q'e2m+1Qm+1 from (i) and Theorem 4.8 (i),

and so q = tq' = O by Proposition 4.9 (iv). Thus we have the result for Qm.

We have the result for Qf

2 from the result for Q 2 by using the isomorphism

γ, Lemma 7.2 and r°y = γor. Finally, consider the commutative diagram

Then it is clear that &'m = kmQ'2 by definition. Since r|Q'2 is monomorphic by the

above proof and so is km\r(£tr

2) by (ii) and Lemma 2.14 (i), we see that rokm = kmor

is monomorphic on Q'2. Therefore, so is r on Ώ.'m.

(iv) The result is shown in the above. q. e. d.
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LEMMA 7.4. The Ω^-submodule £ m + Q m + β;n + 2Bm of Ω*(Hm) is the direct

sum

where 2m and 2BW are the ones in Theorem 4.8.

PROOF. Assume that

l + q + q' + w = 0 (Jeflm, qeQm, q' eQ^, we2Bm).

Then by Lemmas 4.5, 7.3 (ii) and Theorem 2.13, we have

rl = rq = rqf = rw = 0 in 9l*(//J.

Therefore, we get

q = 0 = qr by Lemma 7.3 (iii),

w = 0 by Lemma 4.5. q. e. d.

Now, we have the following

THEOREM 7.5. The principal oriented Hm-bordism module Ω*(Hm) ( m ^

is the direct sum

of the Ωt-submodules 2m, 2Bm in Theorem 4.8 (i), (iii) and Ώm, Ώ'm in (7.1).

PROOF. By Lemma 7.4, it is sufficient to prove that

»((β m ©Q m φQ;eaB m ) Π Ωn(Hm)) = *Ωn(Hm).

Consider the homomorphisms

(7.6) βjίHJ -JL+ Vln(Hm) ^ i ® ^ P, ®P2,

where P, = 91,{{[βm, S2l+ι xS 2 ' + 1 ] | /^0}} n 9ίn(/ίJ, P 2 = »ί*{{^,y[i52, 5 2 ί + 1 x

S 2 '+ 1]|/^0}} n 9Ίn(Hm) and pt are the projections. Then,

(7.7) ParDU/, ω)] = 0 = Plrkmy[β2(l, ω)] ,

lβ2(l, ω)] = rg(ω)kmγlβ2, S 2 ί + 1 x S 2 » + 1 ] ,

by Lemma 6.7 (iii). Also, ( J p 1 θp 2 )K(fi m ®3 m ®3 m ©ΪB m ) n Ωn(/ίm))=0 by Theo-

rem 2.13 and Lemma 4.5, where 3 m and 3 m

 a r e the ones in Theorem 4.8, and
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so (pιΦp2)rWim®Ώm®X^φ mj (1 Ωn(HJ) = P l r ( Q M n Ωn(HJ)φp2r(Q,'n n

Ωn(HmJ). Hence, using (7.7), we have

(7.8) *Pir(&m Π Ωn(HJ) = *p2r(&'m ίi Ωn{Hm)) =

in a way similar to the proof of Proposition 4.9 (ii). Therefore,

Π β . ( i ί J ) f ( ( p 1 r Q Q

by Proposition 4.9 (ii). Hence, we have the desired result by Theorem 4.1.

q. e. d.

LEMMA 7.9. ( i ) *(Qm n Ωn(HJ) = %Q'm n Ωn(HJ) = (*(/ί,!>m φ H J . J ) 1 / 2 .

(ii) For the homomorphism p^r: Ωn(Hm)->P1 in (7.6), if Pir(q) = 0 for

qe&m[) Ωn(Hm\ then qe3mt) ΩH(HJ.

PROOF, (i) In the same way as the proof of Theorem 7.5, we see *(Qm Π

Ωn(HJ)^ {*Hn\myi> • (*Hlmyi\ \Q'm n Ωn(HJ) ^ (*Hn\my» • (*H*myi* by

using Proposition 4.9 (ii) and (7.8). Hence, we have the desired results from

Theorems 4.1, 7.5 and Proposition 4.9 (ii).

(ii) We see that Ker( P l or |Q m n Un(HJ) = 3m n Ωn(HJ from (i), (7.8) and

Proposition 4.9 (ii). q. e. d.

§ 8. The main theorem

Now, we shall determine completely the Ω^-submodules Q m and Q'm of (7.1).

For the principal NS * -manifold (β, S1xS1x N(ω)) given by (6.8), the bor-

dism class in 91* of the orbit manifold

S1 x S1 x N(ω)/β = S 1 x N(ω)/(a x T)

is contained in 90ί* of (5.1) since the orientation bundle S1 x N(ω)-*S{ xN(ω)/

(a x T) is classified by the map S 1 xN(ω)/(α x T)-^Slja, [ί, z]->[ί] Also for

the derivation df of (5.3), we see that

d'CS1 x N(ω)l(a x T)] = rg(ω).

Since Kerd' = Imr by [9] and d'X(ω) = rg(ω) by (5.3) and (5.4), we have

[S 1 x N(ω)/(a x Γ)] - X(ω) e Im r.

Hence, we can take Y(ω) e Ω* (mod 2Ω*) such that

(8.1) rY(ω) = [S 1 x N(ω)/(a x T)]-X(ω) in SΆ*.
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LEMMA 8.2. For the elements of (6.3), we have

f iβ^S^-'xS^-'xNiω)-] ( n > 0 ) ,
Δ\βm> S2n+1xS2n+1xN(ω)~] =

10 (n = O),

where A: Ω*(Hm)-^Ω*__A(Hm) and A: ^(HJ^^.^HJ are the Smith homo-

morphisms of (4.6).

PROOF. There is an i/w-equivariant differentiable map

φ: (βm, S2»+ί x S 2 » + 1 x JV(ω)) > (αm, S 4«+ 3)

defined by φ(z0,..., zH9z'θ9...9z'n9u) = (zΌly/T9 z'o/^/2",..., zMΛ/2, Z ' J \ A ) w h ί c h i s

transverse regular on S4""1. Hence, we have the desired result. q.e.d.

LEMMA 8.3. r[βm9 S
ι x S1 x N(ω)] = r ^ ω ) ^ , S1 x S1]

PROOF. By Lemma 6.7 (iii), we can write

r[βm9 S
1 xS 1 xiV(ω)] =

Since Δr\βm9 SιxSι xN(ω)'] = 0 = A[βm, Sι xS 1 ] by Lemma 8.2, we have

^ = 0 (1*0) by Lemma 4.7 (ii) and Theorem 2.13, and so

r[βm, S1 x S 1 xJV(ω)] = r<Kω)[/?w, S
1 x S ^ + ̂ U L S 1 ] .

Consider the transfer homomorphism t: 9l*(NSί)-+yi*(Hm) induced by the

inclusion Hm c NSι. Then,

r\βm, S1 x S1 x AΓ(ω)] = t[β9 S1 x S1 x N(ω)]

by the definition of β of (6.8). Therefore, we have

[/?, S1 xS1 xiV(ω)] = rβ(ω)[/ϊ, S1 x S ^ + w I S 1 , S 1 ] ,

by Lemmas 2.18 and 2.20. By applying the augmentation homomorphism

ε*: Sft^iVS1)-^* t 0 t n i s equality, we see

[S1 x S1 x N(ω)//Γ| = rg(ω) [S1] + j ; 0 = j ; 0 .

Hence, we have j o = Z(ω) + rY(ω) by (8.1). q.e.d.

Put

(8.4) N(n9 ω) = β#[j5, S 2 M + 1 X S 2"+ 1 X iV(ω)] e 91*,

where ε* is the augmentation homomorphism of (3.2).
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LEMMA 8.5. For each ω=(α 1 , . . . , α | ω | ) ε π , | ω | ^ 2 , there are elements

* s u c h t h a t

KUm{ω) = Σj

(8.6) rK2n+ 1)m(ω) = ΣMωj)N(n, ω,)

+ ΣU[CP(2n-2/)]rK2I+,» (n £ 1),

and that the following elements Cnm(ω) vanish in Ω^H^:

(8.7) Cnm(ω) =

PROOF. We notice that r: Ωn(Hm)-+9ln(Hm) is monomorphic on C m by

Lemma 7.3 (iii). Define KUm(ω) by (8.6). Then we see Co,w(ω) = 0 as follows:

rC0Jω) =

= r(Σjg(aj)g(ωj))\βm

+ rg(ω))im[Tmy S 1 ] by Lemma 8.3

= 0 by Theorem 3.6, (5.3) and (5.4).

Now we assume that there exist K2l+im{ώ) for l<n in this lemma, and put

A = Σ

Then AA = 0 by Lemmas 4.7, 8.2 and the assumption CΠ_ lFΠ(ω) = 0, where A

is the Smith homomorphism of (4.6). Also, by the first equality of (7.7), Theorems

3.6 and 2.13, we see that pίrΛ = 0 and so Ae3m by Lemma 7.9 (ii). Therefore,

Ae3mn Ker A and we see that

A + XoimlTM, S 1 ] = 0 for some xoeΩ*

by Lemma 4.7 (ii) and Theorem 4.8 (ii). Take K2n+ιfTn(ώ) = x0. Then this

equality shows CΠ>m(ω) = 0.

Consider the transfer homomorphism t: ^ ( iVS 1 )-* ?!*(//,„). The element

A' = ΣMaj)[β9 S2»+

of ^(NS1) satisfies tA' = A by Lemma 2.18 and the definition of (6.8). There-

fore, we see that

JlS1, S 1 ] = 0 in

because Cn m(ω) = 0 and t is monomorphic (Lemma 2.20). Thus rK2n+ίttn(ω)
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= rxo — ε^.Af which is the equality (8.6), and the proof is complete by the induction

on n. q.e.d.

LEMMA 8.8. For each ω, ω ' e π , there are the elements P2n+ι,m(ω> ω')e Ώ*

such that

PUm{ω, ω') = g(ω)Y(ω')-Σjh(ωj Γ) ω')g(aj)Y(ωjθω'),

(8.9) rP2n+Um(ω, ω') = rg(ω)N(n, ω')- Σ/A(ω y Π ω')rg{aj)N{n, ωjθω')

+ ΣiZhίCP(2n-2l)-]rP2l+Um{ω,ω') (n^ί),

and that the following elements Dnm{ω, ω') vanish in Ω%(Hm):

Dn,m(ω, ω') = g{ώ)[βm(n, ω ' ) ] - Σjh(o>j n
(8.10)

+ Σ?= 0 J P 2 ; + , > , ω')im\Tm, 5*»

PROOF. Define P l m ( ω , ω') by (8.9). Then, we see DOm(ω, ω') = 0 as fol-

lows:

rD0Jω, ω') = Hg(ώ)[βjp, ω')]-Σ>Λ(ω7 Π ωWa

+(g(ω)Y(ω')-ΣjHωj fl ω')ί(fl;)y(ω

= Hg(ώ)g(a>')-Σjh(ωj Π ω'Mflj)flf(ωjθω'))ϋfm, S ι x S 1 ]

+ (πKω)X(ω')-Σ//t(ω; fl ω')^(«>)^(ω y θω'))i m [T m , S 1 ]

= 0

by Lemma 8.3, Theorem 3.6, (5.3), (5.4) and the fact that rh(ω) = X(ω)2 ([9,

Lemma 14]).

The rest of the lemma can be proved in the same way as the proof of the above

lemma. q. e. d.

By the definitions of (8.7) and (8.10), we have easily the following equality.

LEMMA 8.11.

Dntm(ω,ω') + Dnim(ω',ω) + h(ω n ω')Cn,m(ω©ω')

= 9(fi>)[βm{n, ω')]+g(ω')ίβm(n, ω)] + Σ?=o(Λ(ω Π ω ' ) K 2 ί + 1 . m ( ω θ « / )

+ P 2 ί + 1 > m ( ω , ω ' ) + P 2 ί + 1 , m ( ω ' , ω))im[Tm, S * " - * ' " ] .

Now, we are ready to prove our main theorem.

THEOREM 8.12. The principal oriented Hm-bordism module Ω*(Hm) (ra^2)
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is the direct sum

where the Ω%-submodules &m and 2Bm are given by Theorem 4.8 (i) and (iii), and

Q m and Q'm are given as follows:

The Ω^-submodule Qm of (ΊΛ) is the quotient module of the free Ω^-module

Mn, ω)l im\Tmi S*»+i]\n ^ 0, ωeπ}}

by the Ω*-submodule generated by the elements

2[βm(n, ω)], 2imίTm, S 4 « + 1 ], CHtJω) ( M ^ 2), DΛfin(ω, ω'),

^O, α>, ωf Gπ), where C and D are the ones in (8.7) and (8.10).

The Ω^submodule Q'm of (ΊΛ) is isomorphic to Q2 by t n e composition

of the isomorphism y induced by the automorphism y:H2-+H2 0/(1.11) and

the extension homomorphism km induced by the inclusion km: H2^Hm 0/(1.13).

PROOF. The first result is Theorem 7.5.

We shall determine the submodule Q w . Consider the element

X = ΣnXn+Y, *n = Σ Λ A f e ω)],

of Ώm such that X = 0 in Ω*(Hm). Applying the composition Pι°r: Ω*(Hm)—!->

yi^Hm)-^UPί of (7.6), we have

by (7.7). Since {\_βm S2n+ι x S2n+ί~]\n^0} is a free <R*-base of ^(Hm) by

Theorem 2.13, we have KΣcΛ, ω 0( ω )) = O iΠ 9Ϊ* f° r e^ch n^O. On the other

hand, Σ ωxn,ω9(ω) eTor Ω* by Theorem 3.6. Therefore we see that ΣcΛ,ω#( ω )

= 0 in Ω* by (3.3) and the fact 2 Tor Ω* = 0.

Thus, according to Theorem 3.6, we can write

/ ) - Σ ^ ( ω J Π <o')g(a^(ωjQω')

for some v4Λω, 5 n ω , CΛ>ω>ω» e Ω*, and we consider the linear combination

X'n = ΣJ2Antω[βJn, α))] + Σ A ω

c » + Σ ω ) / n , ω ) A > ' ω')

n = {2lβm(n, ω)], Qm(co), DΠjm(ω, ω')}. Then we see that
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'Λ = Σωrxn,ωrg(ωKβm, S 2 » + 1 x S 2 « + 1 ] = PίrXn

by (7.7). Furthermore, the only two elements g(ω) [βm(n, ω')] and g(ω') [βm{n,

ω)] are mapped by p^r to rg(ω)rg(ω')[βm9 S2n+1 xS2n+ί~] by the proof of

Theorem 7.5, and g((o)[βm(n, (o')~\ — g(ω')\βm(n, ω)] is the sum of a linear com-

bination of Rn and an element of 3 m by Lemma 8.11. Therefore, we see that

where X'π' is a linear combination of Rn and Yπ 6 3 m . These show that

Since the elements of Rn are zero in Ω*(Hm) by Lemmas 6.9, 8.5, and 8.8, the

assumption X = 0 in Ω*(Hm) implies that Σ « ^ i + ^ = 0 in 3 m , and hence that

Σn

γn+ Y™ a linear combination of {2/w[Tw, S 4 Z + 1]} by Theorem 4.8 (ii). There-

fore, X is a linear combination of \JnRn and {2fm[Tm, 5 4 Z + 1 ]}, as desired.

The result for the submodule &'m is Lemmas 7.2 and 7.3 (iv). q.e. d.
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