Нігозніма Матн. J. 6 (1976), 73–93

On Lorentz Spaces $l_{P,q}(E)$

Mikio Kato

(Received August 22, 1975)

Introduction

The Lorentz space $l_{p,q}{E}$ is the space of zero sequences $\{x_i\}$ with values in a Banach space E such that

$$\|\{x_i\}\|_{p,q} = \begin{cases} \left(\sum_{i=1}^{\infty} i^{q/p-1} \|x_i\|^{*q}\right)^{1/q} & \text{for } 1 \le p \le \infty, \quad 1 \le q < \infty, \\ \sup_i i^{1/p} \|x_i\|^* & \text{for } 1 \le p < \infty, \quad q = \infty \end{cases}$$

is finite, where $\{||x_i||^*\}$ is the non-increasing rearrangement of $\{||x_i||\}$. In particular, $l_{p,p}\{E\}$ coincides with $l_p\{E\}$ (cf. [10]). Recently, the space $l_{p,q}\{E\}$ has been used to introduce and investigate several classes of operators, e.g., (p, q)nuclear, (p, q; r)-absolutely summing and (r; p, q)-strongly summing operators ([6], [9], [10]). However, concerning $l_{p,q}\{E\}$ itself very little is known, although the Lorentz space $L_{p,q}(E)$ has been considerably investigated ([1], [5], [12]). Thus it seems to be significant to clarify fundamental and intrinsic properties of $l_{p,q}\{E\}$. The purpose of this paper is to establish a sequence of important properties of the space $l_{p,q}\{E\}$ and especially to characterize the dual space of $l_{p,q}\{E\}$.

We shall show that $l_{p,q}\{E\}'$ and $l_{p',q'}\{E'\}$ are isometrically isomorphic (resp. isomorphic) for $p \le q$ (resp. p > q) where 1/p + 1/p' = 1/q + 1/q' = 1. It should be noted that for p > q $l_{p',q'}\{E'\}$ is not a normed space but a quasi-normed space. In this case, we shall introduce the space $l_{p',q'}^0\{E'\}$ as the Banach space of all E'valued sequences $\{x_i'\}$ such that for each $\{x_i\} \in l_{p,q}\{E\}$ the series $\sum_{i=1}^{\infty} < x_i, x_i' >$ converges, where the norm is given by $\|\{x_i'\}\|_{p',q'}^0 = \sup\{|\sum_{i=1}^{\infty} < x_i, x_i' > |; \|\{x_i\}\|_{p,q} \le 1\}$, and show that $l_{p,q}\{E\}'$ is isometrically isomorphic to $l_{p',q'}^0\{E'\}$ and $l_{p',q'}\{E'\}$ is isomorphic to $l_{p',q'}^0\{E'\}$. As an application we shall refine the main result in [6], that is, we shall characterize the conjugates of (p, q; r)-absolutely summing operators ([9]) as (r'; p', q')-strongly summing operators where 1/p + 1/p' = 1/q+ 1/q' = 1/r + 1/r' = 1.

The author would like to thank Professor S. Tôgô and Professor M. Itano for their many valuable comments in preparing this paper.

§1. The space $l_{p,q}{E}$

Throughout the paper E and F will denote Banach spaces and E' and F' their continuous dual spaces. Let K be the real or complex field and I be the set of positive integers.

DEFINITION 1. For $1 \le p \le \infty$, $1 \le q < \infty$ or $1 \le p < \infty$, $q = \infty$ $l_{p,q}{E}$ is the space of all E-valued 0-sequences $\{x_i\}$ such that

$$\|\{x_i\}\|_{p,q} = \begin{cases} \left(\sum_{i=1}^{\infty} i^{q/p-1} \|x_{\phi(i)}\|^q\right)^{1/q} & \text{for } 1 \le p \le \infty, \quad 1 \le q < \infty, \\ \sup_i i^{1/p} \|x_{\phi(i)}\| & \text{for } 1 \le p < \infty, \quad q = \infty \end{cases}$$

is finite, where $\{\|x_{\phi(i)}\|\}\$ is the non-increasing rearrangement of $\{\|x_i\|\}\$. In particular, if E = K, $l_{p,q}\{K\}$ is denoted by $l_{p,q}$ (cf. [10]).

In case of $p = q l_{p,p} \{E\}$ coincides with $l_p \{E\}$ and $\|\cdot\|_{p,p} = \|\cdot\|_p$.

REMARK. In the case where $1 \le p < q \le \infty$, $\|\cdot\|_{p,q}$ is not a norm. Indeed, if $1 \le p < q < \infty$, we can take two positive numbers α and β such that

$$1 < \frac{\alpha}{\beta} < (2^{q/p-1})^{1/(q-1)}.$$

By the mean value theorem of differential calculus there exist two positive numbers γ_1 and γ_2 such that

$$\left\{ \left(\frac{\alpha+\beta}{2}\right)^{q} - \beta^{q} \right\} / \frac{\alpha-\beta}{2} = q\gamma_{1}^{q-1},$$
$$\left\{ \alpha^{q} - \left(\frac{\alpha+\beta}{2}\right)^{q} \right\} / \frac{\alpha-\beta}{2} = q\gamma_{2}^{q-1}$$

and

$$\beta < \gamma_1 < \frac{\alpha + \beta}{2} < \gamma_2 < \alpha.$$

Then we have

$$\begin{split} \left\{ \alpha^{q} - \left(\frac{\alpha + \beta}{2}\right)^{q} \right\} / \left\{ \left(\frac{\alpha + \beta}{2}\right)^{q} - \beta^{q} \right\} &= \left(\frac{\gamma_{2}}{\gamma_{1}}\right)^{q-1} \\ &< \left(\frac{\alpha}{\beta}\right)^{q-1} \\ &\leq 2^{q/p-1}. \end{split}$$

whence

$$\alpha^{q}+2^{q/p-1}\beta^{q}<\left(\frac{\alpha+\beta}{2}\right)^{q}+2^{q/p-1}\left(\frac{\alpha+\beta}{2}\right)^{q}.$$

Consequently, if we put

$$u = (\alpha, \beta, 0, 0, 0, ...),$$
$$v = (\beta, \alpha, 0, 0, 0, ...),$$

we have

$$\|\boldsymbol{u}\|_{p,q} + \|\boldsymbol{v}\|_{p,q} = 2(\alpha^{q} + 2^{q/p-1}\beta^{q})^{1/q}$$

< { $(\alpha + \beta)^{q} + 2^{q/p-1}(\alpha + \beta)^{q}$ }
= $\|\boldsymbol{u} + \boldsymbol{v}\|_{p,q}$,

which implies that $\|\cdot\|_{p,q}$ is not a norm. If $1 \le p < q = \infty$, we can take two positive numbers α and β such that $1 < \alpha/\beta < 2^{1/p}$, and show that $\|\cdot\|_{p,\infty}$ does not satisfy the triangular inequality for \boldsymbol{u} and \boldsymbol{v} , which implies that $\|\cdot\|_{p,\infty}$ is not a norm.

We now recall the following inequality (Hardy, Littlewood and Pólya [3]) which is one of the most useful tools in our subsequent discussions.

Let $\{c_i^*\}$ and $\{*c_i\}$ be the non-increasing and non-decreasing rearrangements of a finite sequence $\{c_i\}$ of positive numbers. Then for two sequences $\{a_i\}_{1 \le i \le n}$ and $\{b_i\}_{1 \le i \le n}$ of positive numbers,

(1)
$$\sum_{i} a_i^{**} b_i \leq \sum_{i} a_i b_i \leq \sum_{i} a_i^{*} b_i^{*}.$$

LEMMA 1. Let $\{x_i\}$ and $\{y_i\}$ be 0-sequences in E. Let $\{\|x_{\phi(i)}\|\}$, $\{\|y_{\psi(i)}\|\}$ and $\{\|x_{\omega(i)} + y_{\omega(i)}\|\}$ be the non-increasing rearrangements of $\{\|x_i\|\}$, $\{\|y_i\|\}$ and $\{\|x_i + y_i\|\}$ respectively. Then for any positive integer k

$$\|x_{\omega(2k)} + y_{\omega(2k)}\| \le \|x_{\omega(2k-1)} + y_{\omega(2k-1)}\| \le \|x_{\phi(k)}\| + \|y_{\psi(k)}\|.$$

PROOF. The first inequality is clear. Since

$$\begin{aligned} \{i \in I \colon \|x_i + y_i\| > \|x_{\phi(k)}\| + \|y_{\psi(k)}\| \} \\ & \subset \{i \in I \colon \|x_i\| > \|x_{\phi(k)}\| \} \cup \{i \in I \colon \|y_i\| > \|y_{\psi(k)}\| \}, \end{aligned}$$

comparing the cardinal numbers of these sets we have

card { $i \in I$: $||x_i + y_i|| > ||x_{\phi(k)}|| + ||y_{\psi(k)}||$ }

 $\leq \operatorname{card} \{i \in I : ||x_i|| > ||x_{\phi(k)}||\} + \operatorname{card} \{i \in I : ||y_i|| > ||y_{\psi(k)}||\} \\ \leq 2(k-1),$

which implies the second inequality.

PROPOSITION 1. If $1 \le q \le p \le \infty$, $l_{p,q}\{E\}$ is a normed space. If $1 \le p < q \le \infty$, $l_{p,q}\{E\}$ is not a normed space but a quasi-normed space; for any $\{x_i\}$, $\{y_i\} \in l_{p,q}\{E\}$

$$\|\{x_i+y_i\}\|_{p,q} \le 2^{1/p}(\|\{x_i\}\|_{p,q}+\|\{y_i\}\|_{p,q}).$$

PROOF. Let $\{x_i\}, \{y_i\} \in l_{p,q}\{E\}$. Let $\{\|x_{\phi(i)}\|\}, \{\|y_{\psi(i)}\|\}$ and $\{\|x_{\omega(i)} + y_{\omega(i)}\|\}$ be the non-increasing rearrangements of $\{\|x_i\|\}, \{\|y_i\|\}$ and $\{\|x_i + y_i\|\}$ respectively. We assume $p \neq q$. In the case where $1 \leq q is non-increasing and hence by (1) we have$

$$\begin{split} \|\{x_{i}+y_{i}\}\|_{p,q} &= \left(\sum_{i=1}^{\infty} i^{q/p-1} \|x_{\omega(i)}+y_{\omega(i)}\|^{q}\right)^{1/q} \\ &\leq \left\{\sum_{i=1}^{\infty} (i^{1/p-1/q} \|x_{\omega(i)}\| + i^{1/p-1/q} \|y_{\omega(i)}\|)^{q}\right\}^{1/q} \\ &\leq \left(\sum_{i=1}^{\infty} i^{q/p-1} \|x_{\omega(i)}\|^{q}\right)^{1/q} + \left(\sum_{i=1}^{\infty} i^{q/p-1} \|y_{\omega(i)}\|^{q}\right)^{1/q} \\ &\leq \left(\sum_{i=1}^{\infty} i^{q/p-1} \|x_{\phi(i)}\|^{q}\right)^{1/q} + \left(\sum_{i=1}^{\infty} i^{q/p-1} \|y_{\psi(i)}\|^{q}\right)^{1/q} \\ &= \|\{x_{i}\}\|_{p,q} + \|\{y_{i}\}\|_{p,q}. \end{split}$$

Thus $l_{p,q}\{E\}$ is a normed space in this case. In Remark after Definition 1 we have shown that for $1 \le p < q \le \infty$ $l_{p,q}\{E\}$ is not a normed space. Let $1 \le p < q < \infty$. Then, by Lemma 1 we have

$$\sum_{i=1}^{\infty} i^{q/p-1} \|x_{\omega(i)} + y_{\omega(i)}\|^{q}$$

$$= \sum_{i=1}^{\infty} \{(2i-1)^{q/p-1} \|x_{\omega(2i-1)} + y_{\omega(2i-1)}\|^{q} + (2i)^{q/p-1} \|x_{\omega(2i)} + y_{\omega(2i)}\|^{q}\}^{1/q}$$

$$\leq 2^{q/p} \sum_{i=1}^{\infty} i^{q/p-1} (\|x_{\phi(i)}\| + \|y_{\psi(i)}\|)^{q}.$$

Therefore,

$$\|\{x_i+y_i\}\|_{p,q} \le 2^{1/p} \left\{ \sum_{i=1}^{\infty} (i^{1/p-1/q} \|x_{\phi(i)}\| + i^{1/p-1/q} \|y_{\psi(i)}\|)^q \right\}^{1/q}$$

On Lorentz Spaces $l_{p,q}{E}$

$$\leq 2^{1/p} \left\{ \left(\sum_{i=1}^{\infty} i^{q/p-1} \| x_{\phi(i)} \|^q \right)^{1/q} + \left(\sum_{i=1}^{\infty} i^{q/p-1} \| y_{\psi(i)} \|^q \right)^{1/q} \right\}$$

= $2^{1/p} (\| \{ x_i \} \|_{p,q} + \| \{ y_i \} \|_{p,q}).$

For $1 \le p < q = \infty$ we can show in a similar way

$$\|\{x_i+y_i\}\|_{p,\infty} \le 2^{1/p} (\|\{x_i\}\|_{p,\infty} + \|\{y_i\}\|_{p,\infty}).$$

Thus $l_{p,q}{E}$ is a quasi-normed space if $1 \le p \le q \le \infty$.

LEMMA 2. Let $1 \le p, q < \infty$. Let $\{x_i\} \in l_{p,q}\{E\}$. Then for every $i \in I$

(2)
$$||x_{\phi(i)}|| \leq \left(\frac{q}{p}\right)^{1/q} i^{-1/p} ||\{x_i\}||_{p,q} \quad if \quad 1 \leq p \leq q < \infty,$$

(3)
$$||x_{\phi(i)}|| \leq i^{-1/p} ||\{x_i\}||_{p,q}$$
 if $1 \leq q .$

PROOF. If $\{x_i\} \in l_{p,q}\{E\}$, for every $i \in I$

(4)
$$\|\{x_i\}\|_{p,q}^q \ge \sum_{k=1}^i k^{q/p-1} \|x_{\phi(k)}\|^q$$
$$\ge \|x_{\phi(i)}\|^q \sum_{k=1}^i k^{q/p-1}.$$

In case of p = q (2) follows immediately from (4). If $1 \le p < q < \infty$, for each $k \in I$

$$\frac{q}{p}k^{q/p-1} \ge k^{q/p} - (k-1)^{q/p},$$

whence (2) follows from (4). In case of $1 \le q , <math>\{i^{q/p-1}\}$ is non-increasing and therefore (3) is immediately from (4).

PROPOSITION 2. (i) Let $1 \le p < \infty$, $1 \le q < q_1 \le \infty$. Then

$$l_{p,q}\{E\} \subset l_{p,q_1}\{E\}$$

and for every $\{x_i\} \in l_{p,q}\{E\}$

(5)
$$\|\{x_i\}\|_{p,q_1} \le \left(\frac{q}{p}\right)^{1/q-1/q_1} \|\{x_i\}\|_{p,q}$$
 if $p < q$,

(6)
$$\|\{x_i\}\|_{p,q_1} \le \|\{x_i\}\|_{p,q}$$
 if $p \ge q$

(ii) Let either $1 \le p < p_1 \le \infty$, $1 \le q < \infty$ or $1 \le p < p_1 < \infty$, $q = \infty$. Then

$$l_{p,q}\{E\} \subset l_{p_1,q}\{E\}$$

and for every $\{x_i\} \in l_{p,q}\{E\}$

 $\|\{x_i\}\|_{p_1,q} \le \|\{x_i\}\|_{p,q}.$

PROOF. Let $\{x_i\} \in l_{p,q}\{E\}$. Let $1 \le p < q < q_1 < \infty$. Then by using (2) we have

$$\begin{split} \|\{x_i\}\|_{p,q_1}^{q_1} &= \sum_{i=1}^{\infty} i^{q_1/p-1} \|x_{\phi(i)}\|^{q_1-q} \|x_{\phi(i)}\|^q \\ &\leq \sum_{i=1}^{\infty} i^{q_1/p-1} \left(\frac{q}{p}\right)^{\frac{q_1-q}{q}} i^{-\frac{q_1-q}{p}} \|\{x_i\}\|_{p,q}^{q_1-q} \|x_{\phi(i)}\|^q \\ &= \left(\frac{q}{p}\right)^{q_1/q-1} \|\{x_i\}\|_{p,q}^{q_1-q} \sum_{i=1}^{\infty} i^{q/p-1} \|x_{\phi(i)}\|^q \\ &= \left(\frac{q}{p}\right)^{q_1/q-1} \|\{x_i\}\|_{p,q}^{q_1}, \end{split}$$

whence we obtain (5) and $l_{p,q}\{E\} \subset l_{p,q_1}\{E\}$. If $1 \le p < q < q_1 = \infty$, (5) follows immediately from (2). In case of $p \ge q$, in a similar way we can deduce (6) from (3).

The proof of (ii) is easy and omitted.

COROLLARY. Let $1 \le p_1 \le p \le q \le q_1 \le \infty$ and let p, q be not both equal to ∞ . Then:

(i)
$$l_{p_1}\{E\} \subset l_{p,q}\{E\} \subset l_{q_1}\{E\}$$

and for every $\{x_i\} \in l_{p_1}\{E\}$

(ii)
$$\left(\frac{p}{q}\right)^{1/q-1/q_1} \|\{x_i\}\|_{q_1} \le \|\{x_i\}\|_{p,q} \le \|\{x_i\}\|_{p_1}.$$
$$l_{p_1}\{E\} \subset l_{q,p}\{E\} \subset l_{q_1}\{E\}$$

and for every $\{x_i\} \in l_{p_1}\{E\}$

$$\|\{x_i\}\|_{q_1} \le \|\{x_i\}\|_{q,p} \le \|\{x_i\}\|_{p_1}.$$

We shall now show in the following lemma a generalized form of Hölder's inequality which is stated in a more generalized form without proof in [10].

LEMMA 3. Let $1 \le p, q \le \infty$ and 1/p + 1/p' = 1/q + 1/q' = 1. Let $\{x_i\} \in l_{p,q}\{E\}$ and $\{x'_i\} \in l_{p',q'}\{E'\}$. Then, $\{<x_i, x'_i>\} \in l_1$ and

$$\|\{\langle x_i, x_i' \rangle\}\|_1 \le \|\{x_i\}\|_{p,q} \|\{x_i'\}\|_{p',q'}$$

PROOF. From (1) and the usual Hölder's inequality we have

On Lorentz Spaces $l_{p,q}{E}$

$$\begin{split} \sum_{i=1}^{\infty} | \langle x_i, x_i' \rangle | &\leq \sum_{i=1}^{\infty} i^{1/p-1/q} \| x_{\phi(i)} \| \cdot i^{1/p'-1/q'} \| x_{\psi(i)}' \| \\ &\leq \left(\sum_{i=1}^{\infty} i^{q/p-1} \| x_{\phi(i)} \|^q \right)^{1/q} \left(\sum_{i=1}^{\infty} i^{q'/p'-1} \| x_{\psi(i)}' \|^{q'} \right)^{1/q} \\ &= \| \{ x_i \} \|_{p,q} \| \{ x_i' \} \|_{p',q'}. \end{split}$$

In the rest of the paper, we denote by $\mathscr{F}(E)$ the space of *E*-valued finite sequences.

PROPOSITION 3. For $1 \le p \le \infty$, $1 \le q < \infty$, $\mathscr{F}(E)$ is dense in $l_{p,q}\{E\}$.

PROOF. Let $\{x_i\} \in l_{p,q}\{E\}$. When $1 \le p \le q < \infty$, let

(7)
$$\boldsymbol{u}_n = \sum_{i=1}^n (0, \dots, 0, \underbrace{\overset{\phi(i)}{\boldsymbol{x}_{\phi(i)}}}_{\boldsymbol{x}_{\phi(i)}}, 0, 0, 0, \dots).$$

Then $u_n \in \mathscr{F}(E)$ and

$$\|\{x_i\} - \boldsymbol{u}_n\|_{p,q} = \left(\sum_{i=1}^{\infty} i^{q/p-1} \|x_{\phi(n+i)}\|^q\right)^{1/q}$$

$$\leq \left(\sum_{i=n+1}^{\infty} i^{q/p-1} \|x_{\phi(i)}\|^q\right)^{1/q}$$

$$\to 0 \qquad (n \to \infty).$$

When $1 \le q , let$

$$I_n = \left\{ i \in I \colon \|x_i\| > \frac{1}{n} \right\}$$

and

(8)
$$\boldsymbol{v}_n = \sum_{i \in I_n} (0, ..., 0, x_i, 0, 0, 0, ...).$$

Since I_n is finite, we put $k_n = \operatorname{card} I_n$. Then for any $j_0 \in I$ we have

$$\begin{split} \|\{x_i\} - \boldsymbol{v}_n\|_{p,q} &= \left(\sum_{i=1}^{\infty} i^{q/p-1} \|x_{\phi(k_n+i)}\|^q\right)^{1/q} \\ &\leq \left(\sum_{i=1}^{j_0} i^{q/p-1} \|x_{\phi(k_n+i)}\|^q\right)^{1/q} \\ &+ \left(\sum_{i=j_0+1}^{\infty} i^{q/p-1} \|x_{\phi(k_n+i)}\|^q\right)^{1/q} \\ &\leq \frac{1}{n} \left(\sum_{i=1}^{j_0} i^{q/p-1}\right)^{1/q} + \left(\sum_{i=j_0+1}^{\infty} i^{q/p-1} \|x_{\phi(i)}\|^q\right)^{1/q} \end{split}$$

Hence

$$\overline{\lim_{n \to \infty}} \| \{x_i\} - v_n \|_{p,q} \le \left(\sum_{i=j_0+1}^{\infty} i^{q/p-1} \| x_{\phi(i)} \|^q \right)^{1/q}$$

Therefore, letting $j_0 \rightarrow \infty$, we have

$$\lim_{n\to\infty} \|\{x_i\} - \boldsymbol{v}_n\|_{p,q} = 0.$$

LEMMA 4. Let $\{x_i^{(v)}\}_{i,v}$ be an E-valued double sequence such that $\lim_{i\to\infty} x_i^{(v)} = 0$ for each $v \in I$ and let $\{x_i\}$ be an E-valued sequence such that $\lim_{v\to\infty} x_i^{(v)} = x_i$ (uniformly in i). Then, $\lim_{i\to\infty} x_i = 0$ and for each $i \in I$

(9)
$$||x_{\phi(i)}|| \leq \lim_{v \to \infty} ||x_{\phi_v(i)}^{(v)}||,$$

where $\{\|x_{\phi(i)}\|\}$ and $\{\|x_{\phi_{\nu}(i)}^{(\nu)}\|\}_i$ are the non-increasing rearrangements of $\{\|x_i\|\}$ and $\{\|x_i^{(\nu)}\|\}_i$ respectively.

PROOF. It can be easily shown that $\lim_{i\to\infty} x_i^{(\nu)} = 0$ (uniformly in ν). Therefore we have immediately $\lim_{i\to\infty} x_i = 0$. Let *i* be an arbitrary positive integer and fixed. If there exists a positive number c_i such that

$$||x_{\phi(i)}|| > c_i > \lim_{v \to \infty} ||x_{\phi_v(i)}^{(v)}||,$$

then the inequality

$$||x_{\phi(i)}|| > c_i > ||x_{\phi_{\gamma}(i)}^{(\nu)}||$$

is valid for infinitely many $v \in I$. Since $||x_{\phi(k)}|| > c_i$ and $\lim_{v \to \infty} ||x_{\phi(k)}^{(v)}|| = ||x_{\phi(k)}||$ for $1 \le k \le i$, there exists a $v_0 \in I$ such that $||x_{\phi(k)}^{(v)}|| > c_i$ for $v \ge v_0$ and $1 \le k \le i$. Therefore, if we take a positive integer v_1 such that $v_1 \ge v_0$ and $c_i > ||x_{\phi(v_1)}^{(v_1)}||$, we have

$$\|x_{\phi(k)}^{(v_1)}\| > c_i > \|x_{\phi_{v_1}(i)}^{(v_1)}\|$$

for $1 \le k \le i$, which is a contradiction since the number of k such that $||x_k^{(v_1)}|| > ||x_{\phi_{v_1}(i)}^{(v_1)}||$ is i-1. Thus (9) holds for every $i \in I$.

THEOREM 1. For $1 \le p$, $q \le \infty$, $l_{p,q}{E}$ is complete.

PROOF. Let $\{x_i^{(v)}\}_i \in l_{p,q}\{E\} (v \in I)$ and

(10)
$$\lim_{\mu,\nu\to\infty} \|\{x_i^{(\mu)} - x_i^{(\nu)}\}\|_{p,q} = 0.$$

In the case where $q < \infty$, for any $\varepsilon > 0$ there exists a $v_0 \in I$ such that

(11)
$$\left(\sum_{i=1}^{\infty} i^{q/p-1} \|x_{\psi_{\mu},\nu(i)}^{(\mu)} - x_{\psi_{\mu},\nu(i)}^{(\nu)} \|^{q}\right)^{1/q} < \varepsilon \quad \text{for any } \mu, \nu \ge \nu_{0}$$
where $\{\|x_{\psi_{\mu},\nu(i)}^{(\mu)} - x_{\psi_{\mu},\nu(i)}^{(\nu)} \|\}_{i}$ denotes the non-increasing rearrangement $\{\|x_{i}^{(\mu)} - x_{i}^{(\nu)}\|\}_{i}$. Then for any $\mu, \nu \ge \nu_{0}$, from Proposition 2 we have
$$\sup_{i} \|x_{i}^{(\mu)} - x_{i}^{(\nu)}\|$$

$$\leq \sup_{i} i^{1/p} \|x_{\psi_{\mu},\nu(i)}^{(\mu)} - x_{\psi_{\mu},\nu(i)}^{(\nu)} \|_{p,q} \quad \text{if } p < q,$$

$$\left\{\frac{\left(\frac{q}{p}\right)^{1/q}}{\left\{\|x_{i}^{(\mu)} - x_{i}^{(\nu)}\right\}\|_{p,q}} \quad \text{if } p \ge q$$

$$\leq \left\{\frac{\left(\frac{q}{p}\right)^{1/q}}{\varepsilon} \quad \text{if } p < q,$$

$$\leq \left\{\frac{\left(\frac{q}{p}\right)^{1/q}}{\varepsilon} \quad \text{if } p < q,$$

Therefore there exist $x_i \in E(i \in I)$ such that

(12)
$$x_i = \lim_{v \to \infty} x_i^{(v)} \quad (\text{uniformly in } i).$$

Since $\lim_{i\to\infty} x_i^{(\nu)} = 0$ for each $\nu \in I$, we have by Lemma 4

(13)
$$\lim_{i \to \infty} x_i = 0.$$

Hence we can take the non-increasing rearrangement $\{\|x_{\psi_{\nu}(i)} - x_{\psi_{\nu}(i)}^{(\nu)}\|\}_i$ of $\{\|x_i - x_i^{(\nu)}\|\}_i$. Let ν be an arbitrary positive integer with $\nu \ge \nu_0$ and fixed. If we put

if $p \ge q$.

$$y_i^{(\mu)} = x_i^{(\mu)} - x_i^{(\nu)},$$

 $y_i = x_i - x_i^{(\nu)},$

then

$$\lim_{i \to \infty} y_i^{(\mu)} = 0 \quad \text{for each } \mu \in I.$$
$$\lim_{\mu \to \infty} y_i^{(\mu)} = y_i \quad (\text{uniformly in } i).$$

Therefore by Lemma 4 we have

$$\|y_{\phi(i)}\| \le \lim_{\mu \to \infty} \|y_{\phi_{\mu}(i)}^{(\mu)}\| \qquad \text{for each } i \in I$$

that is,

of

(14)
$$||x_{\psi_{\nu}(i)} - x_{\psi_{\nu}(i)}^{(\nu)}|| \le \lim_{\mu \to \infty} ||x_{\psi_{\mu,\nu}(i)}^{(\mu)} - x_{\psi_{\mu,\nu}(i)}^{(\nu)}||$$
 for each $i \in I$.

Consequently, by (11) and (14) we have for any $v \ge v_0$

$$\begin{split} \| \{ x_{i} - x_{i}^{(\nu)} \} \|_{p,q} &= \left(\sum_{i=1}^{\infty} i^{q/p-1} \| x_{\psi_{\nu}(i)} - x_{\psi_{\nu}(i)}^{(\nu)} \|^{q} \right)^{1/q} \\ &\leq \left(\sum_{i=1}^{\infty} i^{q/p-1} \lim_{\mu \to \infty} \| x_{\psi_{\mu,\nu}(i)}^{(\mu)} - x_{\psi_{\mu,\nu}(i)}^{(\nu)} \|^{q} \right)^{1/q} \\ &\leq \lim_{\mu \to \infty} \left(\sum_{i=1}^{\infty} i^{q/p-1} \| x_{\psi_{\mu,\nu}(i)}^{(\mu)} - x_{\psi_{\mu,\nu}(i)}^{(\nu)} \|^{q} \right)^{1/q} \\ &\leq \varepsilon, \end{split}$$

and hence $\{x_i\} = \{x_i - x_i^{(v_0)}\} + \{x_i^{(v_0)}\} \in l_{p,q}\{E\}$, which completes the proof in case $q < \infty$.

In the case where $q = \infty$, by (10) for any $\varepsilon > 0$ there exists a $v_0 \in I$ such that

(15)
$$\sup_{i} i^{1/p} \|x_{\psi_{\mu,\nu}(i)}^{(\mu)} - x_{\psi_{\mu,\nu}(i)}^{(\nu)}\| < \varepsilon \quad \text{for any } \mu, \nu \ge \nu_0.$$

Hence we can take in a similar way a sequence $\{x_i\}$ which satisfies (12) and (13). Then by (14) and (15) we have for any $v \ge v_0$

$$\begin{split} \|\{x_{i} - x_{i}^{(v)}\}\|_{p,\infty} &= \sup_{i} i^{1/p} \|x_{\psi_{v}(i)} - x_{\psi_{v}(i)}^{(v)}\| \\ &\leq \sup_{i} i^{1/p} \lim_{\mu \to \infty} \|x_{\psi_{\mu,v}(i)}^{(\mu)} - x_{\psi_{\mu,v}(i)}^{(v)}\| \\ &\leq \lim_{\mu \to \infty} \sup_{i} i^{1/p} \|x_{\psi_{\mu,v}(i)}^{(\mu)} - x_{\psi_{\mu,v}(i)}^{(v)}\| \\ &\leq \varepsilon \end{split}$$

and hence $\{x_i\} = \{x_i - x_i^{(v_0)}\} + \{x_i^{(v_0)}\} \in l_{p,\infty}\{E\}$, which completes the proof.

§ 2. The space $l_{p',q'}^0\{E'\}$

In this section we assume that $1 \le q , <math>1/p + 1/p' = 1/q + 1/q' = 1$. We now introduce the space $l_{p',q'}^0 \{E'\}$ which will play an important role in the next section.

DEFINITION 2. $l_{p',q'}^0\{E'\}$ is the space of E'-valued sequences $\{x_i'\}$ such that for every $\{x_i\} \in l_{p,q}\{E\}$ the series $\sum_{i=1}^{\infty} \langle x_i, x_i' \rangle$ converges. The norm $\|\cdot\|_{p',q'}^0$ on $l_{p',q'}^0\{E'\}$ is given by

$$\|\{x_i'\}\|_{p',q'}^0 = \sup_{\|\{x_i\}\|_{p,q\leq 1}} \left|\sum_{i=1}^\infty \langle x_i, x_i' \rangle\right|.$$

It should be noted that $||\{x'_i\}||_{p',q'}^0 < \infty$ for all $\{x'_i\} \in l_{p',q'}^0 \{E'\}$ and $||\cdot||_{p',q'}^0$ is really a norm. Indeed, if $\{x'_i\} \in l_{p',q'}^0 \{E'\}$, then $\{x'_i\} \in a$ be considered as the linear form f on $l_{p,q}\{E\}$ defined by $f(\{x_i\}) = \sum_{i=1}^{\infty} \langle x_i, x'_i \rangle$. Define a sequence $\{f_n\}$ of linear forms on $l_{p,q}\{E\}$ by $f_n(\{x_i\}) = \sum_{i=1}^{n} \langle x_i, x'_i \rangle$. It is easy to see that each f_n is continuous. Furthermore $\{f_n\}$ converges to f at each point of $l_{p,q}\{E\}$. Since $l_{p,q}\{E\}$ is a Banach space by Proposition 1 and Theorem 1 (p > q), from the Banach-Steinhaus Theorem it follows that f is continuous and $||\{x'_i\}||_{p',q'}^0 = ||f|| < \infty$. Hence $||\cdot||_{p',q'}^0$ is a norm.

The norm $\|\cdot\|_{p',q'}^0$ is also given by the following form

(16)
$$\|\{x_i'\}\|_{p',q'}^0 = \sup_{\|\{x_i\}\|_{p,q\leq 1}} \sum_{i=1}^{\infty} |\langle x_i, x_i'\rangle|,$$

as can be easily seen.

LEMMA 5. Let $\{x'_i\} \in l^0_{p',q'}\{E'\}$. Let $x'_{v,i} = x'_i$ for $1 \le i \le v$ and $x'_{v,i} = 0$ for i > v. Then

$$\lim_{v \to \infty} \|\{x'_{v,i}\}\|^0_{p',q'} = \|\{x'_i\}\|^0_{p',q'}.$$

PROOF. By (16), for any $\varepsilon > 0$ there exists an $\{x_i\} \in l_{p,q}\{E\}$ such that $||\{x_i\}||_{p,q} \le 1$ and

$$\|\{x_i'\}\|_{p',q'}^0 < \sum_{i=1}^\infty |\langle x_i, x_i' \rangle| + \frac{\varepsilon}{2}.$$

Then there exists a $v_0 \in I$ such that for any $v \ge v_0$

$$\sum_{i=1}^{\infty} |\langle x_i, x_i' \rangle| < \sum_{i=1}^{\nu} |\langle x_i, x_i' \rangle| + \frac{\varepsilon}{2}.$$

Therefore we have for any $v \ge v_0$

$$\|\{x'_{\nu,i}\}_{i}\|_{p',q'}^{0} \leq \|\{x'_{i}\}\|_{p',q'}^{0}$$

$$< \sum_{i=1}^{\nu} |< x_{i}, x'_{i} > |+\varepsilon$$

$$\leq \sup_{\|\{x_{i}\}\|_{p,q} \leq 1} \sum_{i=1}^{\infty} |< x_{i}, x'_{\nu,i} > |+\varepsilon$$

$$= \|\{x'_{\nu,i}\}_{i}\|_{p',q'}^{0} + \varepsilon,$$

which shows that $\|\{x'_{\nu,i}\}_i\|_{p',q'}^0$ converges to $\|\{x'_i\}\|_{p',q'}^0$ as $\nu \to \infty$.

LEMMA 6. Let $\{x'_{1,i}\}, \{x'_{2,i}\} \in l^0_{p',q'}\{E'\}$. If $x'_{1,i}$ or $x'_{2,i}$ is equal to 0 for each $i \in I$, then

$$\|\{x'_{1,i}+x'_{2,i}\}\|^{0q'}_{p',q'} \ge \|\{x'_{1,i}\}\|^{0q'}_{p',q'} + \|\{x'_{2,i}\}\|^{0q'}_{p',q'}$$

PROOF. We may suppose $0 < ||\{x'_{k,i}\}_i||_{p',q'}^0 < \infty$ (k=1, 2). For any $\varepsilon > 0$ there exist $\{x_{k,i}\}_i \in l_{p,q}\{E\}$ (k=1, 2) such that

$$\|\{x_{k,i}\}_i\|_{p,q} = \|\{x'_{k,i}\}_i\|_{p',q'}^{0,q'-1}$$

and

$$\sum_{i=1}^{\infty} |\langle x_{k,i}, x'_{k,i} \rangle| > || \{x'_{k,i}\}_i ||_{p',q'}^{0\,q'} - \frac{\varepsilon}{2}.$$

Furthermore we may assume that $x_{k,i}=0$ if $x'_{k,i}=0$. Then we have

(17)

$$\sum_{i=1}^{\infty} |\langle x_{1,i} + x_{2,i}, x'_{1,i} + x'_{2,i} \rangle|$$

$$= \sum_{i=1}^{\infty} |\langle x_{1,i}, x'_{1,i} \rangle + \langle x_{2,i}, x'_{2,i} \rangle|$$

$$= \sum_{i=1}^{\infty} |\langle x_{1,i}, x'_{1,i} \rangle| + \sum_{i=1}^{\infty} |\langle x_{2,i}, x'_{2,i} \rangle|$$

$$> ||\{x'_{1,i}\}||_{p',q'}^{0q'} + ||\{x'_{2,i}\}||_{p',q'}^{0q'} - \varepsilon.$$

On the other hand, denoting by $\{\|x_{1,\phi(i)}\|\}$, $\{\|x_{2,\psi(i)}\|\}$ and $\{\|x_{1,\omega(i)}+x_{2,\omega(i)}\|\}$ respectively the non-increasing rearrangements of $\{\|x_{1,i}\|\}$, $\{\|x_{2,i}\|\}$ and $\{\|x_{1,i}+x_{2,i}\|\}$ we have

$$\begin{split} \|\{x_{1,i}+x_{2,i}\}\|_{p,q}^{q} &= \sum_{i=1}^{\infty} i^{q/p-1} \|x_{1,\omega(i)}+x_{2,\omega(i)}\|^{q} \\ &= \sum' i^{q/p-1} \|x_{1,\omega(i)}\|^{q} + \sum'' i^{q/p-1} \|x_{2,\omega(i)}\|^{q} \\ &\leq \sum_{i=1}^{\infty} i^{q/p-1} \|x_{1,\phi(i)}\|^{q} + \sum_{i=1}^{\infty} i^{q/p-1} \|x_{2,\psi(i)}\|^{q} \\ &= \|\{x_{1,i}\}\|_{p,q}^{q} + \|\{x_{2,i}\}\|_{p,q}^{q} \\ &= \|\{x_{1,i}\}\|_{p',q'}^{0,q'} + \|\{x_{2,i}\}\|_{p',q'}^{0,q'}. \end{split}$$

since p > q. Here \sum' (resp. \sum'') denotes summation on those *i* for which $x_{2,\omega(i)} = 0$ (resp. $x_{1,\omega(i)} = 0$). Hence

(18)
$$\|\{x_{1,i}+x_{2,i}\}\|_{p,q} \le (\|\{x_{1,i}'\}\|_{p',q'}^{0,q'}+\|\{x_{2,i}'\}\|_{p',q'}^{0,q'})^{1/q}.$$

Consequently, from (16), (17) and (18) we have

$$\|\{x'_{1,i}\}\|_{p',q'}^{0q'}+\|\{x'_{2,i}\}\|_{p',q'}^{0q'}-\varepsilon$$

$$< (\| \{x'_{1,i}\} \|_{p',q'}^{0q'} + \| \{x'_{2,i}\} \|_{p',q'}^{0q'})^{1/q} \| \{x'_{1,i} + x'_{2,i}\} \|_{p',q'}^{0},$$

from which follows

$$\|\{x'_{1,i}\}\|^{0q'}_{p',q'}+\|\{x'_{2,i}\}\|^{0q'}_{p',q'}\leq \|\{x'_{1,i}+x'_{2,i}\}\|^{0q'}_{p',q'}.$$

PROPOSITION 4. $\mathscr{F}(E')$ is dense in $l^0_{p',q'}{E'}$.

PROOF. Let $\{x'_i\} \in l^0_{p',q'}\{E'\} \setminus \mathscr{F}(E')$. Then for any $\varepsilon > 0$ there exists an $\{x_i\} \in l_{p,q}\{E\}$ such that $||\{x_i\}||_{p,q} \le 1$ and

(19)
$$\sum_{i=1}^{\infty} |\langle x_i, x_i' \rangle| \| \{x_i'\} \|_{p',q'}^{0,q'-1} > \| \{x_i'\} \|_{p',q'}^{0,q'} - \varepsilon^{q'}.$$

Since $\|\{x'_{\nu,i}\}_i\|^0_{p',q'} \to \|\{x'_i\}\|^0_{p',q'}$ $(\nu \to \infty)$ by Lemma 5, we have

(20)
$$\sum_{i=1}^{\infty} |\langle x_i, x'_{\nu,i} \rangle| \| \{x'_{\nu,i}\}_i \|_{p',q'}^{0q'-1}$$

$$\to \sum_{i=1}^{\infty} |\langle x_i, x_i' \rangle | \| \{x_i'\} \|_{p',q'}^{0,q'-1} \qquad (v \to \infty) .$$

By (19) and (20), for a sufficiently large v

$$\| \{x'_i\} \|_{p',q'}^{0q'} - \varepsilon^{q'} < \sum_{i=1}^{\infty} | \langle x_i, x'_{\nu,i} \rangle | \| \{x'_{\nu,i}\} \|_{p',q'}^{0q'-1}$$

$$\leq \| \{x'_{\nu,i}\}_i \|_{p',q'}^{0q'}.$$

This, combined with Lemma 6, implies

$$\begin{aligned} \|\{x'_i\} - \{x'_{\nu,i}\}\|^{0,q'}_{p',q'} &\leq \|\{x'_i\}\|^{0,q'}_{p',q'} - \|\{x'_{\nu,i}\}\|^{0,q'}_{p',q'} \\ &< \varepsilon^{q'}, \end{aligned}$$

that is,

$$\|\{x_i'\}-\{x_{\nu,i}'\}\|_{p',q'}^0<\varepsilon.$$

PROPOSITION 5. The dual space of $l_{p,q}\{E\}$ is isometrically isomorphic to $l_{p',q'}^0\{E'\}$, where a sequence $\{x'_i\}$ in $l_{p',q'}^0\{E'\}$ is identified with the linear form f defined by

(21)
$$f(\{x_i\}) = \sum_{i=1}^{\infty} \langle x_i, x_i' \rangle \quad \text{for each } \{x_i\} \in l_{p,q}\{E\}.$$

PROOF. Let $\{x'_i\} \in l_{p',q'}^0\{E'\}$. Then the linear form f defined by (21) is continuous and $||f|| = ||\{x'_i\}||_{p',q'}^0$, which we have already shown in the paragraph after Definition 2. Conversely, let $f \in l_{p,q}\{E\}'$. If for each $i \in I$ we define

 $x'_i \in E'$ by

$$\langle x, x'_i \rangle = f((0,...,0,x,0,...))$$
 for each $x \in E$,

.

then we have for any $\{x_i\} \in l_{p,q}\{E\}$

(22)

$$\sum_{i=1}^{\infty} |\langle x_{i}, x_{i}' \rangle| = \sum_{i=1}^{\infty} |f((0,...,0,x_{i},0,...))|$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \alpha_{i} f((0,...,0,x_{i},0,...))|$$

$$= \lim_{n \to \infty} f((\alpha_{1}x_{1},...,\alpha_{n}x_{n},0,...))|$$

$$\leq ||f|| \lim_{n \to \infty} \left(\sum_{i=1}^{n} i^{q/p-1} ||x_{i}||^{*q}\right)^{1/q}|$$

$$\leq ||f|| \lim_{n \to \infty} \left(\sum_{i=1}^{n} i^{q/p-1} ||x_{\phi(i)}||^{q}\right)^{1/q}|$$

$$= ||f|| ||\{x_{i}\}||_{p,q},$$

where α_i $(i \in I)$ are the complex numbers such that $|\alpha_i| = 1$ and $|f((0,..., 0, x_i, 0,...))| = \alpha_i f((0,..., 0, x_i, 0,...))$ for each $i \in I$, and where $\{||x_i||^*\}_{1 \le i \le n}$, $\{||x_{\phi(i)}||\}$ are the non-increasing rearrangements of $\{||x_i||\}_{1 \le i \le n}$, $\{||x_i||\}_{1 \le i < \infty}$ respectively. Therefore we have $\{x_i'\} \in l_{p',q'}^0 \{E'\}$ and $\|\{x_i'\}\|_{p',q'}^0 \le \|f\|$. On the other hand, if for any $\{x_i\} \in l_{p,q} \{E\}$ we put v_n as in (8), then

$$\boldsymbol{v}_n \to \{x_i\} \quad (n \to \infty) \quad \text{in} \quad l_{p,q}\{E\}$$

by Proposition 3. Hence we have

$$f(\lbrace x_i \rbrace) = f(\lim_{n \to \infty} \boldsymbol{v}_n)$$

= $\lim_{n \to \infty} f(\boldsymbol{v}_n)$
= $\lim_{n \to \infty} \sum_{i \in I_n} f((0, \dots, 0, x_i, 0, \dots))$
= $\lim_{n \to \infty} \sum_{i \in I_n} \langle x_i, x_i' \rangle$
= $\sum_{i=1}^{\infty} \langle x_i, x_i' \rangle$,

where the last inequality follows from the fact that the series $\sum_{i=1}^{\infty} \langle x_i, x'_i \rangle$ converges unconditionally by (22). This completes the proof.

COROLLARY. $l_{p',q'}^0\{E'\}$ is a Banach space.

§3. The dual space of $l_{p,q}\{E\}$

THEOREM 2. Let $1 , <math>1 < q < \infty$ and 1/p + 1/p' = 1/q + 1/q' = 1. The dual space of $l_{p,q}{E}$ is isometrically isomorphic (resp. isomorphic) to $l_{p',q'}{E'}$ if $p \le q$ (resp. p > q). In both cases, a sequence $\{x'_i\}$ in $l_{p',q'}{E'}$ is identified with the linear form f defined by

(21)
$$f(\{x_i\}) = \sum_{i=1}^{\infty} \langle x_i, x_i' \rangle \quad \text{for each } \{x_i\} \in l_{p,q}\{E\}.$$

In the latter case, there exists a certain positive number $M_{p,q}$ such that $M_{p,q} > 1$ and

(23)
$$||f|| \le ||\{x'_i\}||_{p',q'} \le M_{p,q}||f||$$
 for every $\{x'_i\} \in l_{p',q'}\{E'\}$.

PROOF. In case of p=q, the statement is well known and proved in [2].

(i) Let $1 . Let <math>\{x'_i\} \in l_{p',q'}\{E'\}$. Then the linear form f defined by (21) is continuous and $||f|| \le ||\{x'_i\}||_{p',q'}$. Indeed, from Lemma 3 we have for any $\{x_i\} \in l_{p,q}\{E\}$

$$|f(\{x_i\})| \le \sum_{i=1}^{\infty} |\langle x_i, x_i' \rangle|$$
$$\le ||\{x_i\}||_{p,q} ||\{x_i'\}||_{p',q'},$$

whence we have $f \in l_{p,q}\{E\}'$ and $||f|| \le ||\{x_i'\}||_{p',q'}$ simultaneously with convergence of the series in (21).

Conversely, let $f \in l_{p,q}\{E\}'$. If we define $x'_i \in E'$ $(i \in I)$ by

$$\langle x, x'_i \rangle = f((0,...,0, x, 0,...))$$
 for each $x \in E$,

then for any $\{x_i\} \in l_{p,q}\{E\}$ the series $\sum_{i=1}^{\infty} \langle x_i, x_i' \rangle$ converges unconditionally by (22). Hence, if for any $\{x_i\} \in l_{p,q}\{E\}$ we put u_n as in (7), then by Proposition 3 we have

$$f(\lbrace x_i \rbrace) = f(\lim_{n \to \infty} u_n)$$

= $\lim_{n \to \infty} f(u_n)$
= $\lim_{n \to \infty} \sum_{i=1}^n \langle x_{\phi(i)}, x'_{\phi(i)} \rangle$
= $\sum_{i=1}^\infty \langle x_i, x'_i \rangle$,

where ϕ is the permutation such that $\{\|x_{\phi(i)}\|\}$ is the non-increasing rearrangement of $\{\|x_i\|\}$. Since $f \in l_p\{E\}'$ from Corollary to Proposition 2 and $l_p\{E\}' = l_{p'}\{E'\}$, $\{x'_i\} \in l_{p'}\{E'\}$. Therefore, $\lim_{i\to\infty} x'_i = 0$ and we can take the non-increasing rearrangement $\{\|x'_{\psi(i)}\|\}$ of $\{\|x'_i\|\}$. Let *n* be an arbitrary positive integer. Then for any $\varepsilon > 0$ there exist $x_i \in E$, $1 \le i \le n$, such that $\|x_i\| = 1$ and

$$\langle x_i, x'_{\psi(i)} \rangle \geq ||x'_{\psi(i)}|| - \varepsilon_i,$$

where

$$\varepsilon_{i} = \frac{\varepsilon \| x_{\psi(i)}' \|}{\left(\sum_{i=1}^{n} i^{q'/p'-1} \| x_{\psi(i)}' \|^{q'} \right)^{1/q'}}.$$

Put

$$\boldsymbol{t}_n = \sum_{i=1}^n i^{q'/p'q-1/p} \|x'_{\psi(i)}\|^{q'/q} (0, ..., 0, x_i, 0, ...).$$

Since the non-increasing rearrangement of $\{i^{q'/p'q-1/p} \| x'_{\psi(i)} \|^{q'/q}\}_{1 \le i \le n}$ is invariant because of q'/p'q-1/p=q'/p'-1<0, we have

(24)
$$|f(t_n)| \le ||f|| ||t_n||_{p,q}$$
$$= ||f| \Big(\sum_{i=1}^n i^{q/p-1+q'/p'-q/p} ||x'_{\psi(i)}||^{q'} \Big)^{1/q}$$
$$= ||f| \Big(\sum_{i=1}^n i^{q'/p'-1} ||x'_{\psi(i)}||^{q'} \Big)^{1/q}.$$

On the other hand,

(25)
$$|f(t_n)| = \sum_{i=1}^n i^{q'/p'q-1/p} ||x'_{\psi(i)}||^{q'/q} < x_i, \ x'_{\psi(i)} >$$
$$\geq \sum_{i=1}^n i^{q'/p'-1} ||x'_{\psi(i)}||^{q'/q} (||x'_{\psi(i)}|| - \varepsilon_i)$$
$$= \sum_{i=1}^n i^{q'/p'-1} ||x'_{\psi(i)}||^{q'} - \varepsilon \left(\sum_{i=1}^n i^{q'/p'-1} ||x'_{\psi(i)}||^{q'}\right)^{1/q}$$

By (24) and (25) we have

$$\left(\sum_{i=1}^{n} i^{q'/p'-1} \|x'_{\psi(i)}\|^{q'}\right)^{1/q'} \le \|f\| + \varepsilon.$$

Since ε and *n* are arbitrary, this shows that $\{x'_i\} \in l_{p',q'}\{E'\}$ and $||\{x'_i\}||_{p',q'} \le ||f||$. We have thus proved the theorem for 1 .

(ii) Let $1 < q < p \le \infty$ and suppose that E is reflexive. Since $l_{p,q}\{E\}'$ is

isometrically isomorphic to $l_{p',q'}^0\{E'\}$ by Proposition 5, we have only to prove that $l_{p',q'}\{E'\}$ and $l_{p',q'}^0\{E'\}$ are isomorphic. Here one should note that the former is a quasi-normed space and the latter is a normed space. Let $\{x_i'\} \in$ $l_{p',q'}\{E'\}$. Then, by Lemma 3 for any $\{x_i\} \in l_{p,q}\{E\}$

$$\sum_{i=1}^{\infty} |\langle x_i, x_i' \rangle| \leq ||\{x_i\}||_{p,q} ||\{x_i'\}||_{p',q'} < \infty,$$

from which it follows that $\{x'_i\} \in l^0_{p',q'}\{E'\}$ and $\|\{x'_i\}\|^0_{p',q'} \le \|\{x'_i\}\|_{p',q'}$. Thus we have

(26)
$$l_{p',q'}\{E'\} \subset l_{p',q'}^{0}\{E'\}, \quad \|\cdot\|_{p',q'}^{0} \leq \|\cdot\|_{p',q'}.$$

Let *i* be the canonical injection of $l_{p',q'}\{E'\}$ into $l_{p',q'}^0\{E'\}$; $i(\{x'_i\}) = \{x'_i\}$ for each $\{x'_i\} \in l_{p',q'}\{E'\}$. Then the image of *i* is dense in $l_{p',q'}^0\{E'\}$, since $\mathscr{F}(E') \subset l_{p',q'}^0\{E'\}$ and $\mathscr{F}(E')$ is dense in $l_{p',q'}^0\{E'\}$ by Proposition 4. Therefore '*i*: $l_{p',q'}^0\{E'\} = l_{p,q}\{E'\}'$, the transpose of *i*, is also a continuous injection. Since $l_{p',q'}^0\{E'\}' = l_{p,q}\{E'\}'$ by Proposition 5 and since $l_{p',q'}^0\{E'\}' = l_{p,q}\{E'\}' = l_{p,q}\{E'\}' = l_{p,q}\{E\}''$ by Proposition 6 $l_{p,q}\{E\}'' = l_{p,q}\{E\}'''$ into $l_{p,q}\{E\}$. Furthermore, '*i* maps $l_{p,q}\{E\}$ onto $l_{p,q}\{E\}$ identically by the definition of '*i*. Consequently, $l_{p,q}\{E\}'' = l_{p,q}\{E\}$ and '*i* must be an isometric isomorphism. Hence

$${}^{t}({}^{t}i): l_{p',q'}\{E'\}'' \to l_{p',q'}^{0}\{E'\}''$$

is also an isometric isomorphism, from which it follows that the quasi-norm $\|\cdot\|_{p',q'}$ and the norm $\|\cdot\|_{p',q'}^0$ are equivalent on $l_{p',q'}\{E'\}$ by Banach's homomorphism theorem (cf. [4], p. 294). Therefore $l_{p',q'}\{E'\}$ is complete for the norm $\|\cdot\|_{p',q'}^0$ since it is complete for its own quasi-norm by Theorem 1. This, combined with the fact that $l_{p',q'}\{E'\}$ is dense in $l_{p',q'}^0\{E'\}$, shows that $l_{p',q'}\{E'\}$ and $l_{p',q'}^0\{E'\}$ are isomorphic.

(iii) Let $1 < q < p \le \infty$ and suppose that *E* is an arbitrary Banach space. Let $\{x_i'\} \in l_{p',q'}^0 \{E'\}$. Put $e'_i = x'_i / ||x'_i||$ (resp. $e'_i = 0$) if $x'_i \neq 0$ (resp. $x'_i = 0$) and $\alpha_i = ||x'_i||$. Then, $x'_i = \alpha_i e'_i$ for each $i \in I$. For any $\varepsilon > 0$, if $e'_i \neq 0$, there exists an $e_i \in E$ such that $||e_i|| = 1$ and $\langle e_i, e'_i > > 1 - \varepsilon$. If $e'_i = 0$, we put $e_i = 0$. Then, for any $\{\xi_i\} \in l_{p,q}$ with $||\{\xi_i\}||_{p,q} \le 1$ we have

$$\sum_{i=1}^{\infty} |\xi_i \alpha_i| \leq \frac{1}{1-\varepsilon} \sum_{i=1}^{\infty} |\langle \xi_i e_i, \alpha_i e_i' \rangle|$$
$$\leq \frac{1}{1-\varepsilon} \sup_{\|\{x_i\}\|_{p,q} \leq 1} \sum_{i=1}^{\infty} |\langle x_i, x_i' \rangle|$$
$$= \frac{1}{1-\varepsilon} \|\{x_i'\}\|_{p',q'}^0.$$

Letting $\varepsilon \to 0$, we have $\sum_{i=1}^{\infty} |\xi_i \alpha_i| \le ||\{x_i'\}||_{p',q'}^0$, which implies

$$\{\alpha_i\} \in l_{p',q'}^0$$
 and $\|\{\alpha_i\}\|_{p',q'}^0 \le \|\{x_i'\}\|_{p',q'}^0$.

Since $l_{p',q'}^0$ is isomorphic to $l_{p',q'}$ by (ii), $\{\alpha_i\} \in l_{p',q'}$. Let $M_{p,q}$ be a positive number such that $M_{p,q} > 1$ and

$$\|\{\beta_i\}\|_{p',q'}^0 \le \|\{\beta_i\}\|_{p',q'} \le M_{p,q}\|\{\beta_i\}\|_{p',q'}^0 \quad \text{for every } \{\beta_i\} \in l_{p',q'}^0.$$

Then we have

$$\begin{aligned} \|\{x_i'\}\|_{p',q'} &= \|\{\alpha_i\}\|_{p',q'} \le M_{p,q} \|\{\alpha_i\}\|_{p',q'}^0 \\ &\le M_{p,q} \|\{x_i'\}\|_{p',q'}^0, \end{aligned}$$

whence $\{x'_i\} \in l_{p',q'}\{E'\}$. Thus we have

(27)
$$l^{0}_{p',q'}\{E'\} \subset l_{p',q'}\{E'\}, \quad \|\cdot\|_{p',q'} \leq M_{p,q} \|\cdot\|_{p',q'}^{0}.$$

It follows from (26) and (27) that $l_{p',q'}\{E'\}$ is isomorphic to $l_{p',q'}^0\{E'\}$, which is isometrically isomorphic to $l_{p,q}\{E\}'$ and (23) holds for this $M_{p,q}$. This completes the proof of the theorem.

COROLLARY. Let $1 . <math>l_{p,q}\{E\}$ is a Banach space with the following norm $\|\cdot\|_{p,q}^{0}$ which is equivalent to $\|\cdot\|_{p,q}$:

$$\|\{x_i\}\|_{p,q}^0 = \sup_{\|\{x_i'\}\|_{p',q' \le 1}} \left| \sum_{i=1}^{\infty} \langle x_i, x_i' \rangle \right| \quad \text{for each } \{x_i\} \in l_{p,q}\{E\}.$$

PROOF. Since $l_{p,q}\{E\}''$ and $l_{p,q}\{E''\}$ are isomorphic by Theorem 2, it is easily seen that $\|\cdot\|_{p,q}^0$ is a norm on $l_{p,q}\{E\}$ which is equivalent to the quasi-norm $\|\cdot\|_{p,q}$.

As a consequence of Theorem 2 we have the following

THEOREM 3. Let $1 , <math>1 < q < \infty$. If E is reflexive, then $l_{p,q}{E}$ is reflexive.

The assertion for p < q means $l_{p,q}{E}$ is reflexive as a topological vector space (cf. [7]). However, it is also reflexive as the Banach space defined in the preceding corollary.

§4. Conjugates of (p, q; r)-absolutely summing operators

In this section, as an application of the result obtained in the preceding section, we shall characterize the conjugates of (p, q; r)-absolutely summing operators ([6], [9]).

We first recall the definitions of the space of weakly *p*-summable sequences $l_p(E)$ and the space of strongly *p*-summable sequences $l_p(E)$ ([2]).

For $1 \le p \le \infty$ $l_p(E)$ is the normed space consisting of all *E*-valued sequences $\{x_i\}$ such that for any $x' \in E'$ the sequence $\{\langle x_i, x' \rangle\}$ belongs to l_p , where the norm is given by

$$\varepsilon_p(\lbrace x_i \rbrace) = \begin{cases} \sup_{\Vert x' \Vert \le 1} \left(\sum_{i=1}^{\infty} \vert < x_i, \, x' > \vert^p \right)^{1/p} & \text{if } 1 \le p < \infty, \\ \sup_{i \ge 1} \Vert x_i \Vert & \text{if } p = \infty. \end{cases}$$

For $1 \le p \le \infty$ $l_p \le k$ is the normed space consisting of all E-valued sequences $\{x_i\}$ such that for each $\{x'_i\} \in l_{p'}(E')$ the series $\sum_{i=1}^{\infty} < x_i, x'_i >$ converges, where the norm is given by

$$\sigma_p(\{x_i\}) = \sup_{v_{p'}(\{x'_i\}) \le 1} \left| \sum_{i=1}^{\infty} < x_i, x'_i > \right|.$$

We now recall the following

DEFINITION 3. For $1 \le p, q, r \le \infty$ an operator T: $E \to F$ is called (p, q; r)-absolutely summing ([9]) provided there exists a constant $c \ge 0$ such that

(28)
$$\|\{Tx_i\}\|_{p,q} \le c \varepsilon_r(\{x_i\}) \quad \text{for every } \{x_i\} \in \mathscr{F}(E)$$

and (r; p, q)-strongly summing ([6]) provided there exists a constant $c \ge 0$ such that

(29)
$$\sigma_r(\{Tx_i\}) \le c \|\{x_i\}\|_{p,q} \quad \text{for every } \{x_i\} \in \mathscr{F}(E).$$

The smallest number c for which (28) (resp. (29)) holds is denoted by $\Pi_{p,q;r}(T)$ (resp. $D_{r;p,q}(T)$).

 $\Pi_{p,q;r}$ (resp. $D_{r;p,q}$) is a norm for $p \ge q$ and a quasi-norm for p < q on the space of (p, q; r)-absolutely summing (resp. (r; p, q)-strongly summing) operators.

(p, p; r)-absolutely summing operators are exactly (p, r)-absolutely summing operators (B. Mitjagin and A. Pełczyński [8]), (p, p; p)-absolutely summing operators coincide with absolutely *p*-summing operators (A. Pietsch [11]) and (p; p, p)-strongly summing operators coincide with strongly *p*-summing operators (J. S. Cohen [2]).

THEOREM 4. Let $1 , <math>1 < q < \infty$, $1 \le r \le \infty$. An operator $T: E \rightarrow F$ is (p, q; r)-absolutely summing if and only if its conjugate operator $T': F' \rightarrow E'$ is (r'; p', q')-strongly summing. In this case,

$$\begin{split} D_{r';p',q'}(T') &\leq 2^{2/p} \Pi_{p,q;r}(T) \leq 2^{2/p} M_{p,q} D_{r';p',q'}(T') \quad for \quad p < q, \\ D_{r';p',q'}(T') &\leq \Pi_{p,q;r}(T) \leq M_{p,q} D_{r';p',q'}(T') \quad for \quad p \geq q, \end{split}$$

where $M_{p,q}$ is as in Theorem 2.

PROOF. By Proposition 1 we can improve the estimate in Theorem 2 of [6] as follows: For every (p, q; r)-absolutely summing operator T, its conjugate operator T' is (r'; p', q')-strongly summing and we have

$$\begin{split} D_{r';p',q'}(T') &\leq 2^{2/p} \Pi_{p,q;r}(T) \quad \text{for} \quad p < q, \\ D_{r';p',q'}(T') &\leq \Pi_{p,q;r}(T) \quad \text{for} \quad p \geq q. \end{split}$$

On the other hand, since $l_{p,q}\{E\}'$ and $l_{p',q'}\{E'\}$ are isomorphic by Theorem 2, we have by Remark 1 in [6] that if T' is (r'; p', q')-strongly summing, then T is (p, q; r)-absolutely summing and $\Pi_{p,q;r}(T) \leq D_{r';p',q'}(T')$.

Similarly, by Theorem 4 and Remark 2 in [6], combined with Theorem 2, we have the following characterization of an operator whose conjugate is (p, q; r)-absolutely summing.

THEOREM 5. Let $1 , <math>1 < q < \infty$, $1 \le r \le \infty$. For an operator $T: E \rightarrow F$, the conjugate operator $T': F' \rightarrow E'$ is (p, q; r)-absolutely summing if and only if T is (r'; p', q')-strongly summing. In this case,

$$D_{r';p',q'}(T) \le \Pi_{p,q;r}(T') \le M_{p',q'}D_{r';p',q'}(T)$$

for a certain number $M_{p',q'} > 1$.

References

- [1] P. L. Butzer and H. Berens, *Semi-groups of operators and approximation*, Springer, Berlin, 1967.
- [2] J. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Dissertation, Univ. of Maryland, 1970.
- [3] G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge Univ. Press, 1967.
- [4] J. Horváth, Topological vector spaces and distributions I, Addison-Wesley, Reading, Mass., 1966.
- [5] R. A. Hunt, On L(p, q) spaces, Enseignement Math. 12 (1966), 249–276.
- [6] M. Kato, Conjugates of (p, q; r)-absolutely summing operators, Hiroshima Math. J. 5 (1975), 127–134.
- [7] G. Köthe, Topologische lineare Räume, Springer, Berlin, 1960.
- [8] B. Mitjagin and A. Pełczyński, Nuclear operators and approximative dimension, Proc. I. C. M. Moscow, 1966, 366–372.
- [9] K. Miyazaki, (p, q; r)-absolutely summing operators, J. Math. Soc. Japan 24 (1972),

341-354.

- [10] K. Miyazaki, (p, q)-nuclear and (p, q)-integral operators, Hiroshima Math. J. 4 (1974), 99-132.
- [11] A. Pietsch, *Absolut p-summierende Abbildungen in normierten Räumen*, Studia Math. **28** (1967), 333–353.
- [12] K. Yoshinaga, Lorentz spaces and the Calderón-Zygmund theorem, Bull. Kyushu Inst. Tech. 16 (1969), 1–38.

Department of Mathematics, Faculty of Science, Hiroshima University