On Lorentz Spaces $\boldsymbol{l}_{\boldsymbol{p}, \boldsymbol{q}}\{\boldsymbol{E}\}$

Mikio Kato
(Received August 22, 1975)

Introduction

The Lorentz space $l_{p, q}\{E\}$ is the space of zero sequences $\left\{x_{i}\right\}$ with values in a Banach space E such that

$$
\left\|\left\{x_{i}\right\}\right\|_{p, q}= \begin{cases}\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{i}\right\|^{* q}\right)^{1 / q} & \text { for } \quad 1 \leq p \leq \infty, \quad 1 \leq q<\infty \\ \sup _{i} i^{1 / p}\left\|x_{i}\right\|^{*} & \text { for } \quad 1 \leq p<\infty, \quad q=\infty\end{cases}
$$

is finite, where $\left\{\left\|x_{i}\right\|^{*}\right\}$ is the non-increasing rearrangement of $\left\{\left\|x_{i}\right\|\right\}$. In particular, $l_{p, p}\{E\}$ coincides with $l_{p}\{E\}$ (cf. [10]). Recently, the space $l_{p, q}\{E\}$ has been used to introduce and investigate several classes of operators, e.g., (p, q) nuclear, $(p, q ; r)$-absolutely summing and ($r ; p, q$)-strongly summing operators ([6], [9], [10]). However, concerning $l_{p, q}\{E\}$ itself very little is known, although the Lorentz space $L_{p, q}(E)$ has been considerably investigated ([1], [5], [12]). Thus it seems to be significant to clarify fundamental and intrinsic properties of $l_{p, q}\{E\}$. The purpose of this paper is to establish a sequence of important properties of the space $l_{p, q}\{E\}$ and especially to characterize the dual space of $l_{p, q}\{E\}$.

We shall show that $l_{p, q}\{E\}^{\prime}$ and $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ are isometrically isomorphic (resp. isomorphic) for $p \leq q$ (resp. $p>q$) where $1 / p+1 / p^{\prime}=1 / q+1 / q^{\prime}=1$. It should be noted that for $p>q l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ is not a normed space but a quasi-normed space. In this case, we shall introduce the space $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ as the Banach space of all E^{\prime} valued sequences $\left\{x_{i}^{\prime}\right\}$ such that for each $\left\{x_{i}\right\} \in l_{p, q}\{E\}$ the series $\sum_{i=1}^{\infty}<x_{i}, x_{i}^{\prime}>$ converges, where the norm is given by $\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}=\sup \left\{\left|\sum_{i=1}^{\infty}<x_{i}, x_{i}^{\prime}>\right| ;\left\|\left\{x_{i}\right\}\right\|_{p, q}\right.$ $\leq 1\}$, and show that $l_{p, q}\{E\}^{\prime}$ is isometrically isomorphic to $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ and $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ is isomorphic to $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$. As an application we shall refine the main result in [6], that is, we shall characterize the conjugates of ($p, q ; r$)-absolutely summing operators ([9]) as ($r^{\prime} ; p^{\prime}, q^{\prime}$)-strongly summing operators where $1 / p+1 / p^{\prime}=1 / q$ $+1 / q^{\prime}=1 / r+1 / r^{\prime}=1$.

The author would like to thank Professor S. Tôgô and Professor M. Itano for their many valuable comments in preparing this paper.

§ 1. The space $\boldsymbol{l}_{\boldsymbol{p}, \boldsymbol{q}}\{\boldsymbol{E}\}$

Throughout the paper E and F will denote Banach spaces and E^{\prime} and F^{\prime} their continuous dual spaces. Let K be the real or complex field and I be the set of positive integers.

Definition 1. For $1 \leq p \leq \infty, 1 \leq q<\infty$ or $1 \leq p<\infty, q=\infty l_{p, q}\{E\}$ is the space of all E-valued 0 -sequences $\left\{x_{i}\right\}$ such that

$$
\left\|\left\{x_{i}\right\}\right\|_{p, q}= \begin{cases}\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\phi(i)}\right\|^{q}\right)^{1 / q} & \text { for } 1 \leq p \leq \infty, \quad 1 \leq q<\infty, \\ \sup _{i} i^{1 / p}\left\|x_{\phi(i)}\right\| & \text { for } \quad 1 \leq p<\infty, \quad q=\infty\end{cases}
$$

is finite, where $\left\{\left\|x_{\phi(i)}\right\|\right\}$ is the non-increasing rearrangement of $\left\{\left\|x_{i}\right\|\right\}$. In particular, if $E=K, l_{p, q}\{K\}$ is denoted by $l_{p, q}(c f .[10])$.

In case of $p=q l_{p, p}\{E\}$ coincides with $l_{p}\{E\}$ and $\|\cdot\|_{p, p}=\|\cdot\|_{p}$.
Remark. In the case where $1 \leq p<q \leq \infty,\|\cdot\|_{p, q}$ is not a norm. Indeed, if $1 \leq p<q<\infty$, we can take two positive numbers α and β such that

$$
1<\frac{\alpha}{\beta}<\left(2^{q / p-1}\right)^{1 /(q-1)}
$$

By the mean value theorem of differential calculus there exist two positive numbers γ_{1} and γ_{2} such that

$$
\begin{aligned}
& \left\{\left(\frac{\alpha+\beta}{2}\right)^{q}-\beta^{q}\right\} / \frac{\alpha-\beta}{2}=q \gamma_{1}^{q-1}, \\
& \left\{\alpha^{q}-\left(\frac{\alpha+\beta}{2}\right)^{q}\right\} / \frac{\alpha-\beta}{2}=q \gamma_{2}^{q-1}
\end{aligned}
$$

and

$$
\beta<\gamma_{1}<\frac{\alpha+\beta}{2}<\gamma_{2}<\alpha .
$$

Then we have

$$
\begin{aligned}
\left\{\alpha^{q}-\left(\frac{\alpha+\beta}{2}\right)^{q}\right\} /\left\{\left(\frac{\alpha+\beta}{2}\right)^{q}-\beta^{q}\right\} & =\left(\frac{\gamma_{2}}{\gamma_{1}}\right)^{q-1} \\
& <\left(\frac{\alpha}{\beta}\right)^{q-1} \\
& <2^{q / p-1},
\end{aligned}
$$

whence

$$
\alpha^{q}+2^{q / p-1} \beta^{q}<\left(\frac{\alpha+\beta}{2}\right)^{q}+2^{q / p-1}\left(\frac{\alpha+\beta}{2}\right)^{q}
$$

Consequently, if we put

$$
\begin{aligned}
& \boldsymbol{u}=(\alpha, \beta, 0,0,0, \ldots), \\
& \boldsymbol{v}=(\beta, \alpha, 0,0,0, \ldots),
\end{aligned}
$$

we have

$$
\begin{aligned}
\|\boldsymbol{u}\|_{p, q}+\|\boldsymbol{v}\|_{p, q} & =2\left(\alpha^{q}+2^{q / \boldsymbol{p}-1} \beta^{q}\right)^{1 / q} \\
& <\left\{(\alpha+\beta)^{q}+2^{q / p-1}(\alpha+\beta)^{q}\right\}^{1 / q} \\
& =\|\boldsymbol{u}+\boldsymbol{v}\|_{p, q},
\end{aligned}
$$

which implies that $\|\cdot\|_{p, q}$ is not a norm. If $1 \leq p<q=\infty$, we can take two positive numbers α and β such that $1<\alpha / \beta<2^{1 / p}$, and show that $\|\cdot\|_{p, \infty}$ does not satisfy the triangular inequality for \boldsymbol{u} and \boldsymbol{v}, which implies that $\|\cdot\|_{p, \infty}$ is not a norm.

We now recall the following inequality (Hardy, Littlewood and Pólya [3]) which is one of the most useful tools in our subsequent discussions.

Let $\left\{c_{i}^{*}\right\}$ and $\left\{{ }^{*} c_{i}\right\}$ be the non-increasing and non-decreasing rearrangements of a finite sequence $\left\{c_{i}\right\}$ of positive numbers. Then for two sequences $\left\{a_{i}\right\}_{1 \leq i \leq n}$ and $\left\{b_{i}\right\}_{1 \leq i \leq n}$ of positive numbers,

$$
\begin{equation*}
\sum_{i} a_{i}^{* *} b_{i} \leq \sum_{i} a_{i} b_{i} \leq \sum_{i} a_{i}^{*} b_{i}^{*} . \tag{1}
\end{equation*}
$$

Lemma 1. Let $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$ be 0 -sequences in E. Let $\left\{\left\|x_{\phi(i)}\right\|\right\}$, $\left\{\left\|y_{\psi(i)}\right\|\right\}$ and $\left\{\left\|x_{\omega(i)}+y_{\omega(i)}\right\|\right\}$ be the non-increasing rearrangements of $\left\{\left\|x_{i}\right\|\right\},\left\{\left\|y_{i}\right\|\right\}$ and $\left\{\left\|x_{i}+y_{i}\right\|\right\}$ respectively. Then for any positive integer k

$$
\left\|x_{\omega(2 k)}+y_{\omega(2 k)}\right\| \leq\left\|x_{\omega(2 k-1)}+y_{\omega(2 k-1)}\right\| \leq\left\|x_{\phi(k)}\right\|+\left\|y_{\psi(k)}\right\| .
$$

Proof. The first inequality is clear. Since

$$
\begin{aligned}
& \left\{i \in I:\left\|x_{i}+y_{i}\right\|>\left\|x_{\phi(k)}\right\|+\left\|y_{\psi(k)}\right\|\right\} \\
& \quad \subset\left\{i \in I:\left\|x_{i}\right\|>\left\|x_{\phi(k)}\right\|\right\} \cup\left\{i \in I:\left\|y_{i}\right\|>\left\|y_{\psi(k)}\right\|\right\}
\end{aligned}
$$

comparing the cardinal numbers of these sets we have

$$
\operatorname{card}\left\{i \in I:\left\|x_{i}+y_{i}\right\|>\left\|x_{\phi(k)}\right\|+\left\|y_{\psi(k)}\right\|\right\}
$$

$$
\begin{aligned}
& \leq \operatorname{card}\left\{i \in I:\left\|x_{i}\right\|>\left\|x_{\phi(k)}\right\|\right\}+\operatorname{card}\left\{i \in I:\left\|y_{i}\right\|>\left\|y_{\psi(k)}\right\|\right\} \\
& \leq 2(k-1)
\end{aligned}
$$

which implies the second inequality.
Proposition 1. If $1 \leq q \leq p \leq \infty, l_{p, q}\{E\}$ is a normed space. If $1 \leq p$ $<q \leq \infty, l_{p, q}\{E\}$ is not a normed space but a quasi-normed space; for any $\left\{x_{i}\right\}$, $\left\{y_{i}\right\} \in l_{p, q}\{E\}$

$$
\left\|\left\{x_{i}+y_{i}\right\}\right\|_{p, q} \leq 2^{1 / p}\left(\left\|\left\{x_{i}\right\}\right\|_{p, q}+\left\|\left\{y_{i}\right\}\right\|_{p, q}\right)
$$

Proof. Let $\left\{x_{i}\right\},\left\{y_{i}\right\} \in l_{p, q}\{E\}$. Let $\left\{\left\|x_{\phi(i)}\right\|\right\},\left\{\left\|y_{\psi(i)}\right\|\right\}$ and $\left\{\| x_{\omega(i)}+\right.$ $\left.y_{\omega(i)} \|\right\}$ be the non-increasing rearrangements of $\left\{\left\|x_{i}\right\|\right\},\left\{\left\|y_{i}\right\|\right\}$ and $\left\{\left\|x_{i}+y_{i}\right\|\right\}$ respectively. We assume $p \neq q$. In the case where $1 \leq q<p \leq \infty,\left\{i^{q / p-1}\right\}$ is nonincreasing and hence by (1) we have

$$
\begin{aligned}
\left\|\left\{x_{i}+y_{i}\right\}\right\|_{p, q} & =\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\omega(i)}+y_{\omega(i)}\right\|^{q}\right)^{1 / q} \\
& \leq\left\{\sum_{i=1}^{\infty}\left(i^{1 / p-1 / q}\left\|x_{\omega(i)}\right\|+i^{1 / p-1 / q}\left\|y_{\omega(i)}\right\|\right)^{q}\right\}^{1 / q} \\
& \leq\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\omega(i)}\right\|^{q}\right)^{1 / q}+\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|y_{\omega(i)}\right\|^{q}\right)^{1 / q} \\
& \leq\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\phi(i)}\right\|^{q}\right)^{1 / q}+\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|y_{\psi(i)}\right\|^{q}\right)^{1 / q} \\
& =\left\|\left\{x_{i}\right\}\right\|_{p, q}+\left\|\left\{y_{i}\right\}\right\|_{p, q} .
\end{aligned}
$$

Thus $l_{p, q}\{E\}$ is a normed space in this case. In Remark after Definition 1 we have shown that for $1 \leq p<q \leq \infty l_{p, q}\{E\}$ is not a normed space. Let $1 \leq p<q$ $<\infty$. Then, by Lemma 1 we have

$$
\begin{aligned}
& \sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\omega(i)}+y_{\omega(i)}\right\|^{q} \\
& \quad=\sum_{i=1}^{\infty}\left\{(2 i-1)^{q / p-1}\left\|x_{\omega(2 i-1)}+y_{\omega(2 i-1)}\right\|^{q}+(2 i)^{q / p-1}\left\|x_{\omega(2 i)}+y_{\omega(2 i)}\right\|^{q}\right\}^{1 / 4} \\
& \quad \leq 2^{q / p} \sum_{i=1}^{\infty} i^{q / p-1}\left(\left\|x_{\phi(i)}\right\|+\left\|y_{\psi(i)}\right\|\right)^{q} .
\end{aligned}
$$

Therefore,

$$
\left\|\left\{x_{i}+y_{i}\right\}\right\|_{p, q} \leq 2^{1 / p}\left\{\sum_{i=1}^{\infty}\left(i^{1 / p-1 / q}\left\|x_{\phi(i)}\right\|+i^{1 / p-1 / q}\left\|y_{\psi(i)}\right\|\right)^{q}\right\}^{1 / q}
$$

$$
\begin{aligned}
& \leq 2^{1 / p}\left\{\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\phi(i)}\right\|^{q}\right)^{1 / q}+\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|y_{\psi(i)}\right\|^{q}\right)^{1 / q}\right\} \\
& =2^{1 / p}\left(\left\|\left\{x_{i}\right\}\right\|_{p, q}+\left\|\left\{y_{i}\right\}\right\|_{p, q}\right) .
\end{aligned}
$$

For $1 \leq p<q=\infty$ we can show in a similar way

$$
\left\|\left\{x_{i}+y_{i}\right\}\right\|_{p, \infty} \leq 2^{1 / p}\left(\left\|\left\{x_{i}\right\}\right\|_{p, \infty}+\left\|\left\{y_{i}\right\}\right\|_{p, \infty}\right) .
$$

Thus $l_{p, q}\{E\}$ is a quasi-normed space if $1 \leq p<q \leq \infty$.
Lemma 2. Let $1 \leq p, q<\infty$. Let $\left\{x_{i}\right\} \in l_{p, q}\{E\}$. Then for every $i \in I$

$$
\begin{array}{ll}
\left\|x_{\phi(i)}\right\| \leq\left(\frac{q}{p}\right)^{1 / q} i^{-1 / p}\left\|\left\{x_{i}\right\}\right\|_{p, q} & \text { if } 1 \leq p \leq q<\infty \\
\left\|x_{\phi(i)}\right\| \leq i^{-1 / p}\left\|\left\{x_{i}\right\}\right\|_{p, q} & \text { if } 1 \leq q<p<\infty \tag{3}
\end{array}
$$

Proof. If $\left\{x_{i}\right\} \in l_{p, q}\{E\}$, for every $i \in I$

$$
\begin{align*}
\left\|\left\{x_{i}\right\}\right\|_{p, q}^{q} & \geq \sum_{k=1}^{i} k^{q / p-1}\left\|x_{\phi(k)}\right\|^{q} \tag{4}\\
& \geq\left\|x_{\phi(i)}\right\|^{q} \sum_{k=1}^{i} k^{q / p-1} .
\end{align*}
$$

In case of $p=q$ (2) follows immediately from (4). If $1 \leq p<q<\infty$, for each $k \in I$

$$
\frac{q}{p} k^{q / p-1} \geq k^{q / p}-(k-1)^{q / p},
$$

whence (2) follows from (4). In case of $1 \leq q<p<\infty,\left\{i^{q / p-1}\right\}$ is non-increasing and therefore (3) is immediately from (4).

Proposition 2. (i) Let $1 \leq p<\infty, 1 \leq q<q_{1} \leq \infty$. Then

$$
l_{p, q}\{E\} \subset l_{p, q_{1}}\{E\}
$$

and for every $\left\{x_{i}\right\} \in l_{p, q}\{E\}$

$$
\begin{array}{ll}
\left\|\left\{x_{i}\right\}\right\|_{p, q_{1}} \leq\left(\frac{q}{p}\right)^{1 / q-1 / q_{1}}\left\|\left\{x_{i}\right\}\right\|_{p, q} & \text { if } p<q, \\
\left\|\left\{x_{i}\right\}\right\|_{p, q_{1}} \leq\left\|\left\{x_{i}\right\}\right\|_{p, q} & \text { if } p \geq q . \tag{6}
\end{array}
$$

(ii) Let either $1 \leq p<p_{1} \leq \infty, 1 \leq q<\infty$ or $1 \leq p<p_{1}<\infty, q=\infty$. Then

$$
l_{p, q}\{E\} \subset l_{p_{1}, q}\{E\}
$$

and for every $\left\{x_{i}\right\} \in l_{p, q}\{E\}$

$$
\left\|\left\{x_{i}\right\}\right\|_{p_{1}, q} \leq\left\|\left\{x_{i}\right\}\right\|_{p, q}
$$

Proof. Let $\left\{x_{i}\right\} \in l_{p, q}\{E\}$. Let $1 \leq p<q<q_{1}<\infty$. Then by using (2) we have

$$
\begin{aligned}
\left\|\left\{x_{i}\right\}\right\|_{p, q_{1}}^{q_{1}} & =\sum_{i=1}^{\infty} i^{q_{1} / p-1}\left\|x_{\phi(i)}\right\|^{q_{1}-q}\left\|x_{\phi(i)}\right\|^{q} \\
& \leq \sum_{i=1}^{\infty} i^{q_{1} / p-1}\left(\frac{q}{p}\right)^{\frac{q_{1}-q}{q}} i^{-\frac{q_{1}-q}{p}}\left\|\left\{x_{i}\right\}\right\|_{p, q}^{q_{1}-q}\left\|x_{\phi(i)}\right\|^{q} \\
& =\left(\frac{q}{p}\right)^{q_{1} / q-1}\left\|\left\{x_{i}\right\}\right\|_{p, q}^{q_{1}-q} \sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\phi(i)}\right\|^{q} \\
& =\left(\frac{q}{p}\right)^{q_{1} / q-1}\left\|\left\{x_{i}\right\}\right\|_{p, q}^{q_{1}},
\end{aligned}
$$

whence we obtain (5) and $l_{p, q}\{E\} \subset l_{p, q_{1}}\{E\}$. If $1 \leq p<q<q_{1}=\infty$, (5) follows immediately from (2). In case of $p \geq q$, in a similar way we can deduce (6) from (3).

The proof of (ii) is easy and omitted.
Corollary. Let $1 \leq p_{1} \leq p \leq q \leq q_{1} \leq \infty$ and let p, q be not both equal to ∞. Then:
(i)

$$
l_{p_{1}}\{E\} \subset l_{p, q}\{E\} \subset l_{q_{1}}\{E\}
$$

and for every $\left\{x_{i}\right\} \in l_{p_{1}}\{E\}$

$$
\left(\frac{p}{q}\right)^{1 / q-1 / q_{1}}\left\|\left\{x_{i}\right\}\right\|_{q_{1}} \leq\left\|\left\{x_{i}\right\}\right\|_{p, q} \leq\left\|\left\{x_{i}\right\}\right\|_{p_{1}} .
$$

$$
\begin{equation*}
l_{p_{1}}\{E\} \subset l_{q, p}\{E\} \subset l_{q_{1}}\{E\} \tag{ii}
\end{equation*}
$$

and for every $\left\{x_{i}\right\} \in l_{p_{1}}\{E\}$

$$
\left\|\left\{x_{i}\right\}\right\|_{q_{1}} \leq\left\|\left\{x_{i}\right\}\right\|_{q, p} \leq\left\|\left\{x_{i}\right\}\right\|_{p_{1}} .
$$

We shall now show in the following lemma a generalized form of Hölder's inequality which is stated in a more generalized form without proof in [10].

Lemma 3. Let $1 \leq p, q \leq \infty$ and $1 / p+1 / p^{\prime}=1 / q+1 / q^{\prime}=1$. Let $\left\{x_{i}\right\} \in l_{p, q}\{E\}$ and $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$. Then, $\left\{<x_{i}, x_{i}^{\prime}>\right\} \in l_{1}$ and

$$
\left\|\left\{<x_{i}, x_{i}^{\prime}>\right\}\right\|_{1} \leq\left\|\left\{x_{i}\right\}\right\|_{p, q}\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}} .
$$

Proof. From (1) and the usual Hölder's inequality we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|<x_{i}, x_{i}^{\prime}>\right| & \leq \sum_{i=1}^{\infty} i^{1 / p-1 / q}\left\|x_{\phi(i)}\right\| \cdot i^{1 / p^{\prime}-1 / q^{\prime}}\left\|x_{\psi(i)}^{\prime}\right\| \\
& \leq\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\phi(i)}\right\|^{q}\right)^{1 / q}\left(\sum_{i=1}^{\infty} i^{q^{\prime} / p^{\prime}-1}\left\|x_{\psi(i)}^{\prime}\right\|^{q^{\prime}}\right)^{1 / q^{\prime}} \\
& =\left\|\left\{x_{i}\right\}\right\|_{p, q}\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}
\end{aligned}
$$

In the rest of the paper, we denote by $\mathscr{F}(E)$ the space of E-valued finite sequences.

Proposition 3. For $1 \leq p \leq \infty, 1 \leq q<\infty, \mathscr{F}(E)$ is dense in $l_{p, q}\{E\}$.
Proof. Let $\left\{x_{i}\right\} \in l_{p, q}\{E\}$. When $1 \leq p \leq q<\infty$, let

$$
\begin{equation*}
\boldsymbol{u}_{n}=\sum_{i=1}^{n}\left(0, \ldots, 0,{\frac{\phi(i)}{x_{\phi(i)}}}_{x_{i}}, 0,0,0, \ldots\right) \tag{7}
\end{equation*}
$$

Then $\boldsymbol{u}_{\boldsymbol{n}} \in \mathscr{F}(E)$ and

$$
\begin{aligned}
\left\|\left\{x_{i}\right\}-u_{n}\right\|_{p, q} & =\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\phi(n+i)}\right\|^{q}\right)^{1 / q} \\
& \leq\left(\sum_{i=n+1}^{\infty} i^{q / p-1}\left\|x_{\phi(i)}\right\|^{q}\right)^{1 / q} \\
& \rightarrow 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

When $1 \leq q<p \leq \infty$, let

$$
I_{n}=\left\{i \in I:\left\|x_{i}\right\|>\frac{1}{n}\right\}
$$

and

$$
\begin{equation*}
v_{n}=\sum_{i \in I_{n}}(0, \ldots, 0, \underbrace{i}_{x_{i}}, 0,0,0, \ldots) \tag{8}
\end{equation*}
$$

Since I_{n} is finite, we put $k_{n}=\operatorname{card} I_{n}$. Then for any $j_{0} \in I$ we have

$$
\begin{aligned}
\left\|\left\{x_{i}\right\}-v_{n}\right\|_{p, q}= & \left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\phi\left(k_{n}+i\right)}\right\|^{q}\right)^{1 / q} \\
\leq & \left(\sum_{i=1}^{j_{0}} i^{q / p-1}\left\|x_{\phi\left(k_{n}+i\right)}\right\|^{q}\right)^{1 / q} \\
& +\left(\sum_{i=j_{0}+1}^{\infty} i^{q / p-1}\left\|x_{\phi\left(k_{n}+i\right)}\right\|^{q}\right)^{1 / q} \\
\leq & \frac{1}{n}\left(\sum_{i=1}^{j_{0}} i^{q / p-1}\right)^{1 / q}+\left(\sum_{i=j_{0}+1}^{\infty} i^{q / p-1}\left\|x_{\phi(i)}\right\|^{q}\right)^{1 / q}
\end{aligned}
$$

Hence

$$
\varlimsup_{n \rightarrow \infty}\left\|\left\{x_{i}\right\}-\boldsymbol{v}_{n}\right\|_{p, q} \leq\left(\sum_{i=j_{0}+1}^{\infty} i^{q / p-1}\left\|x_{\phi(i)}\right\|^{q}\right)^{1 / q}
$$

Therefore, letting $j_{0} \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty}\left\|\left\{x_{i}\right\}-\boldsymbol{v}_{n}\right\|_{p, q}=0 .
$$

Lemma 4. Let $\left\{x_{i}^{(v)}\right\}_{i, v}$ be an E-valued double sequence such that $\lim _{i \rightarrow \infty} x_{i}^{(v)}$ $=0$ for each $v \in I$ and let $\left\{x_{i}\right\}$ be an E-valued sequence such that $\lim _{v \rightarrow \infty} x_{i}^{(\nu)}=x_{i}$ (uniformly in i). Then, $\lim _{i \rightarrow \infty} x_{i}=0$ and for each $i \in I$

$$
\begin{equation*}
\left\|x_{\phi(i)}\right\| \leq \lim _{\bar{v} \rightarrow \infty}\left\|x_{\phi_{\nu}(i)}^{(\nu)}\right\| \tag{9}
\end{equation*}
$$

where $\left\{\left\|x_{\phi(i)}\right\|\right\}$ and $\left\{\left\|x_{\phi_{\nu}(i)}^{(\nu)}\right\|\right\}_{i}$ are the non-increasing rearrangements of $\left\{\left\|x_{i}\right\|\right\}$ and $\left\{\left\|x_{i}^{(\nu)}\right\|\right\}_{i}$ respectively.

Proof. It can be easily shown that $\lim _{i \rightarrow \infty} x_{i}^{(v)}=0$ (uniformly in v). Therefore we have immediately $\lim _{i \rightarrow \infty} x_{i}=0$. Let i be an arbitrary positive integer and fixed. If there exists a positive number c_{i} such that

$$
\left\|x_{\phi(i)}\right\|>c_{i}>\lim _{v \rightarrow \infty}\left\|x_{\phi_{v}(i)}^{(v)}\right\|,
$$

then the inequality

$$
\left\|x_{\phi(i)}\right\|>c_{i}>\left\|x_{\phi v(i)}^{(v)}\right\|
$$

is valid for infinitely many $v \in I$. Since $\left\|x_{\phi(k)}\right\|>c_{i}$ and $\lim _{v \rightarrow \infty}\left\|x_{\phi(k)}^{(v)}\right\|=\left\|x_{\phi(k)}\right\|$ for $1 \leq k \leq i$, there exists a $v_{0} \in I$ such that $\left\|x_{\phi(k)}^{(v)}\right\|>c_{i}$ for $v \geq v_{0}$ and $1 \leq k \leq i$. Therefore, if we take a positive integer v_{1} such that $v_{1} \geq v_{0}$ and $c_{i}>\left\|x_{\phi_{v_{1}}(i)}^{\left(\nu_{1}\right)}\right\|$, we have

$$
\left\|x_{\phi(k)}^{\left(v_{1}\right)}\right\|>c_{i}>\left\|x_{\phi_{1}(i)}^{\left(v_{1}\right)}\right\|
$$

for $1 \leq k \leq i$, which is a contradiction since the number of k such that $\left\|x_{k}^{\left(v_{1}\right)}\right\|>$ $\left\|x_{\phi_{v_{1}}(i)}^{\left(\nu_{1}\right)}\right\|$ is $i-1$. Thus (9) holds for every $i \in I$.

Theorem 1. For $1 \leq p, q \leq \infty, l_{p, q}\{E\}$ is complete.
Proof. Let $\left\{x_{i}^{(v)}\right\}_{i} \in l_{p, q}\{E\}(v \in I)$ and

$$
\begin{equation*}
\lim _{\mu, \nu \rightarrow \infty}\left\|\left\{x_{i}^{(\mu)}-x_{i}^{(\nu)}\right\}\right\|_{p, q}=0 \tag{10}
\end{equation*}
$$

In the case where $q<\infty$, for any $\varepsilon>0$ there exists a $v_{0} \in I$ such that

$$
\begin{equation*}
\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\psi_{\mu, v}(i)}^{(\mu)}-x_{\psi_{\mu, v}(i)}^{(v)}\right\|^{q}\right)^{1 / q}<\varepsilon \quad \text { for any } \mu, v \geq v_{0} \tag{11}
\end{equation*}
$$

where $\left\{\left\|x_{\psi_{\mu}, \nu(i)}^{(\mu)}-x_{\psi_{\mu}, \nu(i)}^{(\nu)}\right\|\right\}_{i}$ denotes the non-increasing rearrangement of $\left\{\left\|x_{i}^{(\mu)}-x_{i}^{(\nu)}\right\|_{i}\right.$. Then for any $\mu, v \geq v_{0}$, from Proposition 2 we have

$$
\begin{aligned}
& \sup _{i}\left\|x_{i}^{(\mu)}-x_{i}^{(v)}\right\| \\
& \quad \leq \sup _{i} i^{1 / p}\left\|x_{\psi_{\mu, v}(i)}^{(\mu)}-x_{\psi_{\mu, v}(i)}^{(v)}\right\| \\
&
\end{aligned} \quad \leq\left\{\begin{array}{ll}
\left(\frac{q}{p}\right)^{1 / q}\left\|\left\{x_{i}^{(\mu)}-x_{i}^{(v)}\right\}\right\|_{p, q} & \text { if } \quad p<q \\
\left\{\| x_{i}^{(\mu)}-x_{i}^{(v)}\right\} \|_{p, q} & \text { if } p \geq q
\end{array}\right\} \begin{array}{ll}
\left(\frac{q}{p}\right)^{1 / q} \varepsilon & \text { if } p<q, \\
\varepsilon & \text { if } p \geq q
\end{array}
$$

Therefore there exist $x_{i} \in E(i \in I)$ such that

$$
\begin{equation*}
\left.x_{i}=\lim _{v \rightarrow \infty} x_{i}^{(v)} \quad \text { (uniformly in } i\right) \tag{12}
\end{equation*}
$$

Since $\lim _{i \rightarrow \infty} x_{i}^{(v)}=0$ for each $v \in I$, we have by Lemma 4

$$
\begin{equation*}
\lim _{i \rightarrow \infty} x_{i}=0 \tag{13}
\end{equation*}
$$

Hence we can take the non-increasing rearrangement $\left\{\left\|x_{\psi_{v}(i)}-x_{\psi_{v}(i)}^{(\nu)}\right\|\right\}_{i}$ of $\left\{\left\|x_{i}-x_{i}^{(v)}\right\|\right\}_{;}$. Let v be an arbitrary positive integer with $v \geq v_{0}$ and fixed. If we put

$$
\begin{aligned}
& y_{i}^{(\mu)}=x_{i}^{(\mu)}-x_{i}^{(\nu)}, \\
& y_{i}=x_{i}-x_{i}^{(\nu)},
\end{aligned}
$$

then

$$
\begin{aligned}
& \lim _{i \rightarrow \infty} y_{i}^{(\mu)}=0 \quad \text { for each } \mu \in I . \\
& \lim _{\mu \rightarrow \infty} y_{i}^{(\mu)}=y_{i} \quad(\text { uniformly in } i) .
\end{aligned}
$$

Therefore by Lemma 4 we have

$$
\left\|y_{\phi(i)}\right\| \leq \lim _{\mu \rightarrow \infty}\left\|y_{\phi_{\mu}(i)}^{(\mu)}\right\| \quad \text { for each } i \in I
$$

that is,

$$
\begin{equation*}
\left\|x_{\psi_{v}(i)}-x_{\psi_{v}(i)}^{(\nu)}\right\| \leq \lim _{\mu \rightarrow \infty}\left\|x_{\psi_{\mu, v}(i)}^{(\mu)}-x_{\psi_{\mu}, v(i)}^{(\nu)}\right\| \quad \text { for each } i \in I . \tag{14}
\end{equation*}
$$

Consequently, by (11) and (14) we have for any $v \geq v_{0}$

$$
\begin{aligned}
&\left\|\left\{x_{i}-x_{i}^{(v)}\right\}\right\|_{p, q}=\left(\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{\psi v(i)}-x_{\psi_{\nu}(i)}^{(v)}\right\|^{q}\right)^{1 / q} \\
& \leq\left(\sum_{i=1}^{\infty} i^{q / p-1} \varliminf_{\mu \rightarrow \infty}\left\|x_{\psi_{\mu, v}(i)}^{(\mu)}-x_{\psi_{\mu}, v(i)}^{(v)}\right\|^{q}\right)^{1 / q} \\
& \leq \lim _{\mu \rightarrow \infty}\left(\sum_{i=1}^{\infty} i^{q / p-1} \| x_{\left.\psi_{\mu \nu v(i)}^{(\mu)}-x_{\psi_{\mu, v}(i)}^{(\nu)} \|^{q}\right)^{1 / q}}\right. \\
& \leq \varepsilon,
\end{aligned}
$$

and hence $\left\{x_{i}\right\}=\left\{x_{i}-x_{i}^{\left(v_{0}\right)}\right\}+\left\{x_{i}^{\left(v_{0}\right)}\right\} \in l_{p, q}\{E\}$, which completes the proof in case $q<\infty$.

In the case where $q=\infty$, by (10) for any $\varepsilon>0$ there exists a $v_{0} \in I$ such that

$$
\begin{equation*}
\sup _{i} i^{1 / p}\left\|x_{\psi_{\mu}, v(i)}^{(\mu)}-x_{\psi_{\mu}, v(i)}^{(\nu)}\right\|<\varepsilon \quad \text { for any } \mu, v \geq v_{0} \tag{15}
\end{equation*}
$$

Hence we can take in a similar way a sequence $\left\{x_{i}\right\}$ which satisfies (12) and (13). Then by (14) and (15) we have for any $v \geq v_{0}$

$$
\begin{aligned}
\left\|\left\{x_{i}-x_{i}^{(v)}\right\}\right\|_{p, \infty} & =\sup _{i} i^{1 / p}\left\|x_{\psi_{v}(i)}-x_{\psi_{\nu}(i)}^{(v)}\right\| \\
& \leq \sup _{i} i^{1 / p} \varliminf_{\mu \rightarrow \infty}\left\|x_{\psi_{\mu}, v(i)}^{(\mu)}-x_{\psi_{\mu}, v(i)}^{(v)}\right\| \\
& \leq \lim _{\mu \rightarrow \infty} \sup _{i} i^{1 / p}\left\|x_{\psi_{\mu}, v(i)}^{(\mu)}-x_{\psi_{\mu}, v(i)}^{(v)}\right\| \\
& \leq \varepsilon
\end{aligned}
$$

and hence $\left\{x_{i}\right\}=\left\{x_{i}-x_{i}^{\left(v_{0}\right)}\right\}+\left\{x_{i}^{\left(v_{0}\right)}\right\} \in l_{p, \infty}\{E\}$, which completes the proof.

§2. The space $\boldsymbol{l}_{\boldsymbol{P}^{\prime}, \boldsymbol{q}^{\prime}}^{\mathbf{o}}\left\{\boldsymbol{E}^{\prime}\right\}$

In this section we assume that $1 \leq q<p \leq \infty, 1 / p+1 / p^{\prime}=1 / q+1 / q^{\prime}=1$. We now introduce the space $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ which will play an important role in the next section.

Definition 2. $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ is the space of E^{\prime}-valued sequences $\left\{x_{i}^{\prime}\right\}$ such that for every $\left\{x_{i}\right\} \in l_{p, q}\{E\}$ the series $\sum_{i=1}^{\infty}\left\langle x_{i}, x_{i}^{\prime}\right\rangle$ converges. The norm $\|\cdot\|_{p^{\prime}, q^{\prime}}^{0}$ on $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ is given by

$$
\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}=\sup _{\left\|\left\{x_{i}\right\}\right\|_{p, q} \leq 1}\left|\sum_{i=1}^{\infty}<x_{i}, x_{i}^{\prime}>\right| .
$$

It should be noted that $\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}<\infty$ for all $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ and $\|\cdot\|_{p^{\prime}, q^{\prime}}^{0}$ is really a norm. Indeed, if $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$, then $\left\{x_{i}^{\prime}\right\}$ can be considered as the linear form f on $l_{p, q}\{E\}$ defined by $f\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{\infty}\left\langle x_{i}, x_{i}^{\prime}\right\rangle$. Define a sequence $\left\{f_{n}\right\}$ of linear forms on $l_{p, q}\{E\}$ by $f_{n}\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{n}\left\langle x_{i}, x_{i}^{\prime}\right\rangle$. It is easy to see that each f_{n} is continuous. Furthermore $\left\{f_{n}\right\}$ converges to f at each point of $l_{p, q}\{E\}$. Since $l_{p, q}\{E\}$ is a Banach space by Proposition 1 and Theorem $1(p>q)$, from the Banach-Steinhaus Theorem it follows that f is continuous and $\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}=\|f\|<\infty$. Hence $\|\cdot\|_{p^{\prime}, q^{\prime}}^{0}$ is a norm.

The norm $\|\cdot\|_{p^{\prime}, q^{\prime}}^{0}$ is also given by the following form

$$
\begin{equation*}
\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}=\sup _{\left\|\left\{x_{i}\right\}\right\|_{p, q} \leq 1} \sum_{i=1}^{\infty}\left|<x_{i}, x_{i}^{\prime}>\right|, \tag{16}
\end{equation*}
$$

as can be easily seen.
Lemma 5. Let $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$. Let $x_{v, i}^{\prime}=x_{i}^{\prime}$ for $1 \leq i \leq v$ and $x_{v, i}^{\prime}=0$ for $i>v$. Then

$$
\lim _{v \rightarrow \infty}\left\|\left\{x_{v, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}=\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}
$$

Proof. By (16), for any $\varepsilon>0$ there exists an $\left\{x_{i}\right\} \in l_{p, q}\{E\}$ such that $\left\|\left\{x_{i}\right\}\right\|_{p, q}$ ≤ 1 and

$$
\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}<\sum_{i=1}^{\infty}\left|<x_{i}, x_{i}^{\prime}>\right|+\frac{\varepsilon}{2} .
$$

Then there exists a $v_{0} \in I$ such that for any $v \geq v_{0}$

$$
\sum_{i=1}^{\infty}\left|<x_{i}, x_{i}^{\prime}>\left|<\sum_{i=1}^{v}\right|<x_{i}, x_{i}^{\prime}>\right|+\frac{\varepsilon}{2} .
$$

Therefore we have for any $v \geq v_{0}$

$$
\begin{aligned}
\left\|\left\{x_{v, i}^{\prime}\right\}_{i}\right\|_{p^{\prime}, q^{\prime}}^{0} & \leq\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0} \\
& <\sum_{i=1}^{v}\left|<x_{i}, x_{i}^{\prime}>\right|+\varepsilon \\
& \leq \sup _{\left\|\left\{x_{i}\right\}\right\|_{p, q} \leq 1} \sum_{i=1}^{\infty}\left|<x_{i}, x_{v, i}^{\prime}>\right|+\varepsilon \\
& =\left\|\left\{x_{v, i}^{\prime}\right\}_{i}\right\|_{p^{\prime}, q^{\prime}}^{0}+\varepsilon,
\end{aligned}
$$

which shows that $\left\|\left\{x_{v, i}^{\prime}\right\}_{i}\right\|_{p^{\prime}, q^{\prime}}^{0}$ converges to $\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}$ as $v \rightarrow \infty$.
Lemma 6. Let $\left\{x_{1, i}^{\prime}\right\},\left\{x_{2, i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$. If $x_{1, i}^{\prime}$ or $x_{2, i}^{\prime}$ is equal to 0 for each $i \in I$, then

$$
\|\left\{x_{1, i}^{\prime}+x_{2, i}^{\prime}\left\|_{p^{\prime}, q^{\prime}}^{0, q^{\prime}} \geq\right\|\left\{x_{1, i}^{\prime}\right\}\left\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}+\right\|\left\{x_{2, i}^{\prime}\right\} \|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}} .\right.
$$

Proof. We may suppose $0<\left\|\left\{x_{k, i}^{\prime}\right\}_{i}\right\|_{p^{\prime}, q^{\prime}}^{0}<\infty(k=1,2)$. For any $\varepsilon>0$ there exist $\left\{x_{k, i}\right\}_{i} \in l_{p, q}\{E\}(k=1,2)$ such that

$$
\left\|\left\{x_{k, i}\right\}_{i}\right\|_{p, q}=\left\|\left\{x_{k, i}^{\prime}\right\}_{i}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}-1}
$$

and

$$
\sum_{i=1}^{\infty}\left|<x_{k, i}, x_{k, i}^{\prime}>\right|>\left\|\left\{x_{k, i}^{\prime}\right\}_{i}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}-\frac{\varepsilon}{2} .
$$

Furthermore we may assume that $x_{k, i}=0$ if $x_{k, i}^{\prime}=0$. Then we have

$$
\begin{align*}
\sum_{i=1}^{\infty} & \mid<x_{1, i}+x_{2, i}, x_{1, i}^{\prime}+x_{2, i}^{\prime}>1 \tag{17}\\
& =\sum_{i=1}^{\infty} \mid<x_{1, i}, x_{1, i}^{\prime}>+<x_{2, i}, x_{2, i}^{\prime}>1 \\
& =\sum_{i=1}^{\infty}\left|<x_{1, i}, x_{1, i}^{\prime}>\left|+\sum_{i=1}^{\infty}\right|<x_{2, i}, x_{2, i}^{\prime}>1\right. \\
& >\left\|\left\{x_{1, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0, q^{\prime}}+\left\|\left\{x_{2, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}-\varepsilon .
\end{align*}
$$

On the other hand, denoting by $\left\{\left\|x_{1, \phi(i)}\right\|\right\},\left\{\left\|x_{2, \psi(i)}\right\|\right\}$ and $\left\{\left\|x_{1, \omega(i)}+x_{2, \omega(i)}\right\|\right\}$ respectively the non-increasing rearrangements of $\left\{\left\|x_{1, i}\right\|\right\},\left\{\left\|x_{2, i}\right\|\right\}$ and $\left\{\| x_{1, i}\right.$ $\left.+x_{2, i} \|\right\}$ we have

$$
\begin{aligned}
\left\|\left\{x_{1, i}+x_{2, i}\right\}\right\|_{p, q}^{q} & =\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{1, \omega(i)}+x_{2, \omega(i)}\right\|^{q} \\
& =\sum^{\prime} i^{q / p-1}\left\|x_{1, \omega(i)}\right\|^{q}+\sum^{\prime \prime} i^{q / p-1}\left\|x_{2, \omega(i)}\right\|^{q} \\
& \leq \sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{1, \phi(i)}\right\|^{q}+\sum_{i=1}^{\infty} i^{q / p-1}\left\|x_{2, \psi(i)}\right\|^{q} \\
& =\left\|\left\{x_{1, i}\right\}\right\|_{p^{q}, q}^{q}+\|\left\{x_{2, i} \|_{p^{q}, q}^{q}\right. \\
& =\left\|\left\{x_{1, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{q^{\prime}}+\left\|\left\{x_{2, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{q^{\prime}}
\end{aligned}
$$

since $p>q$. Here $\Sigma^{\prime}\left(\right.$ resp. $\left.\Sigma^{\prime \prime}\right)$ denotes summation on those i for which $x_{2, \omega(i)}=0$ (resp. $x_{1, \omega(i)}=0$). Hence

$$
\begin{equation*}
\left\|\left\{x_{1, i}+x_{2, i}\right\}\right\|_{p, q} \leq\left(\left\|\left\{x_{1, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}+\left\|\left\{x_{2, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}\right)^{1 / q} . \tag{18}
\end{equation*}
$$

Consequently, from (16), (17) and (18) we have

$$
\left\|\left\{x_{1, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}+\left\|\left\{x_{2, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}-\varepsilon
$$

$$
<\left(\left\|\left\{x_{1, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}+\left\|\left\{x_{2, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0, q^{\prime}}\right)^{1 / q}\left\|\left\{x_{1, i}^{\prime}+x_{2, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0},
$$

from which follows

$$
\left\|\left\{x_{1, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}+\left\|\left\{x_{2, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}} \leq\left\|\left\{x_{1, i}^{\prime}+x_{2, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}
$$

Proposition 4. $\mathscr{F}\left(E^{\prime}\right)$ is dense in $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$.
Proof. Let $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\} \backslash \mathscr{F}\left(E^{\prime}\right)$. Then for any $\varepsilon>0$ there exists an $\left\{x_{i}\right\}$ $\in l_{p, q}\{E\}$ such that $\left\|\left\{x_{i}\right\}\right\|_{p, q} \leq 1$ and

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left|<x_{i}, x_{i}^{\prime}>\right|\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0, q^{\prime}-1^{1}}>\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}-\varepsilon^{q^{\prime}} . \tag{19}
\end{equation*}
$$

Since $\left\|\left\{x_{v, i}^{\prime}\right\}_{i}\right\|_{p^{\prime}, q^{\prime}}^{0} \rightarrow\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}(v \rightarrow \infty)$ by Lemma 5, we have

$$
\begin{align*}
& \sum_{i=1}^{\infty}\left|<x_{i}, x_{v, i}^{\prime}>\right|\left\|\left\{x_{v, i}^{\prime}\right\}_{i}\right\|_{p^{\prime}, q^{\prime}}^{0, q^{\prime}-1} \tag{20}\\
\rightarrow & \sum_{i=1}^{\infty}\left|<x_{i}, x_{i}^{\prime}>\right|\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}-1} \quad(v \rightarrow \infty)
\end{align*}
$$

By (19) and (20), for a sufficiently large v

$$
\begin{aligned}
\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}-\varepsilon^{q^{\prime}} & <\sum_{i=1}^{\infty}\left|<x_{i}, x_{v, i}^{\prime}>\right|\left\|\left\{x_{v, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}, 1} \\
& \leq\left\|\left\{x_{v, i}^{\prime}\right\}_{i}\right\|_{p^{\prime}, q^{\prime}}^{0, q^{\prime}} .
\end{aligned}
$$

This, combined with Lemma 6, implies

$$
\begin{aligned}
\left\|\left\{x_{i}^{\prime}\right\}-\left\{x_{v, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}} & \leq\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}}-\left\|\left\{x_{v, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0 q^{\prime}} \\
& <\varepsilon^{q^{\prime}},
\end{aligned}
$$

that is,

$$
\left\|\left\{x_{i}^{\prime}\right\}-\left\{x_{v, i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}<\varepsilon .
$$

Proposition 5. The dual space of $l_{p, q}\{E\}$ is isometrically isomorphic to $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$, where a sequence $\left\{x_{i}^{\prime}\right\}$ in $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ is identified with the linear form f defined by

$$
\begin{equation*}
\left.f\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{\infty}<x_{i}, x_{i}^{\prime}\right\rangle \quad \text { for each }\left\{x_{i}\right\} \in l_{p, q}\{E\} . \tag{21}
\end{equation*}
$$

Proof. Let $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$. Then the linear form f defined by (21) is continuous and $\|f\|=\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}$, which we have already shown in the paragraph after Definition 2. Conversely, let $f \in l_{p, q}\{E\}^{\prime}$. If for each $i \in I$ we define
$x_{i}^{\prime} \in E^{\prime}$ by

$$
<x, x_{i}^{\prime}>=f((0, \ldots, 0, \stackrel{i}{x,}, 0, \ldots)) \quad \text { for each } x \in E
$$

then we have for any $\left\{x_{i}\right\} \in l_{p, q}\{E\}$

$$
\begin{align*}
\sum_{i=1}^{\infty}\left|<x_{i}, x_{i}^{\prime}>\right| & =\sum_{i=1}^{\infty} \mid f((0, \ldots, 0, \underbrace{i}_{x_{i}}, 0, \ldots)) \tag{22}\\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \alpha_{i} f\left(\left(0, \ldots, 0, x_{i}, 0, \ldots\right)\right) \\
& =\lim _{n \rightarrow \infty} f\left(\left(\alpha_{1} x_{1}, \ldots, \alpha_{n} x_{n}, 0, \ldots\right)\right) \\
& \leq\|f\| \lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} i^{q / p-1}\left\|x_{i}\right\|^{* q}\right)^{1 / q} \\
& \leq\|f\| \lim _{n \rightarrow \infty}\left(\sum_{i=1}^{n} i^{q / p-1}\left\|x_{\phi(i)}\right\|^{q}\right)^{1 / q} \\
& =\|f\|\left\|\left\{x_{i}\right\}\right\|_{p, q},
\end{align*}
$$

where $\alpha_{i}(i \in I)$ are the complex numbers such that $\left|\alpha_{i}\right|=1$ and $\left|f\left(\left(0, \ldots, 0, x_{i}, 0, \ldots\right)\right)\right|$ $=\alpha_{i} f\left(\left(0, \ldots, 0, x_{i}, 0, \ldots\right)\right)$ for each $i \in I$, and where $\left\{\left\|x_{i}\right\|^{*}\right\}_{1 \leq i \leq n},\left\{\left\|x_{\phi(i)}\right\|\right\}$ are the non-increasing rearrangements of $\left\{\left\|x_{i}\right\|\right\}_{1 \leq i \leq n},\left\{\left\|x_{i}\right\|\right\}_{1 \leq i<\infty}$ respectively. Therefore we have $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ and $\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0} \leq\|f\|$. On the other hand, if for any $\left\{x_{i}\right\} \in l_{p, q}\{E\}$ we put \boldsymbol{v}_{n} as in (8), then

$$
\boldsymbol{v}_{n} \rightarrow\left\{x_{i}\right\} \quad(n \rightarrow \infty) \quad \text { in } \quad l_{p, q}\{E\}
$$

by Proposition 3. Hence we have

$$
\begin{aligned}
f\left(\left\{x_{i}\right\}\right) & =f\left(\lim _{n \rightarrow \infty} \boldsymbol{v}_{n}\right) \\
& =\lim _{n \rightarrow \infty} f\left(\boldsymbol{v}_{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i \in I_{n}} f((0, \ldots, \underbrace{i}_{x_{i}}, 0, \ldots)) \\
& =\lim _{n \rightarrow \infty} \sum_{i \in I_{n}}\left\langle x_{i}, x_{i}^{\prime}\right\rangle \\
& =\sum_{i=1}^{\infty}\left\langle x_{i}, x_{i}^{\prime}\right\rangle
\end{aligned}
$$

where the last inequality follows from the fact that the series $\sum_{i=1}^{\infty}\left\langle x_{i}, x_{i}^{\prime}\right\rangle$ converges unconditionally by (22). This completes the proof.

Corollary. $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ is a Banach space.

§3. The dual space of $\boldsymbol{l}_{\boldsymbol{p}, \boldsymbol{q}}\{\boldsymbol{E}\}$

Theorem 2. Let $1<p \leq \infty, 1<q<\infty$ and $1 / p+1 / p^{\prime}=1 / q+1 / q^{\prime}=1$. The dual space of $l_{p, q}\{E\}$ is isometrically isomorphic (resp. isomorphic) to $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ if $p \leq q($ resp. $p>q)$. In both cases, a sequence $\left\{x_{i}^{\prime}\right\}$ in $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ is identified with the linear form f defined by

$$
\begin{equation*}
f\left(\left\{x_{i}\right\}\right)=\sum_{i=1}^{\infty}\left\langle x_{i}, x_{i}^{\prime}\right\rangle \quad \text { for each }\left\{x_{i}\right\} \in l_{p, q}\{E\} . \tag{21}
\end{equation*}
$$

In the latter case, there exists a certain positive number $M_{p, q}$ such that $M_{p, q}>1$ and

$$
\begin{equation*}
\|f\| \leq\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}} \leq M_{p, q}\|f\| \quad \text { for every }\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\} \tag{23}
\end{equation*}
$$

Proof. In case of $p=q$, the statement is well known and proved in [2].
(i) Let $1<p<q<\infty$. Let $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$. Then the linear form f defined by (21) is continuous and $\|f\| \leq\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}$. Indeed, from Lemma 3 we have for any $\left\{x_{i}\right\} \in l_{p, q}\{E\}$

$$
\begin{aligned}
\left|f\left(\left\{x_{i}\right\}\right)\right| & \leq \sum_{i=1}^{\infty} 1<x_{i}, x_{i}^{\prime}>1 \\
& \leq\left\|\left\{x_{i}\right\}\right\|_{p, q}\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}
\end{aligned}
$$

whence we have $f \in l_{p, q}\{E\}^{\prime}$ and $\|f\| \leq\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}$ simultaneously with convergence of the series in (21).

Conversely, let $f \in l_{p, q}\{E\}^{\prime}$. If we define $x_{i}^{\prime} \in E^{\prime}(i \in I)$ by

$$
\left.<x, x_{i}^{\prime}\right\rangle=f((0, \ldots, 0, \underbrace{i}_{x}, 0, \ldots)) \quad \text { for each } x \in E
$$

then for any $\left\{x_{i}\right\} \in l_{p, q}\{E\}$ the series $\sum_{i=1}^{\infty}<x_{i}, x_{i}^{\prime}>$ converges unconditionally by (22). Hence, if for any $\left\{x_{i}\right\} \in l_{p, q}\{E\}$ we put \boldsymbol{u}_{n} as in (7), then by Proposition 3 we have

$$
\begin{aligned}
f\left(\left\{x_{i}\right\}\right) & =f\left(\lim _{n \rightarrow \infty} \boldsymbol{u}_{n}\right) \\
& =\lim _{n \rightarrow \infty} f\left(\boldsymbol{u}_{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left\langle x_{\phi(i)}, x_{\phi(i)}^{\prime}\right\rangle \\
& =\sum_{i=1}^{\infty}\left\langle x_{i}, x_{i}^{\prime}\right\rangle,
\end{aligned}
$$

where ϕ is the permutation such that $\left\{\left\|x_{\phi(i)}\right\|\right\}$ is the non-increasing rearrangement of $\left\{\left\|x_{i}\right\|\right\}$. Since $f \in l_{p}\{E\}^{\prime}$ from Corollary to Proposition 2 and $l_{p}\{E\}^{\prime}=l_{p^{\prime}}\left\{E^{\prime}\right\}$, $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}}\left\{E^{\prime}\right\}$. Therefore, $\lim _{i \rightarrow \infty} x_{i}^{\prime}=0$ and we can take the non-increasing rearrangement $\left\{\left\|x_{\psi(i)}^{\prime}\right\|\right\}$ of $\left\{\left\|x_{i}^{\prime}\right\|\right\}$. Let n be an arbitrary positive integer. Then for any $\varepsilon>0$ there exist $x_{i} \in E, 1 \leq i \leq n$, such that $\left\|x_{i}\right\|=1$ and

$$
<x_{i}, x_{\psi(i)}^{\prime}>\geq\left\|x_{\psi(i)}^{\prime}\right\|-\varepsilon_{i},
$$

where

$$
\varepsilon_{i}=\frac{\varepsilon\left\|x_{\psi(i)}^{\prime}\right\|}{\left(\sum_{i=1}^{n} i^{q^{\prime} / p^{\prime}-1}\left\|x_{\psi(i)}^{\prime}\right\|^{q^{\prime}}\right)^{1 / q^{\prime}}} .
$$

Put

$$
\boldsymbol{t}_{n}=\sum_{i=1}^{n} i^{q^{\prime} / p^{\prime} q-1 / p}\left\|x_{\psi(i)}^{\prime}\right\|^{q^{\prime} / q}\left(0, \ldots, 0, x_{i}, 0, \ldots\right)
$$

Since the non-increasing rearrangement of $\left\{i^{q^{\prime} / p^{\prime} q-1 / p}\left\|x_{\psi(i)}^{\prime}\right\|^{q^{\prime} / q}\right\}_{1 \leq i \leq n}$ is invariant because of $q^{\prime}\left|p^{\prime} q-1 / p=q^{\prime}\right| p^{\prime}-1<0$, we have

$$
\begin{align*}
\left|f\left(\boldsymbol{t}_{n}\right)\right| & \leq\|f\|\left\|\boldsymbol{t}_{n}\right\|_{p, q} \tag{24}\\
& =\|f\|\left(\sum_{i=1}^{n} i^{q / p-1+q^{\prime} / p^{\prime}-q / p}\left\|x_{\psi(i)}^{\prime}\right\|^{q^{\prime}}\right)^{1 / q} \\
& =\|f\|\left(\sum_{i=1}^{n} i^{q^{\prime} / p^{\prime}-1}\left\|x_{\psi(i)}^{\prime}\right\|^{\prime} \|^{\prime}\right)^{1 / q} .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\left|f\left(\boldsymbol{t}_{n}\right)\right| & =\sum_{i=1}^{n} i^{q^{\prime} / p^{\prime} q-1 / p}\left\|x_{\psi(i)}^{\prime}\right\|^{q^{\prime} / q}<x_{i}, x_{\psi(i)}^{\prime}> \tag{25}\\
& \geq \sum_{i=1}^{n} i^{q^{\prime} / p^{\prime}-1}\left\|x_{\psi(i)}^{\prime}\right\|^{q^{\prime} / q}\left(\left\|x_{\psi(i)}^{\prime}\right\|-\varepsilon_{i}\right) \\
& =\sum_{i=1}^{n} i^{q^{\prime} / p^{\prime}-1}\left\|x_{\psi(i)}^{\prime}\right\|^{q^{\prime}}-\varepsilon\left(\sum_{i=1}^{n} i^{q^{\prime} / p^{\prime}-1}\left\|x_{\psi(i)}^{\prime}\right\| q^{\prime^{\prime}}\right)^{1 / q} .
\end{align*}
$$

By (24) and (25) we have

$$
\left(\sum_{i=1}^{n} i^{q^{\prime} / p^{\prime}-1}\left\|x_{\psi(i)}^{\prime}\right\| \|^{q^{\prime}}\right)^{1 / q^{\prime}} \leq\|f\|+\varepsilon
$$

Since ε and n are arbitrary, this shows that $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ and $\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}} \leq\|f\|$. We have thus proved the theorem for $1<p<q<\infty$.
(ii) Let $1<q<p \leq \infty$ and suppose that E is reflexive. Since $l_{p, q}\{E\}^{\prime}$ is
isometrically isomorphic to $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ by Proposition 5, we have only to prove that $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ and $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ are isomorphic. Here one should note that the former is a quasi-normed space and the latter is a normed space. Let $\left\{x_{i}^{\prime}\right\} \in$ $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$. Then, by Lemma 3 for any $\left\{x_{i}\right\} \in l_{p, q}\{E\}$

$$
\sum_{i=1}^{\infty}\left|<x_{i}, x_{i}^{\prime}>\right| \leq\left\|\left\{x_{i}\right\}\right\|_{p, q}\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}<\infty
$$

from which it follows that $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ and $\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0} \leq\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}$. Thus we have

$$
\begin{equation*}
l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\} \subset l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}, \quad\|\cdot\|_{p^{\prime}, q^{\prime}}^{0} \leq\|\cdot\|_{p^{\prime}, q^{\prime}} \tag{26}
\end{equation*}
$$

Let i be the canonical injection of $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ into $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\} ; i\left(\left\{x_{i}^{\prime}\right\}\right)=\left\{x_{i}^{\prime}\right\}$ for each $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$. Then the image of i is dense in $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$, since $\mathscr{F}\left(E^{\prime}\right) \subset$ $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\} \subset l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ and $\mathscr{F}\left(E^{\prime}\right)$ is dense in $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ by Proposition 4. Therefore ${ }^{t} i: l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}^{\prime} \rightarrow l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}^{\prime}$, the transpose of i, is also a continuous injection. Since $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}^{\prime}=l_{p, q}\{E\}^{\prime \prime}$ by Proposition 5 and since $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}^{\prime}$ $=l_{p, q}\left\{E^{\prime \prime}\right\}=l_{p, q}\{E\}$ by (i) and our assumption, we can regard ${ }^{t} i$ as an injection of $l_{p, q}\{E\}^{\prime \prime}$ into $l_{p, q}\{E\}$. Furthermore, ${ }^{t} i$ maps $l_{p, q}\{E\}$ onto $l_{p, q}\{E\}$ identically by the definition of ${ }^{t} i$. Consequently, $l_{p, q}\{E\}^{\prime \prime}=l_{p, q}\{E\}$ and ${ }^{t} i$ must be an isometric isomorphism. Hence

$$
{ }^{t}(t): l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}^{\prime \prime} \rightarrow l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}^{\prime \prime}
$$

is also an isometric isomorphism, from which it follows that the quasi-norm $\|\cdot\|_{p^{\prime}, q^{\prime}}$ and the norm $\|\cdot\|_{p^{\prime}, q^{\prime}}^{0}$ are equivalent on $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ by Banach's homomorphism theorem (cf. [4], p. 294). Therefore $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ is complete for the norm $\|\cdot\|_{p^{\prime}, q^{\prime}}^{0}$ since it is complete for its own quasi-norm by Theorem 1. This, combined with the fact that $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ is dense in $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$, shows that $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ $=l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$. Thus $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ and $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$ are isomorphic.
(iii) Let $1<q<p \leq \infty$ and suppose that E is an arbitrary Banach space. Let $\left\{x_{i}^{\prime}\right\} \in l_{p}^{0}, q^{\prime}\left\{E^{\prime}\right\}$. Put $e_{i}^{\prime}=x_{i}^{\prime} /\left\|x_{i}^{\prime}\right\|$ (resp. $e_{i}^{\prime}=0$) if $x_{i}^{\prime} \neq 0$ (resp. $x_{i}^{\prime}=0$) and $\alpha_{i}=\left\|x_{i}^{\prime}\right\|$. Then, $x_{i}^{\prime}=\alpha_{i} e_{i}^{\prime}$ for each $i \in I$. For any $\varepsilon>0$, if $e_{i}^{\prime} \neq 0$, there exists an $e_{i} \in E$ such that $\left\|e_{i}\right\|=1$ and $\left\langle e_{i}, e_{i}^{\prime}\right\rangle>1-\varepsilon$. If $e_{i}^{\prime}=0$, we put $e_{i}=0$. Then, for any $\left\{\xi_{i}\right\} \in l_{p, q}$ with $\left\|\left\{\xi_{i}\right\}\right\|_{p, q} \leq 1$ we have

$$
\begin{aligned}
\sum_{i=1}^{\infty}\left|\xi_{i} \alpha_{i}\right| & \left.\leq \frac{1}{1-\varepsilon} \sum_{i=1}^{\infty} \right\rvert\,\left\langle\xi_{i} e_{i}, \alpha_{i} e_{i}^{\prime}>\right| \\
& \leq \frac{1}{1-\varepsilon} \sup _{\left\|\left\{x_{i}\right\}\right\|_{p, q} \leq 1} \sum_{i=1}^{\infty}\left|<x_{i}, x_{i}^{\prime}>\right| \\
& =\frac{1}{1-\varepsilon}\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0} .
\end{aligned}
$$

Letting $\varepsilon \rightarrow 0$, we have $\sum_{i=1}^{\infty}\left|\xi_{i} \alpha_{i}\right| \leq\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0}$, which implies

$$
\left\{\alpha_{i}\right\} \in l_{p^{\prime}, q^{\prime}}^{0} \quad \text { and } \quad\left\|\left\{\alpha_{i}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0} \leq\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0} .
$$

Since $l_{p^{\prime}, q^{\prime}}^{0}$ is isomorphic to $l_{p^{\prime}, q^{\prime}}$ by (ii), $\left\{\alpha_{i}\right\} \in l_{p^{\prime}, q^{\prime}}$. Let $M_{p, q}$ be a positive number such that $M_{p, q}>1$ and

$$
\left\|\left\{\beta_{i}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0} \leq\left\|\left\{\beta_{i}\right\}\right\|_{p^{\prime}, q^{\prime}} \leq M_{p, q}\left\|\left\{\beta_{i}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0} \quad \text { for every }\left\{\beta_{i}\right\} \in l_{p^{\prime}, q^{\prime}}^{0} .
$$

Then we have

$$
\begin{aligned}
\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}=\left\|\left\{\alpha_{i}\right\}\right\|_{p^{\prime}, q^{\prime}} & \leq M_{p, q}\left\|\left\{\alpha_{i}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0} \\
& \leq M_{p, q}\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime}}^{0},
\end{aligned}
$$

whence $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$. Thus we have

$$
\begin{equation*}
l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\} \subset l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}, \quad\|\cdot\|_{p^{\prime}, q^{\prime}} \leq M_{p, q}\|\cdot\|_{p^{\prime}, q^{\prime}}^{0} . \tag{27}
\end{equation*}
$$

It follows from (26) and (27) that $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ is isomorphic to $l_{p^{\prime}, q^{\prime}}^{0}\left\{E^{\prime}\right\}$, which is isometrically isomorphic to $l_{p, q}\{E\}^{\prime}$ and (23) holds for this $M_{p, q}$. This completes the proof of the theorem.

Corollary. Let $1<p<q<\infty . l_{p, q}\{E\}$ is a Banach space with the following norm $\|\cdot\|_{p, q}^{0}$ which is equivalent to $\|\cdot\|_{p, q}$:

$$
\left\|\left\{x_{i}\right\}\right\|_{p, q}^{0}=\sup _{\left\|\left\{x_{i}^{\prime}\right\}\right\|_{p^{\prime}, q^{\prime} \leq 1}}\left|\sum_{i=1}^{\infty}<x_{i}, x_{i}^{\prime}\right\rangle \mid \quad \text { for each }\left\{x_{i}\right\} \in l_{p, q}\{E\} .
$$

Proof. Since $l_{p, q}\{E\}^{\prime \prime}$ and $l_{p, q}\left\{E^{\prime \prime}\right\}$ are isomorphic by Theorem 2, it is easily seen that $\|\cdot\|_{p, q}^{0}$ is a norm on $l_{p, q}\{E\}$ which is equivalent to the quasi-norm $\|\cdot\|_{p, q}$.

As a consequence of Theorem 2 we have the following
Theorem 3. Let $1<p \leq \infty, 1<q<\infty$. If E is reflexive, then $l_{p, q}\{E\}$ is reflexive.

The assertion for $p<q$ means $l_{p, q}\{E\}$ is reflexive as a topological vector space (cf. [7]). However, it is also reflexive as the Banach space defined in the preceding corollary.

§4. Conjugates of ($\boldsymbol{p}, \boldsymbol{q} ; \boldsymbol{r}$)-absolutely summing operators

In this section, as an application of the result obtained in the preceding section, we shall characterize the conjugates of $(p, q ; r)$-absolutely summing operators ([6], [9]).

We first recall the definitions of the space of weakly p-summable sequences $l_{p}(E)$ and the space of strongly p-summable sequences $l_{p}\langle E\rangle$ ([2]).

For $1 \leq p \leq \infty l_{p}(E)$ is the normed space consisting of all E-valued sequences $\left\{x_{i}\right\}$ such that for any $x^{\prime} \in E^{\prime}$ the sequence $\left\{\left\langle x_{i}, x^{\prime}\right\rangle\right\}$ belongs to l_{p}, where the norm is given by

$$
\varepsilon_{p}\left(\left\{x_{i}\right\}\right)= \begin{cases}\sup _{\left\|x^{\prime}\right\| \leq 1}\left(\sum_{i=1}^{\infty}\left|<x_{i}, x^{\prime}>\right|^{p}\right)^{1 / p} & \text { if } \quad 1 \leq p<\infty, \\ \sup _{i}\left\|x_{i}\right\| & \text { if } \quad p=\infty .\end{cases}
$$

For $1 \leq p \leq \infty l_{p}\langle E\rangle$ is the normed space consisting of all E-valued sequences $\left\{x_{i}\right\}$ such that for each $\left\{x_{i}^{\prime}\right\} \in l_{p^{\prime}}\left(E^{\prime}\right)$ the series $\sum_{i=1}^{\infty}\left\langle x_{i}, x_{i}^{\prime}\right\rangle$ converges, where the norm is given by

$$
\sigma_{p}\left(\left\{x_{i}\right\}\right)=\sup _{\varepsilon_{p^{\prime}}\left(\left\{x_{i}^{\prime}\right\}\right) \leq 1}\left|\sum_{i=1}^{\infty}<x_{i}, x_{i}^{\prime}\right\rangle \mid .
$$

We now recall the following
Definition 3. For $1 \leq p, q, r \leq \infty$ an operator $T: E \rightarrow F$ is called (p, $q ; r$)-absolutely summing ([9]) provided there exists a constant $c \geq 0$ such that

$$
\begin{equation*}
\left\|\left\{T x_{i}\right\}\right\|_{p, q} \leq c \varepsilon_{r}\left(\left\{x_{i}\right\}\right) \quad \text { for every }\left\{x_{i}\right\} \in \mathscr{F}(E) \tag{28}
\end{equation*}
$$

and ($r ; p, q$)-strongly summing ([6]) provided there exists a constant $c \geq 0$ such that

$$
\begin{equation*}
\sigma_{r}\left(\left\{T x_{i}\right\}\right) \leq c\left\|\left\{x_{i}\right\}\right\|_{p, q} \quad \text { for every }\left\{x_{i}\right\} \in \mathscr{F}(E) . \tag{29}
\end{equation*}
$$

The smallest number c for which (28) (resp. (29)) holds is denoted by $\Pi_{p, q ; r}(T)$ (resp. $D_{r ; p, q}(T)$).
$\Pi_{p, q ; r}$ (resp. $D_{r ; p, q}$) is a norm for $p \geq q$ and a quasi-norm for $p<q$ on the space of $(p, q ; r)$-absolutely summing (resp. ($r ; p, q$)-strongly summing) operators.
$(p, p ; r)$-absolutely summing operators are exactly (p, r)-absolutely summing operators (B. Mitjagin and A. Pełczyński [8]), ($p, p ; p$)-absolutely summing operators coincide with absolutely p-summing operators (A. Pietsch [11]) and ($p ; p, p$)-strongly summing operators coincide with strongly p-summing operators (J. S. Cohen [2]).

Theorem 4. Let $1<p \leq \infty, 1<q<\infty, 1 \leq r \leq \infty$. An operator $T: E \rightarrow F$ is ($p, q ; r$)-absolutely summing if and only if its conjugate operator $T^{\prime}: F^{\prime} \rightarrow E^{\prime}$ is ($r^{\prime} ; p^{\prime}, q^{\prime}$)-strongly summing. In this case,

$$
\begin{array}{ll}
D_{r^{\prime} ; p^{\prime}, q^{\prime}}\left(T^{\prime}\right) \leq 2^{2 / p} \Pi_{p, q ; r}(T) \leq 2^{2 / p} M_{p, q} D_{r^{\prime} ; p^{\prime}, q^{\prime}}\left(T^{\prime}\right) & \text { for } p<q \\
D_{r^{\prime} ; p^{\prime}, q^{\prime}}\left(T^{\prime}\right) \leq \Pi_{p, q ; r}(T) \leq M_{p, q} D_{r^{\prime} ; p^{\prime}, q^{\prime}}\left(T^{\prime}\right) & \text { for } \quad p \geq q
\end{array}
$$

where $M_{p, q}$ is as in Theorem 2.
Proof. By Proposition 1 we can improve the estimate in Theorem 2 of [6] as follows: For every ($p, q ; r$)-absolutely summing operator T, its conjugate operator T^{\prime} is $\left(r^{\prime} ; p^{\prime}, q^{\prime}\right)$-strongly summing and we have

$$
\begin{array}{ll}
D_{r^{\prime} ; p^{\prime} ; q^{\prime}}\left(T^{\prime}\right) \leq 2^{2 / p} \Pi_{p, q ; r}(T) & \text { for } \quad p<q, \\
D_{r^{\prime} ; p^{\prime} ; q^{\prime}}\left(T^{\prime}\right) \leq \Pi_{p, q ; r}(T) & \text { for } \quad p \geq q .
\end{array}
$$

On the other hand, since $l_{p, q}\{E\}^{\prime}$ and $l_{p^{\prime}, q^{\prime}}\left\{E^{\prime}\right\}$ are isomorphic by Theorem 2 , we have by Remark 1 in [6] that if T^{\prime} is ($r^{\prime} ; p^{\prime}, q^{\prime}$)-strongly summing, then T is ($p, q ; r$)-absolutely summing and $\Pi_{p, q ; r}(T) \leq D_{r^{\prime} ; p^{\prime}, q^{\prime}}\left(T^{\prime}\right)$.

Similarly, by Theorem 4 and Remark 2 in [6], combined with Theorem 2, we have the following characterization of an operator whose conjugate is $(p, q$; r)-absolutely summing.

Theorem 5. Let $1<p \leq \infty, 1<q<\infty, 1 \leq r \leq \infty$. For an operator $T: E \rightarrow F$, the conjugate operator $T^{\prime}: F^{\prime} \rightarrow E^{\prime}$ is $(p, q ; r)$-absolutely summing if and only if T is $\left(r^{\prime} ; p^{\prime}, q^{\prime}\right)$-strongly summing. In this case,

$$
D_{r^{\prime} ; p^{\prime}, q^{\prime}}(T) \leq \Pi_{p, q ; r}\left(T^{\prime}\right) \leq M_{p^{\prime}, q^{\prime}} D_{r^{\prime} ; p^{\prime}, q^{\prime}}(T)
$$

for a certain number $M_{p^{\prime}, q^{\prime}}>1$.

References

[1] P. L. Butzer and H. Berens, Semi-groups of operators and approximation, Springer, Berlin, 1967.
[2] J. Cohen, Absolutely p-summing, p-nuclear operators and their conjugates, Dissertation, Univ. of Maryland, 1970.
[3] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, 1967.
[4] J. Horváth, Topological vector spaces and distributions I, Addison-Wesley, Reading, Mass., 1966.
[5] R. A. Hunt, On $L(p, q)$ spaces, Enseignement Math. 12 (1966), 249-276.
[6] M. Kato, Conjugates of ($p, q ; r$)-absolutely summing operators, Hiroshima Math. J. 5 (1975), 127-134.
[7] G. Köthe, Topologische lineare Räume, Springer, Berlin, 1960.
[8] B. Mitjagin and A. Pełczyński, Nuclear operators and approximative dimension, Proc. I. C. M. Moscow, 1966, 366-372.
[9] K. Miyazaki, ($p, q ; r$)-absolutely summing operators, J. Math. Soc. Japan 24 (1972),

341-354.
[10] K. Miyazaki, (p, q)-nuclear and (p, q)-integral operators, Hiroshima Math. J. 4 (1974), 99-132.
[11] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1967), 333-353.
[12] K. Yoshinaga, Lorentz spaces and the Calderón-Zygmund theorem, Bull. Kyushu Inst. Tech. 16 (1969), 1-38.

Department of Mathematics, Faculty of Science, Hiroshima University

