On the Existence of Boundary Values of Beppo Levi Functions Defined in the Upper Half Space of \mathbb{R}^n

Yoshihiro MIZUTA

(Received August 22, 1975)

1. Introduction and statement of results

Let \mathbb{R}^n $(n \ge 2)$ be the *n*-dimensional Euclidean space and its points be denoted by x, y, etc., or $x = (x_1, x_2, ..., x_n) = (x', x_n)$, $y = (y_1, y_2, ..., y_n) = (y', y_n)$, etc. For a positive number α such that $\alpha < n$, the Riesz potential of order α of a measure μ on \mathbb{R}^n is defined by

$$U^{\mu}_{\alpha}(x) = \int |x-y|^{\alpha-n} d\mu(y).$$

If μ has a density f (that is, $d\mu = fdx$, where f is locally integrable), we may write U_{α}^{f} instead of U_{α}^{μ} . The Riesz capacity $C_{\alpha}(E)$ of a Borel set E in \mathbb{R}^{n} may be defined as follows:

$$C_{\alpha}(E) = \sup \mu(R^n),$$

where the supremum is taken over all positive measures μ concentrated on E such that $U^{\mu}_{\alpha}(x) \leq 1$ for every $x \in S_{\mu}$ (S_{μ} is the support of μ).

Our main theorem is the following:

THEOREM 1. Let α and p be numbers such that $\alpha \ge 0$ and $1+\alpha .$ Let <math>f be a function which is defined and continuous in the upper half space $R_{+}^{n} = \{x = (x', x_{n}); x_{n} > 0\}$. Suppose that all partial derivatives of f of first order exist a. e. on R_{+}^{n} and that for any bounded open set Ω in R_{+}^{n}

(1)
$$\iint_{\Omega} |\operatorname{grad} f(x', x_n)|^p x_n^{\alpha} dx' dx_n < \infty.$$

Then $\lim_{x_n \downarrow 0} f(x', x_n)$ exists and is finite except for (x', 0) in a Borel set E in \mathbb{R}^n_0 = {(y', 0); $y' \in \mathbb{R}^{n-1}$ } such that $C_{p-\alpha}(E)=0$ if $p \leq 2$ and $C_{p-\alpha-\varepsilon}(E)=0$ for any $\varepsilon > 0$ with $p-\alpha-\varepsilon > 0$ if p > 2.

In the case p=2 this theorem was shown by H. Wallin [7]. He also showed that his result is the best possible as to the size of the exceptional set. We shall generalize this result in the following theorem:

THEOREM 2. Let α and p be as in Theorem 1. Let E be a set in \mathbb{R}^n_0 such

that $C_{p-\alpha}(E) = 0$ if $p \ge 2$ and $C_{p-\alpha+\varepsilon}(E) = 0$ for some $\varepsilon > 0$ with $p-\alpha+\varepsilon < n$ if p < 2. Then there exists a function f of class C^{∞} in \mathbb{R}^{n}_{+} such that

$$\iint_{R^n_+} |\operatorname{grad} f(x', x_n)|^p x_n^{\alpha} dx' dx_n < \infty$$

and $\lim_{x_n \downarrow 0} f(x', x_n) = \infty$ for any $(x', 0) \in E$.

We see that there is a gap between Theorem 1 and Theorem 2 in the case $p \neq 2$.

The author wishes to express his deep gratitude to Professor H. Wallin for his kind and valuable suggestions.

2. Lemmas

To prove Theorem 1, we prepare several lemmas.

LEMMA 1. Let β and γ be numbers such that

$$0 \leq \gamma < 1$$
 and $\gamma < \beta < n$.

Let η be a positive number. Then

$$\int_{|x-y| \leq \eta} |x-y|^{\beta-n} |y_n|^{-\gamma} dy \leq M \eta^{\beta-\gamma}$$

for some constant M > 0 independent of x and η .

PROOF. We may assume that $x = (0, x_n), x_n \ge 0$. We shall show that the integral assumes its maximum when $x_n = 0$. We set

$$E_{1} = \{y; |x-y| \leq \eta, |y| > \eta\},\$$

$$E_{2} = \{y; |x-y| \leq \eta, y_{n} > \frac{x_{n}}{2}\},\$$

$$E_{3} = \{y; |x-y| \leq \eta, y_{n} < \frac{x_{n}}{2}\},\$$

and

$$E_4 = \{y; |x - y| > \eta, |y| \leq \eta\}.$$

Then we note

$$\int_{E_1} |x-y|^{\beta-n} |y_n|^{-\gamma} dy \leq \int_{E_4} |y|^{\beta-n} |y_n|^{-\gamma} dy.$$

and

On the Existence of Boundary Values of Beppo Levi Functions

$$\int_{E_2} \{ |x-y|^{\beta-n} - |y|^{\beta-n} \} |y_n|^{-\gamma} dy \leq \int_{E_3} \{ |y|^{\beta-n} - |x-y|^{\beta-n} \} |y_n|^{-\gamma} dy.$$

Hence

$$\begin{split} \int_{|x-y| \leq \eta} |x-y|^{\beta-n} |y_n|^{-\gamma} dy &\leq \int_{|y| \leq \eta} |y|^{\beta-n} |y_n|^{-\gamma} dy \\ &= M \eta^{\beta-\gamma}, \end{split}$$

where $M = \int_{|x| \le 1} |x|^{\beta - n} |x_n|^{-\gamma} dx < \infty$.

LEMMA 2. Let β and γ be numbers such that

$$\beta + \gamma > 0$$
 and $0 \leq \gamma < 1$.

Let η be a positive number. Then

$$\int_{|x-y| \ge \eta} |x-y|^{-\beta-n} |y_n|^{-\gamma} dy \le M \eta^{-\beta-\gamma}$$

for some constant M > 0 independent of x and η .

PROOF. Again we may assume that $x = (0, x_n), x_n \ge 0$. By change of variables $z = y/\eta$,

$$\int_{|x-y| \ge \eta} |x-y|^{-\beta-n} |y_n|^{-\gamma} dy = \eta^{-\beta-\gamma} \int_{|x^*-z| \ge 1} |x^*-z|^{-\beta-n} |z_n|^{-\gamma} dz,$$

where $x^* = x/\eta$. We can easily verify that $\int_{|x^{*}-z| \ge 1} |x^*-z|^{-\beta-n} |z_n|^{-\gamma} dz$ is bounded, dividing the domain of integration into three parts, that is, (a) $|x^*-z| < \frac{1}{2}|z|$ (this implies $|x^*-z| \le |z_n|/\sqrt{3}$), (b) |z| < 1, (c) $|z| \ge 1$, $|x^*-z| \ge \frac{1}{2}|z|$.

LEMMA 3 (cf. [7; Lemma 4]). Let β and γ be numbers such that $0 \le \gamma < 1$ and $\gamma < \beta < \frac{n+\gamma}{2}$. Then

$$\int |x-y|^{\beta-n}|z-y|^{\beta-n}|y_n|^{-\gamma}dy \leq M|x-z|^{2\beta-\gamma-n}$$

for some constant M independent of x and z.

PROOF. Set $\eta = |x - z|/2$. Noting that $|y - z| \ge \eta$ if $|x - y| \le \eta$, we have

$$I_{1} \equiv \int_{|x-y| \ge \eta} |x-y|^{\beta-n} |z-y|^{\beta-n} |y_{n}|^{-\gamma} dy$$
$$\leq \eta^{\beta-n} \int_{|x-y| \ge \eta} |x-y|^{\beta-n} |y_{n}|^{-\gamma} dy.$$

Lemma 1 gives

$$I_1 \leq M_1 \eta^{2\beta - \gamma - n}$$

for some constant M_1 independent of x and z. Similarly

$$I_2 \equiv \int_{|z-y| \leq \eta} |x-y|^{\beta-n} |z-y|^{\beta-n} |y_n|^{-\gamma} dy \leq M_1 \eta^{2\beta-\gamma-n}.$$

On the other hand we have

$$I_{3} \equiv \int_{|x-y| > \eta, |z-y| > \eta, |y-x| < |y-z|} |x-y|^{\beta-n} |z-y|^{\beta-n} |y_{n}|^{-\gamma} dy$$
$$\leq \int_{|x-y| > \eta} |x-y|^{2(\beta-n)} |y_{n}|^{-\gamma} dy \leq M_{2} \eta^{2\beta-\gamma-n}$$

for some constant M_2 independent of x and z, because of Lemma 2. Similarly

$$I_{4} \equiv \int_{|x-y| > \eta, |z-y| > \eta, |y-x| \ge |y-z|} |x-y|^{\beta-n} |z-y|^{\beta-n} |y_{n}|^{-\gamma} dy$$
$$\leq M_{2} \eta^{2\beta-\gamma-n}.$$

Hence we obtain

$$\begin{aligned} \int |x - y|^{\beta - n} |z - y|^{\beta - n} |y_n|^{-\gamma} dy &= I_1 + I_2 + I_3 + I_4 \\ &\leq 2(M_1 + M_2) \eta^{2\beta - \gamma - n}. \end{aligned}$$

From Lemma 3 we derive the following lemma, which will be used to show Theorem 1 in case $p \leq 2$.

LEMMA 4 (cf. [7; Lemma 3]). Let α and p be non-negative numbers such that

$$1 + \alpha .$$

Let g be a non-negative function in $L^{p}(\mathbb{R}^{n})$, and set

$$G_{\lambda} = \{ x \in \mathbb{R}^n; U_1^g(x) > \lambda \}, \qquad \lambda > 0.$$

Then there is a constant M > 0 independent of g and λ such that

$$C_{p-\alpha}(G_{\lambda}) \leq M\lambda^{-p} \int |x_n|^{\alpha} g(x)^p dx.$$

PROOF. Let μ be a positive measure such that $S_{\mu} \subset G_{\lambda}$, S_{μ} is compact and

 $\int |x-y|^{p-\alpha-n} d\mu(y) \leq 1 \text{ for all } x \in S_{\mu}.$ Then by using Hölder's inequality, we have for p' = p/(p-1)

$$\begin{aligned} \{\lambda \cdot \mu(\mathbb{R}^n)\}^{p\prime} &\leq \left| \int \left\{ \int |x - y|^{1 - n} g(y) dy \right\} d\mu(x) \right|^{p\prime} \\ &\leq \left\{ \int |y_n|^{\alpha} g(y)^p dy \right\}^{p\prime/p} \int |y_n|^{-p\prime \alpha/p} \left\{ \int |x - y|^{1 - n} d\mu(x) \right\}^{p\prime} dy \end{aligned}$$

Set $\beta = (p-\alpha)/2 + \alpha/2(p-1)$ and note

$$1 - n = (p - \alpha - n)(1 - 2/p') + (\beta - n) \cdot 2/p'.$$

By Hölder's inequality and the fact that $U^{\mu}_{p-\alpha} \leq 1$ on \mathbb{R}^n (Frostman's maximum principle),

$$\int |x-y|^{1-n} d\mu(x) \leq \left\{ \int |x-y|^{\beta-n} d\mu(x) \right\}^{2/p'}.$$

Hence

$$\begin{aligned} &\{\lambda \cdot \mu(R^n)\}^{p'} \\ &\leq \left\{ \int |y_n|^{\alpha} g(y)^p dy \right\}^{p'/p} \int |y_n|^{-\alpha/(p-1)} \left\{ \int |x-y|^{\beta-n} d\mu(x) \right\}^2 dy \\ &\leq \left\{ \int |y_n|^{\alpha} g(y)^p dy \right\}^{p'/p} \int \int d\mu(x) d\mu(z) \int |x-y|^{\beta-n} |z-y|^{\beta-n} |y_n|^{-\alpha/(p-1)} dy. \end{aligned}$$

By Lemma 3 the integral with respect to y is majorated by

const. $|x-z|^{p-\alpha-n}$.

Therefore we have

$$\{\lambda \cdot \mu(R^n)\}^{p'} \leq M' \left\{ \int |y_n|^{\alpha} g(y)^p dy \right\}^{\frac{p'}{p}} \mu(R^n),$$

and hence

$$\mu(R^n) \leq M\lambda^{-p} \int |y_n|^{\alpha} g(y)^p dy$$

for some constants M' and M independent of μ and λ . This leads to the conclusion of the lemma.

To show Theorem 1 in case p > 2, we need

LEMMA 5. Let α and p be non-negative numbers such that

$$2$$

Let $0 < \varepsilon < p - \alpha$ and R > 0. Then there is a constant M > 0 with the following property: if g is a non-negative function in $L^p(\mathbb{R}^n)$ whose support is contained in the closed ball centered at the origin of \mathbb{R}^n with radius R and if G_{λ} , $\lambda > 0$, is as in Lemma 4, then

$$C_{p-\alpha-\varepsilon}(G_{\lambda}) \leq M\lambda^{-p} \int |x_n|^{\alpha} g(x)^p dx.$$

PROOF. Set

$$t = \frac{n - (p - \alpha - \varepsilon)}{p(n-1)}.$$

Then 0 < t < 1. By Hölder's inequality we have for a positive measure μ on \mathbb{R}^n

(2)
$$\int |x-y|^{1-n} d\mu(x) \le \left\{ \int |x-y|^{pt(1-n)} d\mu(x) \right\}^{1/p} \left\{ \int |x-y|^{p'(1-t)(1-n)} d\mu(x) \right\}^{1/p'},$$

where 1/p+1/p'=1. Now let μ be a positive measure such that $S_{\mu} \subset G_{\lambda}$, S_{μ} is compact and $U_{p-\alpha-\varepsilon}^{\mu}(x) \leq 1$ for every $x \in S_{\mu}$. In a way similar to that in the proof of Lemma 4, we see that

$$\{\lambda\mu(R^n)\}^{p'} \leq \left\{ \int |y_n|^{\alpha}g(y)^p dy \right\}^{p'/p} \int_{|y| \leq R} |y_n|^{-p'\alpha/p} \left\{ \int |x-y|^{1-n} d\mu(x) \right\}^{p'} dy.$$

Noting that $pt(1-n) = p - \alpha - \varepsilon - n$ and $p'(1-t)(1-n) = (\alpha + \varepsilon)/(p-1) - n$, we have by (2)

$$\begin{aligned} \{\lambda\mu(R^n)\}^{p'} &\leq \left\{ \int |y_n|^{\alpha}g(y)^p dy \right\}^{p'/p} \left\{ \sup_{y \in R^n} \int |x-y|^{p-\alpha-\varepsilon-n} d\mu(x) \right\}^{p'/p} \\ &\int d\mu(x) \int_{|y| \leq R} |x-y|^{\beta-n} |y_n|^{-\alpha/(p-1)} dy, \end{aligned}$$

where $\beta = (\alpha + \varepsilon)/(p-1)$. Denote the last integral with respect to y by I. Obviously, it assumes its maximum at x=0 (cf. Lemma 1). Then

$$I \leq \int_{|y| \leq R} |y|^{\beta-n} |y_n|^{-\alpha/(p-1)} dy < \infty.$$

Since $U^{\mu}_{p-\alpha-\epsilon}$ is bounded on \mathbb{R}^n , we obtain

$$\mu(R^n) \leq M\lambda^{-p} \int |y_n|^{\alpha} g(y)^p dy$$

for a suitable constant M independent of λ and g, which implies the conclusion of the lemma.

3. Proof of Theorem 1

Let f be a function as in Theorem 1. Choose a number r such that $1 < r < p/(\alpha+1)$. Then, by (1) and Hölder's inequality we see that for any bounded open set Ω in \mathbb{R}^n_+ , $\int_{\Omega} |\operatorname{grad} f|^r dx < \infty$. Hence by [5; Theorem 5.6] there exists an extension \hat{f} of f to \mathbb{R}^n so that \hat{f} is locally r-precise in \mathbb{R}^n and symmetric with respect to \mathbb{R}^n_0 (see [5] for the definition of locally r-precise functions). Let us show that \hat{f} is locally L^p on \mathbb{R}^n . Let $l_{x'}$ be the line through (x', 0) which is parallel to the x_n -axis. Since \hat{f} is absolutely continuous along $l_{x'}$ for a.e. x',

$$f(x', x_n) = -\int_{x_n}^R \frac{\partial f}{\partial y_n}(x', y_n) dy_n + f(x', R), \quad 0 < x_n < R, \text{ for a.e. } x'.$$

Noting that $\int_{|x'| < R} |f(x', R)|^p dx' < \infty$ because f is continuous in R^n_+ , we have by (1) and Hölder's inequality that

$$\iint_{|x'|0,$$

which implies that $\hat{f} \in L^p_{loc}(\mathbb{R}^n)$. Hence we may suppose that $\operatorname{supp} \hat{f}$ is compact. By [4] we have the following integral representation of \hat{f} :

(3)
$$\hat{f}(x) = \sum_{i=1}^{n} a_i \int \frac{x_i - y_i}{|x - y|^n} \frac{\partial \hat{f}}{\partial y_i}(y) \, dy \quad \text{a.e.},$$

where a_i are constants. Let $f_{i,j}$, i=1, 2, ..., n; j=1, 2, ..., be continuous functions on \mathbb{R}^n with compact supports and set

$$g_{j}(y) = \sum_{i=1}^{n} |a_{i}| \left| f_{i,j}(y) - \frac{\partial \hat{f}}{\partial y_{i}}(y) \right|, y \in \mathbb{R}^{n}, j = 1, 2, \dots$$

We can choose the functions $f_{i,j}$ so that $\int |y_n|^{\alpha} g_j(y)^p dy \leq 2^{-2p_j}$. We define the continuous function v_j in R_n , j=1, 2, ..., by

$$v_{j}(x) = \sum_{i=1}^{n} a_{i} \int \frac{x_{i} - y_{i}}{|x - y|^{n}} f_{i,j}(y) dy.$$

Set $\omega_j = \{x \in \mathbb{R}^n; U_1^{q_j}(x) > 2^{-j}\}$. First we consider the case $p \leq 2$. From Lemma 4 it follows that $C_{p-\alpha}(\omega_j) \leq M2^{-p_j}$. If we set $E_k = \bigcup_{j=k}^{\infty} \omega_j$, then we see that $C_{p-\alpha}(E_k) \to 0$ as $k \to \infty$ and that v_j is uniformly convergent to v on $\mathbb{R}^n - E_k$, k = 1, 2, ..., where v is defined by the right-hand side of (3). In general, denote by E^* the projection of a set E in \mathbb{R}^n to the hyperplane \mathbb{R}_0^n . Setting

$$E_0 = \bigcap_{k=1}^{\infty} E_k^*,$$

we have $C_{p-\alpha}(E_0)=0$, by the fact that the Riesz capacity does not increase with respect to a transformation which does not increase the distance. Setting E^0 = $\{x \in R^n_+; f(x) \neq v(x)\}^*$, we note $C_{p-\alpha}(E^0)=0$. Let $E=E_0 \cup E^0$. Then $C_{p-\alpha}(E)$ = 0. If $(x', 0) \notin E$, then f is equal to v on $l_{x'} \cap R^n_+$ and v is continuous on $l_{x'}$. Consequently

$$\lim_{x_n \downarrow 0} f(x', x_n)$$

exists and is finite for $(x', 0) \notin E$. Thus the case $p \leq 2$ is proved.

Next we consider the case p>2. In this case we may assume that the supports of functions g_j are all included in a fixed closed ball. Then note that $C_{p-\alpha-\varepsilon}(E)=0$ for any ε , $0<\varepsilon< p-\alpha$, on account of Lemma 5. In the same way as above we can show Theorem 1 in case p>2. Thus our theorem is proved.

REMARK. The above proof shows that Theorem 1 is valid if f is a locally *p*-precise function on R_{+}^{n} and (1) is satisfied for any bounded open set Ω in R_{+}^{n} .

4. Proof of Theorem 2

To prove Theorem 2, we need the following lemma.

LEMMA 6. Let g be a non-negative function in $L^{p}(\mathbb{R}^{n})$ and set

$$f(x) = \int |x - y|^{1 - n} |y_n|^{-\alpha/p} g(y) dy,$$

where $\alpha \ge 0$ and $1 + \alpha . Then$

$$\left\{ \int |x_n|^{\alpha} |\operatorname{grad} f|^p dx \right\}^{1/p} \leq M \|g\|_p$$

for some constant M > 0 independent of g, where the derivatives are considered in the sense of distribution.

PROOF. Noting that $(1+|y|)^{1-n}|y_n|^{-\alpha/p} \in L^{p'}(\mathbb{R}^n), p'=p/(p-1)$, we have

(4)
$$\int (1+|y|)^{1-n} |y_n|^{-\alpha/p} g(y) dy < \infty.$$

We set $\kappa_{\varepsilon}(x) = (|x|^2 + \varepsilon^2)^{(1-n)/2}$, $\varepsilon > 0$, and define

$$F_{\varepsilon}(x) = \int \kappa_{\varepsilon}(x-y) |y_n|^{-\alpha/p} g(y) dy.$$

From (4) we see that $F_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$ and

$$\frac{\partial F_{\varepsilon}}{\partial x_{i}}(x) = \int \frac{\partial \kappa_{\varepsilon}}{\partial x_{i}}(x-y) |y_{n}|^{-\alpha/p} g(y) dy, i = 1, 2, ..., n.$$

We set $\kappa_{\varepsilon} * g(x) = \int \kappa_{\varepsilon}(x-y)g(y)dy$ for $\varepsilon > 0$. In the proof of [4; Lemma 3.2], it is shown that $||D_i(\kappa_{\varepsilon} * g)||_p \le M_1 ||g||_p$ for any *i*, where $D_i = \partial/\partial x_i$ and M_1 is a constant independent of *g*. On the other hand,

(5)
$$||x_{n}|^{\alpha/p}D_{i}F_{\varepsilon}(x) - D_{i}(\kappa_{\varepsilon}*g)|$$

$$\leq M_{2} \int |x-y|^{-n}|1 - (|x_{n}|/|y_{n}|)^{\alpha/p}|g(y)dy$$

$$= M_{2} \int \frac{|1-(|x_{n}|/|y_{n}|)^{\alpha/p}|}{|x_{n}-y_{n}|} \int \frac{|x_{n}-y_{n}|}{\{|x'-y'|^{2}+(x_{n}-y_{n})^{2}\}^{n/2}}g(y', y_{n})dy'dy_{n}.$$

We set

$$G(x'; x_n, y_n) = \int \frac{|x_n - y_n|}{\{|x' - y'|^2 + (x_n - y_n)^2\}^{n/2}} g(y', y_n) \, dy'.$$

Then we note that for some constant $M_3 > 0$ (independent of x_n and y_n)

$$\int G(x'; x_n, y_n)^p dx' \leq M_3 \int g(y', y_n)^p dy'$$

(see [6; Theorem 1, (a) in Chap. III and Theorem 1, (c) in Chap. I]). Hence by using Minkowski's inequality ([6; Appendix A.1]), we have

$$\iint \left\{ \int \frac{|1 - (|x_n|/|y_n|)^{\alpha/p}|}{|x_n - y_n|} G(x'; x_n, y_n) dy_n \right\}^p dx' dx_n$$

$$\leq M_3 \int \left| \int \frac{|1 - (|x_n|/|y_n|)^{\alpha/p}|}{|x_n - y_n|} \left\{ \int g(y', y_n)^p dy' \right\}^{1/p} dy_n \Big|^p dx_n.$$

Applying Appendix A.3 in [6] with $K(x_n, y_n) = |1 - (|x_n|/|y_n|)^{\alpha/p}|/|x_n - y_n|$, we see that the above integral is not greater than $M_3 A_K^p ||g||_p^p$, where $A_K = \int_{-\infty}^{\infty} K(1, y_n) |y_n|^{-1/p} dy_n < \infty$. This shows that (5) belongs to $L^p(R^n)$ and its L^p norm is not greater than $M_4 ||g||_p$, $M_4 = M_2 M_3^{1/p} A_K$. Hence for $M = M_1 + M_4$

$$\| |x_n|^{\alpha/p} D_i F_{\varepsilon} \|_p$$

(6)
$$\leq \| |x_n|^{\alpha/p} D_i F_{\varepsilon} - D_i (\kappa_{\varepsilon} * g) \|_p + \| D_i (\kappa_{\varepsilon} * g) \|_p$$
$$\leq M \| g \|_p.$$

Let r be any number such that $1 < r < p/(\alpha + 1)$ and let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$. Then by (6) and Hölder's inequality we see that $\{\varphi D_i F_{\varepsilon}; \varepsilon > 0\}$ is bounded in $L^r(\mathbb{R}^n)$. We shall show that $D_i f \in L^r_{loc}(\mathbb{R}^n)$ (in the sense of distribution). For any φ and $\psi \in C_0^{\infty}(\mathbb{R}^n)$ we have

$$\langle \varphi D_i f, \psi \rangle = \langle D_i f, \varphi \psi \rangle = - \int f(x) D_i(\varphi \psi)(x) dx.$$

Since $F_{\varepsilon}(x)$ increases to f(x) as $\varepsilon \downarrow 0$ for any $x \in \mathbb{R}^{n}$ and $f \in L_{loc}^{r}(\mathbb{R}^{n})$, the right-hand side is equal to $-\lim_{\varepsilon \downarrow 0} \int F_{\varepsilon}(x)D_{i}(\varphi\psi)(x)dx = \lim_{\varepsilon \downarrow 0} \int \varphi(x)D_{i}f_{\varepsilon}(x)\psi(x)dx$. From the boundedness of $\{\varphi D_{i}F_{\varepsilon}; \varepsilon > 0\}$ in $L^{r}(\mathbb{R}^{n})$ we see that there is a constant A such that $|\langle \varphi D_{i}f, \psi \rangle| \leq A ||\psi||_{r'}$, where 1/r + 1/r' = 1. It follows that $\varphi D_{i}f \in L^{r}(\mathbb{R}^{n})$, and hence $D_{i}f$ is a function (as distribution). Let $\{\varphi_{j}\}$ be a sequence in $C_{0}^{\infty}(\mathbb{R}^{n})$ such that $\varphi_{j}(x) \geq 0$ for any $x \in \mathbb{R}^{n}$ and $\varphi_{j}(x)$ increases to $|x_{n}|^{\alpha/p}$ as $j \to \infty$. Then as seen in the above,

$$\langle \varphi_j D_i f, \psi \rangle = \lim_{\epsilon \to 0} \int \varphi_j(x) D_i F_{\epsilon}(x) \psi(x) dx$$

holds for any $\psi \in C_0^{\infty}(\mathbb{R}^n)$. The absolute value of the right-hand side is not greater than

$$\limsup_{\varepsilon\to 0}\left\{\int |x_n|^{\alpha}|D_iF_{\varepsilon}|^pdx\right\}^{1/p}\|\psi\|_{p'}\leq M\|g\|_p\|\psi\|_{p'},$$

where p' = p/(p-1). Hence $\|\varphi_j D_i f\|_p \leq M \|g\|_p$. Since $\varphi_j |D_i f|$ increases to $|x_n|^{\alpha/p} |D_i f|$ as $j \to \infty$, we have by Lebesgue's monotone convergence theorem

$$|| |x_n|^{\alpha/p} D_i f ||_p \leq M ||g||_p, \quad i = 1, 2, ..., n,$$

which imply the required inequality for f.

We shall introduce the capacity $C_{\beta,p}$ $(0 < \beta < n, 1 < p < \infty)$, which is a special case of the capacity $C_{k;\mu;p}$ studied by N. G. Meyers [3], and which is defined as follows:

$$C_{\beta,p}(E) = \inf \|f\|_p^p, \qquad E \subset \mathbb{R}^n,$$

where the infimum is taken over all non-negative functions f in $L^{p}(\mathbb{R}^{n})$ such that $U_{\beta}^{f}(x) \ge 1$ for all $x \in E$.

Theorem 2 is a consequence of the following theorem in view of a result of B. Fuglede [1; Theorem A] (see also [2]).

THEOREM 2'. Let α and p be as in Theorem 1. Let E be a set in \mathbb{R}_0^n such

that $C_{1-\alpha/p,p}(E) = 0$. Then there exists a function f as in Theorem 2.

PROOF. By our assumption that $C_{1-\alpha/p,p}(E)=0$, we can construct a nonnegative function g in $L^p(\mathbb{R}^n)$ such that $U_{1-\alpha/p}^g(x)=\infty$ for all $x \in E$. We set $f(x)=\int |x-y|^{1-n}|y_n|^{-\alpha/p}g(y)dy$. Then Lemma 6 implies that $\int |x_n|^{\alpha}|\operatorname{grad} f|^p dx < \infty$. Noting that $|x-y| \ge |y_n|$ for all $y \in \mathbb{R}^n$ and all $x \in \mathbb{R}_0^n$, we have $f(x)=\infty$ for all $x \in E$. We consider a mollified function as given by M. Ohtsuka [5]. He has shown that there exists a function $\beta \in C^{\infty}(\mathbb{R}_+^n)$ having the following properties ([5; Lemma 2.10]):

- i) $0 < \beta < 1$, ii) $|\text{grad }\beta| < 1/2$, iii) $2\beta(x) < x_n$,
- iv) $\omega(x) \leq 2\omega(y)$ for any pair (x, y) such that $x \in \mathbb{R}^n_+$ and $|x-y| < \beta(x)$, where $\omega(x) = x^{\alpha}_n$, $x \in \mathbb{R}^n_+$.

Choosing a non-negative function ψ in $C_0^{\infty}(\mathbb{R}^n)$ such that $\psi(x)=0$ if |x|>1 and $(\psi(x)dx=1)$, we define the mollified function F of f as follows:

$$F(x) = \int f(x + \beta(x)y)\psi(y)dy, \qquad x \in R_+^n.$$

Then $F \in C^{\infty}(\mathbb{R}^{n}_{+})$ and $\int_{\mathbb{R}^{n}_{+}} x_{n}^{\alpha} |\operatorname{grad} F|^{p} dx < \infty$ ([5; Theorem 4.4]). Since f is lower semi-continuous, $f(x) \to \infty$ as $x \to (x', 0) \in E$. Hence we easily see that $\lim_{x_{n} \downarrow 0} F(x', x_{n}) = \infty$ for $(x', 0) \in E$. Thus F is the required function.

Added in proof. After submitting this paper for publication, I found that A.A. Bagarshakyan (Sibirsk. Mat. \tilde{Z} . 15 (1974), 1011–1020) had obtained a result similar to our Theorem 1, in which he characterizes the exceptional set for u in Theorem 1 by using a capacity different from the Riesz capacity.

References

- [1] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219.
- [2] —, On generalized potentials of functions in Lebesgue classes, Math. Scand.
 8 (1960), 287-304.
- [3] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255-292.
- Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
- [5] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture notes, Hiroshima Univ., 1973.
- [6] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970.

 [7] H. Wallin, On the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc. 120 (1965), 510-525.

> Department of Mathematics, Faculty of Science, Hiroshima University