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1. Introduction and statement of results

Let Rn (n^2) be the n-dimensional Euclidean space and its points be denoted

by x, y, etc., or x = (xu x2,..., xn) = (xr, xn), y = (yί9 y2,—, yn) = (y'> yn)> e t c F o r

a positive number α such that α < π , the Riesz potential of order α of a measure μ

on Rn is defined by

If μ has a density / (that is, dμ—fdx, where / is locally integrable), we may write

U{ instead of l/J. The Riesz capacity CΛ(E) of a Borel set E in Rn may be

defined as follows:

Ca(E) = sup μ(R"),

where the supremum is taken over all positive measures μ concentrated on E

such that Uμ

a(x)tk 1 for every xeSμ (Sμ is the support of μ).

Our main theorem is the following:

THEOREM 1. Let a and p be numbers such that α^O and l + α < p < n + α.

Let f be a function which is defined and continuous in the upper half space

R^ = {x = (x\ χπ); χn>0}. Suppose that all partial derivatives off of first order

exist a.e. on R\ and that for any bounded open set Ω in R*ί

(1) JJfl|gτad/(x\ xJ\*x'dx'dxH < oo.

Then limXniof(x',xn) exists and is finite except for (x', 0) in a Borel set E in #g

= {(/, 0); /ejR""1} such that Cp_α(£) = 0 if p^2 and Cp_α_ε(£) = 0 for any
ε > 0 with p — a — ε>0 if p>2.

In the case p = 2 this theorem was shown by H. Wallin [7]. He also showed

that his result is the best possible as to the size of the exceptional set. We shall

generalize this result in the following theorem:

THEOREM 2. Let a and p be as in Theorem 1. Let E be a set in #g such
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that Cp_α(£) = 0 //>Ξ>2 and Cp-a+ε(E) = 0 for some ε>0 with p-a + ε<n ifp<2.
Then there exists a function f of class C00 in R+ such that

[[ Igradfl*', xn)ψxΛ

ndχ dxn < oo
J J R +

and limXniof(x\ xn)= oo /or any (x\ 0) e £.

We see that there is a gap between Theorem 1 and Theorem 2 in the case
PΦ2.

The author wishes to express his deep gratitude to Professor H. Wallin for
his kind and valuable suggestions.

2. Lemmas

To prove Theorem 1, we prepare several lemmas.

LEMMA 1. Let β and y be numbers such that

0 g y < 1 and y < β < n.

Let η be a positive number. Then

\ \x-y\'-"\y.r7dy g Mtf-r

for some constant M>0 independent of x and η.

PROOF. We may assume that x=(0, xn), xn^0. We shall show that the
integral assumes its maximum when xn=0. We set

Eι = {y; \χ-y\ ύn, \y\ >n),

Et = \y; \χ-y\ ύη,yn>

E2 = \y; \x-y\ ^

and

E*= {y; \χ-y\ > η, \y\ ^η}.

Then we note

\χ-y\"-"\yJl->dy z\ \y\'-m\y,,\-'dy.

and
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Hence
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χ-y\β-n-\y\β-n}\yn\-ydyύ\ {\y\β-"-\χ-y\β-n}\yn\-ydy.
)E

\ y \ \ y n \ y ύ[ \y\β-n\yn\~ydy
\χ-y\ύn \\ύ

where M = { \x\β-"\xn\-vdx<oo.
J | * | £ l

LEMMA 2. Let β and γ be numbers such that

β + y > 0 and 0 ̂  y < 1.

Let η be a positive number. Then

[ \χ-y\-β-"\yn\-γdy ^ Mη-β-y
J\x~y\^η

for some constant M>0 independent of x and η.

PROOF. Again we may assume that x = (0, xπ), xn ̂  0. By change of vari-
ables z = y/η,

\χ-y\-β-"\yn\-γdy = η~β

where x* = x/η. We can easily verify that \ |x* — z\~β~n\zn\~γdz is
J\x*-z\^ 1

bounded, dividing the domain of integration into three parts, that is, (a) |x* — z\ <

\\z\ (this implies |x*-z|g |zJ/V3), (b) | z |< l , (c) | z | ^ l , \x*-z\^\\z\.

LEMMA 3 (cf. [7; Lemma 4]). Let β and y be numbers such that 0 ^

and yKβK'ψl. Then

\\χ-y\β~n\z-y\β~n\yn\~γdy ύ M\X-Z\2P-V-»

for some constant M independent of x and z.

PROOF. Set η = \x-z\β. Noting that \y-z\^η if \x-y\<Lη, we have

h = \ \*-y\β-n\z-y\β-n\yn\-ydy
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Lemma 1 gives

for some constant Mι independent of x and z. Similarly

I2 =

On the other hand we have

\χ-y\β-*\z-y\β-n\yn\-ydy
\χ-y\>η, \z-y\>η,\y-χ\<\y-z\

\χ-y\2{β~n)\yn\~ydy ύ M2η
2P-y-n

\χ-y\>η

for some constant M2 independent of x and z, because of Lemma 2. Similarly

/ 4 = ( \χ-y\β-"\z-y\β-H\yn\-ydy
J\x-y\>η,\z-y\>η, \y-x\^\y-z\

Hence we obtain

From Lemma 3 we derive the following lemma, which will be used to show

Theorem 1 in case p g 2.

LEMMA 4 (cf. [7; Lemma 3]). Let α and p be non-negative numbers such

that

1+α < p g 2.

Let g be a non-negative function in Lp(Rn), and set

Gλ = {xeRn; U\(x) > A}, λ > 0.

Then there is a constant M>0 independent of g and λ such that

PROOF. Let μ be a positive measure such that SμcGλ, Sμ is compact and



On the Existence of Boundary Values of Beppo Levi Functions 65

— y\p-<x~ndμ{y)^\ for all xeSμ. Then by using Holder's inequality, we

have for p' = pj{p — 1)

p'
{λ μ{R")}" ύ \\{\

Set j8 = (p-α)/2 + α/2(p-l) and note

By Holder's inequality and the fact that l/£_ α ^l on Rn (Frostman's maximum

principle),

Hence

By Lemma 3 the integral with respect to y is majorated by

const. \x — z\p~a~n.

Therefore we have

EL
{λ μ(R»)}P' ̂  M'^\yn\'g(yYdyy μ(R*),

and hence

μ(R») ^

for some constants Mr and M independent of μ and λ. This leads to the conclu-

sion of the lemma.

To show Theorem 1 in case p > 2, we need



66 Yoshihiro MIZUTA

LEMMA 5. Let a and p be non-negative numbers such that

2 < p < n + α.

Let O<ε<p — oc and R>0. Then there is a constant M > 0 with the following

property: if g is a non-negative function in Lp(Rn) whose support is contained

in the closed ball centered at the origin of Rn with radius R and if Gλ9 Λ>0, is

as in Lemma 4, then

PROOF. Set

t = n-(p-cc-ε)
p(n-\) '

Then 0 < ί < l . By Holder's inequality we have for a positive measure μ on Rn

(2)

where l/p+l/p ' = l. Now let μ be a positive measure such that SμczGλ9 Sμ is

compact and L/^_α_ε(x)^ 1 for every x e Sμ. In a way similar to that in the proof

of Lemma 4, we see that

{λμ(Rn)V

Noting that pt(\—ή) = p — a — ε — n and p'(\ — t)(l—ή) = (<x + ε)l(p — 1) — n, we have

by (2)

{λμ(R«)}*>'

[dμ(x)\ \x-

where β = (α + ε)/(p— 1). Denote the last integral with respect to y by /. Obvi-

ously, it assumes its maximum at x = 0 (cf. Lemma 1). Then

\y\β-'\ya\-llp-»dy < oo.
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Since l/£_α_ε is bounded on Rn, we obtain

μ(R») ̂  Mλ

for a suitable constant M independent of λ and g, which implies the conclusion
of the lemma.

3. Proof of Theorem 1

Let / be a function as in Theorem 1. Choose a number r such that \<r
). Then, by (1) and Holder's inequality we see that for any bounded

open set Ω in R*\., \ |grad/|rt/x<oo. Hence by [5; Theorem 5.6] there exists

an extension / of / to Rn so that / is locally r-precise in Rn and symmetric with
respect to R% (see [5] for the definition of locally r-precise functions). Let us
show that /is locally Lp on R". Let lx. be the line through (x\ 0) which is parallel
to the xrt-axis. Since/is absolutely continuous along lx, for a.e. x',

/(*', xn) = -[R -$[~(x',yn)dyn+f(x\ R), 0<xn<R9 for a.e. x'.
Jxn °y n

Noting that \ |/(x', R)\pdxf <co because / is continuous in RΊ, we have
J\χ'\<R

by (1) and Holder's inequality that

I/O', xn)\Pdx'dxn < oo for any R > 0,
| < R , 0<xn<R

which implies that f e Lp

oc(Rn). Hence we may suppose that supp/ is compact.
By [4] we have the following integral representation of/:

where α, are constants. Let/ 7 , i= 1, 2,..., n;j=l9 2,..., be continuous functions
on Rn with compact supports and set

We can choose the functions fUj so that \\yn\
agj(y)pdy^2~2pJ. We define the

continuous function Vj in Rn,j = l, 2,..., by
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Set cύj ={xeRn; Uy(x) > 2~J}. First we consider the case p ^ 2. From Lemma

4 it follows that Cp-Λ(ωj)^M2-*K If we set Ek = KjJ==kωp then we see that

Cp_XEfc)->0 as /c->oo and that Vj is uniformly convergent to v on Rn — Ek9 fc=l,

2,..., where i; is defined by the right-hand side of (3). In general, denote by E*

the projection of a set E in Rn to the hyperplane jRg. Setting

oo

Eo= ΓΛ £ * ,

we have C p _ α (£ 0 ) = 0, by the fact that the Riesz capacity does not increase with

respect to a transformation which does not increase the distance. Setting E°

= {xeRl;f(x)*υ(x)}*9 we note Cp_α(£°) = 0. Let E = E0 U E°. Then Cp_α(£)

= 0. If (x\ 0) φ E, then / is equal to v on \x, Π R+ and ϋ is continuous on lx..

Consequently

exists and is finite for (x\ 0) φ E. Thus the case p^l is proved.

Next we consider the case p>2. In this case we may assume that the sup-

ports of functions gj are all included in a fixed closed ball. Then note that

Cp-a-ε(E) = 0 for any ε, 0<ε<p — α, on account of Lemma 5. In the same way

as above we can show Theorem 1 in case p>2. Thus our theorem is proved.

REMARK. The above proof shows that Theorem 1 is valid if / is a locally

p-precise function on K£ and (1) is satisfied for any bounded open set Ω in K$.

4. Proof of Theorem 2

To prove Theorem 2, we need the following lemma.

LEMMA 6. Let g be a non-negative function in Lp(Rn) and set

f(χ) = \t\x-y\1-"\yn\-''»>g(y)dy,

where α^0 and l + α < p < n + α. Then

for some constant M>0 independent of g, where the derivatives are considered

in the sense of distribution.

PROOF. Noting that {\ + \y\y-n\yn\-*iPeD>'(Rn\ p'=p/(p-l), we have

(4)
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We set κε(x)=(|x|2+ε2)<1-">/2, ε>0, and define

Fε(x) = \jκE(x-y)\yn\-^g(y)dy.

From (4) we see that Fε e C°°(K") and

,i= 1,2,..., n.

We set κε*g(x)=\κε(x-y)g(y)dy for ε>0. In the proof of [4; Lemma 3.2],

it is shown that 110^*0)llp^MJIgllp for any i, where D—d/δxi and Mj is a con-
stant independent of g. On the other hand,

(5) WXJ'ΊPD^X)-0^*9)1

-y\-"\ί -(K\l\yn\rlp\θ(y)dy

-M(\i-(\x,.\l\yn\)'*\[ \xn-yJ q W y )dy'dy

2) \xn-yJ ){\x'-y'\2 + (xn-yn)
2}"l29(y'yn) y y"

We set

G(x';x.,y.) = \ {]χ,_y,^"[^y^giZ, yn) dy'.

Then we note that for some constant M 3 > 0 (independent of xn and yn)

(see [6; Theorem 1, (a) in Chap. Ill and Theorem 1, (c) in Chap. I]). Hence
by using Minkowski's inequality ([6; Appendix A.I]), we have

dxn.

Applying Appendix A.3 in [6] with K(xH9 yM)=|l-(|xπ |/ |^|)α / / 7l/l^-Λl ϊ we see
Γao

that the above integral is not greater than M3A^\\g\\p

p9 where Aκ=\ K(l, yn)
J-00

\yn\~ilpdyn<oo This shows that (5) belongs to LP(Rn) and its LP norm is not
greater than M4 | |^| |p, M 4 = M2M3

1/MJC. Hence for M^M
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(6) g || \xn\
a/*D,Ft-Dfa*g)\\p+ \\DfycB*g)\\p

Let r be any number such that 1 < r <p/(α+1) and let φ e C§>CRn). Then by (6)
and Holder's inequality we see that {φDfFε; ε>0} is bounded in Lr(Rn). We
shall show that DJeL\oc(Rn) (in the sense of distribution). For any φ and
ψ e C§(Rn) we have

<φDJ, ψ> = <DJ9 φψ> = -

Since Fε(x) increases tof(x) as ε I 0 for any x e Rn and/e Lr

loc(Rn% the right-hand

side is equal to — limεio\Fε(x)Di(φψ)(x)dx = \imεio\φ(x)Difε(x)φ(x)dx. From

the boundedness of {φDiFε; ε>0} in Lr(R") we see that there is a constant A
such that \<φDJ9ψ>\^A\\ψ\\r.9 where l/r+l/r' = l. It follows that φD f/e
Lr(Rn), and hence D f/ is a function (as distribution). Let {ψj} be a sequence in
C^JR") such that <py(x)̂ 0 for any xeR" and (pj(x) increases to \xn\

a/p

Then as seen in the above,

<φjDJ, ψ> = lim
ε->0

holds for any ψ e Cg5^"). The absolute value of the right-hand side is not greater
than

where p' = pl(p—l). Hence II^A/llp^^ll^llp Since (Pj\DJ\ increases to
\xn\*lp\DJ\ asj-^oo, we have by Lebesgue's monotone convergence theorem

which imply the required inequality for /.
We shall introduce the capacity Cβp (0<β<n, l<p<oo), which is a special

case of the capacity Ck;μ;p studied by N. G. Meyers [3], and which is defined as
follows:

,,p EczR»9

where the infimum is taken over all non-negative functions / in Lp(Rn) such that

Theorem 2 is a consequence of the following theorem in view of a result of
B. Fuglede [1 Theorem A] (see also [2]).

THEOREM 2'. Let cc and p be as in Theorem 1. Let E be a set in .Rg such
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that Cί_a/PiP(E) = 0. Then there exists a function f as in Theorem 2.

PROOF. By our assumption that Cί-Λ/PtP(E) = 09 we can construct a non-
negative function g in Lp(Rn) such that U9

1_a/p(x)=co for all xeE. We set

f{x) = \\x~y\ι~n\yn\~alpg(y)dy. Then Lemma 6 implies that\|xπ|α|grad/|p<ix<oo.
Noting that \x — y\^\yn\ for all yeRn and allxe^S, we have f(x) = 00 for all
xeE. We consider a mollified function as given by M. Ohtsuka [5]. He has
shown that there exists a function βeC°°(RX) having the following properties
([5; Lemma 2.10]):

i) 0 < β < l , ii) |gradβ|<l/2, iii) 2β(x)<xn,

iv) ω(x)^2ω(y) for any pair (x, y) such that xeR% and |x — y\<β(x),
where ω(x) = xί

Choosing a non-negative function ψ in C*§(Rn) such that ψ(x) = 0 if | x |> l and

\ψ(x)dx = l, we define the mollified function F of/as follows:

Then FeC 0 0^?.) and \ xj |gradF|^x<oo ([5; Theorem 4.4]). Since / i s

lower semi-continuous, /(x)-»oo as x-^(x', 0)e£. Hence we easily see that

X/j)31100 f°r (χ/> 0)e£. Thus F is the required function.

Added in proof. After submitting this paper for publication, I found
that A.A. Bagarshakyan (Sibirsk. Mat. Z. 15 (1974), 1011-1020) had obtained
a result similar to our Theorem 1, in which he characterizes the exceptional set
for u in Theorem 1 by using a capacity different from the Riesz capacity.
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