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Introduction

Let Ω be a bounded open set in a euclidean space and/ a continuous function

defined on the boundary dΩ. The classical Dirichlet problem asks for a con-

tinuous function u on the closure Ω of Ω which is harmonic in Ω and equal to

/on dΩ. H. Bauer [1] considered an analogous abstract Dirichlet problem for
a compact HausdorfF space X and a vector space B of real-valued, continuous

functions on X which contains constant functions and separates points of X.

He investigated conditions with which a continuous function / defined on the clo-

sure of the Choquet boundary δ(E) with respect to B can be extended to X as a

function of B or a B-affine function. In the special case where X is a convex
compact set in a locally convex real vector space and B is the vector space of the

restrictions to X of all functions of the form /+ α with a linear functional / and a

constant function α, Bauer proved that (̂<5(B)) = B|<5(B) if and only if B is a sim-
plex and <5(B) is closed ([1, Satz 13]). Thus the abstract Dirichlet problem is

deeply connected with the theory of simplexes (see [5] and [6]). Similar abstract

Dirichlet problems on a compact set and their relations with the theory of sim-
plexes have been discussed by many authors; e.g., [3] and [8].

In the case where X is a locally compact and σ-compact HausdorfΓ space,

G. Mokobodzki and D. Sibony ([9], [10]) showed that the Choquet boundary

with respect to a certain convex cone C of lower semicontinuous functions on

X is not empty, using the notion of adapted cones due to G. Choquet [5].
Let P be an adapted convex cone consisting of non-negative continuous

functions on X and C be a convex cone consisting of P-bounded continuous
functions on X. We shall show that many results in [1], [3], [8] concerning sim-

plexes and abstract Dirichlet problems, which are obtained for a compact space
X, are also valid with respect to such a cone C in the case where X is a locally

compact and σ-compact space. We shall then apply these results to Dirichlet
problems for arbitrary open or closed sets in Bauer's axiomatic potential theory

([2]).
Most of the results in this paper were announced in [15] and [16]. Since

the proofs in those papers are sketchy, we shall give details in the present paper.

Here we remark that recently J. Bliedtner and W. Hansen (Inventions math.
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29(1975), 83-110) showed that Corollary 4.2 in this paper is valid without Axiom

D.
The author wishes to express her cordial thanks to Professor Seizό Itό for his

kind remarks and suggestions to this research.

Chapter 1. The space HP

Throughout this paper X is a locally compact and σ-compact Hausdorff

space. We denote by &(X) the set of all continuous real-valued functions on

X, and by %+(X) the set of all non-negative functions in %(X). Let &K(X)

= {fe ^(X) i f has a compact support} and ^X) = ^K(X) n tf+(X).

The following lemma, which will be used later, is an immediate consequence

of [4, Chap. IV, § 1, Theoreme 1]:

LEMMA 1. Let μ be α positive Radon measure on X and {/α} a lower

directed family of upper semi-continuous μ integrable functions. Suppose that

there exist an index β and a continuous μ-integrable function g such

Then

§ 1.1. Adapted convex cone and the space HP

Let / and g be non-negative functions on X. We say that g dominates f

at infinity, if for each ε>0 the set {x e X /(x) > εg(x)} is relatively compact.

We say that a convex cone P in &+(X) is adapted if it satisfies the following

conditions :
(pj) for any x e X there exists u e P satisfying u(x)>Q,

(p2) for any u E P there exists v e P such that υ dominates u at infinity.

A linear subspace B of &(X) is said to be adapted if B = B+ — B+, where

B+ = B n #+PO, and B+ is an adapted cone.
Obviously, if P is an adapted convex cone and Y is a closed subset of X,

then P| Y= {f\ 7; /e P} is an adapted convex cone on Y.

Let P be an adapted convex cone in ^+(X). For u eP we denote by HM

the Banach space of continuous functions / on X such that \f\^λu for some

Λ^O with the norm ||/||M = inf{>ί; \f\^λu} and consider HP= WH M with the
weP

topology of the inductive limit of Banach spaces {HM}MeP. By (px), we see that

PROPOSITION 1.1. Let P be an adapted convex cone in &+(X). Then for

each /e HP we can find w e P such that for each ε>0, there exists h
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satisfying \\f-h\\u<ε.

PROOF. Assume that feHv for veP. Since P is adapted, there exists
u e P dominating v at infinity and u ^ι?; accordingly /e HM. For any ε>0, there
exists a compact set K such that v^εu on X — K. We may find
satisfying \f\ ^g on X. Put /ι = max{ — g, min{/, g}}. Then we have

§ 1.2. Positive linear functionals on HP

Let P be an adapted convex cone in &+(X). A positive Radon measure μ
on X is said to be P-integrable if μ(/)<oo for any /eP. The space of all P-
integrable positive measures on X is denoted by $Hp\ Since P is adapted, any
positive linear functional on HP is represented by a measure in 90l£ and 90ΪP

= 9Jίί-2R£ is the dual of HP (cf. [9, §3, Proposition 11]).

LEMMA 1.2. Let Ebea subspace of HP containing P. Any positive linear
functional L on B may be extended to a positive linear functional on HP. //
B is dense in HP, the extension is unique.

PROOF. For any /eHP we put p(f)= inf L(g). Then we have
0^/,0eB

<oo. Since the mapping: f^p(f) is a sublinear functional on HP and p(f)
= L(f) on B, we may find a linear functional L' on HP satisfying L'(/)^Ξp(/)
for all /e HP and L'(/) = L(/) for each /eB by the Hahn-Banach extension theo-
rem. If /^O, then p(/)^0, and accordingly L'(/)^0. If B is dense in HP,
then the above extension L' is unique, since any positive linear functional on HP

is continuous.

The following lemma is an extension of Hilfssatz 4 in [1].

LEMMA 1.3. Let P be an adapted cone in ^+(X)9 E be a subspace of HP

which is a lattice in the natural order, and F be a positive linear functional on
HP which satisfies

for any /, g eB and which is not identically zero on B. Suppose that for every
x there exists /eB such that f(x)^Q. Then there exist xeX and λ>0 such that
F(f) = λ f ( x ) f o r a l l f e E .

PROOF. First we shall show that there exists a point x e X satisfying

(1.1) F-1(0)ΠB

Assume that for each x e X9 there exists fx e F'̂ O) n B satisfying /v(x)^0. By
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condition (*), if /eF'^O) n B, then max{/, 0} and min{/, 0} both belong to
F~1(0)nB. Hence we may assume /*^0. For any /eB+ = B n V+(X),
there exists g eP such that the closure K of {ze X;f(z)>εg(x)} is compact for
any ε>0, since P is adapted. By the continuity of fz and the compactness of

n
K, we may find a finite number of points z f e X (i=l,..., n) such that /0= Σ/z,

>0 on K. Then/oeF'^O). For sufficiently large α>0 we have/^α/0 on K,
whence f^af0 + εg on X. Thus we have OgF(/)^αF(/0) + εF(0) = εF(0).
Hence F(/) = 0. Since B is a lattice, F is identically zero on B, which is contrary
to the assumption. Thus there exists x e X satisfying

F-1(0)nBc={/eB;/(x) = 0}.

We note that {/e B /(x) = 0} does not coincide with B by the assumption. Since
the linear space F"1^) n B is maximal in B, we have the relation (1.1). Further,
taking h e B+ with F(/t)^0, we have (F(f)/F(h))h-feF-1(0)nE for any/eB,
whence (F(/)/F(ft))Λ(x)-/(x) = 0 from (1.1) and Λ(jc)^0. Putting λ = F(h)/h(x)
>0, we have F(/) = λ/(x) for any/eB.

§ 1.3. Totality of a convex cone in HP

A convex cone C in Ή(X) is said to be linearly separating if for any different
two elements x, y of X and any /l^O, there exists /eC such that f(x)^λf(y). A
convex cone C <= Ή(X) is said to be min-stable if /, g e C implies min {/, #} e C.

PROPOSITION 1.2. Lei P fee an adapted convex cone in &+(X). Assume
that a linear subspace B of HP containing P is linearly separating and min-
stable. Then for each fe^κ(X) we can find veP such that for each ε>0,

there exists g e VK(X) n B satisfying \\f-g\\v<ε.

PROOF (cf. the proof of [11, 2eme partie, Theoreme 12]). (I) We prove
first that for each x e X there exists φ E B+ such that its support is compact and
φ(x) > 0. Suppose there exists x e X such that every φ e B+ with compact support
is zero at x. Let V be an arbitrary relatively compact open set containing x.
Then, since B is min-stable, by considering φ = υ — min{w, v} we see that u^v
on CF implies u(x)^v(x) for u, i eB. Put B1 = B|CK Then B^PICF
and the mapping F: u*-+u(x) is a positive linear functional on B! which is not iden-
tically equal to zero. Hence F may be extended to a positive linear functional Φ
on Hp(CF) by Lemma 1.2, where in general

HP(7) = {/e #(7); |/| ^ λυ on Yfor some Λ^O and

for YCLX. Further Bx is a lattice on which the relation
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Φ(min {w, v}) = min {κ(x), v(x)} = min {Φ(u\ Φ(v)}

holds. Hence by Lemma 1.3, there exist yeCV and Λ>0 such that u(x) =

= λu(y) for any w e B . Since Xτ£y, this contradicts the assumption that B is
linearly separating.

(II) Let/e <&K(X). From the consideration in (I) it follows that there exists
φe*βκ(X) ΠB+ satisfying φ^\f\ on the support Sf off. Choose i eP satisfy-
ing t ^l on Sφ. Let ε>0 be given. By the Stone-Weierstrass theorem we find

heE such that \f— h\<ε on Sφ. Put # = max{min{/ι, φ}, —φ}. Then we

have \\f-g\\v<e.

By Propositions 1.1 and 1.2 we have the following corollaries.

COROLLARY 1.1 ([cf. 11, 2eme partie, Thέoreme 12]). Let B be an adapted
linear subspace of &(X). If it is min-stable and linearly separating, then B

is dense in HB + .

COROLLARY 1.2 ([14, Proposition 9]). // P is an adapted cone in
and C is a min-stable and linearly separating convex cone such that PcC
cHp, then C is total in HP, i. e.9 the linear space C — C is dense in HP.

Chapter 2. Simplexes

§ 2.1. Extremal measures

Let P be an adapted convex cone in &+(X) and S be a subset of X. An ex-
tended real-valued function / on S is said to be upper (resp. lower) P-bounded
if there exists w e P satisfying /:g u (resp. —u^f) on S.

Let C be a convex cone of lower P-bounded and lower semicontinuous
functions on X satisfying C=>P. For two measures μ, veϊRJ, we write

μ ~<c v OΓ simply μ -< v

if v(/)f£μ(/) for any/eC. A measure μeSWJ is said to be C-extremal (or sim-
ply extremal) if any measure v e9WJ with μ^<cv satisfies

for all/eC, i.e., if veSRjp and μ<cv, then v-<cμ.
We obtain the following proposition and corollary, the proofs of which are

the same as those in the case where X is compact (cf. [5, 12.6 Theorem] and [6,

Theoreme 3]).

PROPOSITION 2.1. Let C be a convex cone of lower P-bounded and lower
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semicontinuous functions on X satisfying C=>P. Then for μeSPΐί;, SDlμ =
is compact in the weak topology σ(9KP, HP) on SDΪP.

COROLLARY 2.1. For any μeSPΐp", there exists a C-extremal measure v
eSDίp" satisfying μ -<cv.

An upper or lower P-bounded semicontinuous function / on a closed set S
is said to be C-concave or simply concave on 5 if for any x e S and any measure
μeSPΪp such that μ(X-S) = 0 and εx-<cμ, the relation μ(f)^f(x) holds, where
εx is the unit measure at x. The set of all lower P-bounded and lower semi-

^
continuous C-concave functions on X is denoted by C. This is a min-stable
convex cone containing C. A function / on S is said to be C-affine or simply
affine on S if /and —/are both C-concave on 5.

Let μ be a measure in 9JΪJ and S a closed subset of X. For an upper P-
bounded function / defined on a set containing S the extended real number

is denoted by

We write Qx(f) for Qεχ(f). The function: x^Qx(f) is denoted by Qf. The
mapping f^Qμ(f) is sublinear. μ<v implies βμ(/)^βv(/). Obviously, Qsf^f
on 5. If /E C, then Qsf^f on X, and hence Qsf=f on S.

PROPOSITION 2.2. // C is α min-stable convex cone such that PcCc=HP,
then Qf is an upper P-bounded, upper semicontinuous C-concave function on
X and βμ(/)=μ(β/)/or any μeSRP.

PROOF. It is easy to see that Qf is upper P-bounded, upper semicontinuous
and C-concave. The equality βμ(/) = μ(β/) follows from Lemma 1.1.

A closed subset S of X is said to be C-determining or simply determining
if any function in C non-negative on S is non-negative on X. If S is C-determin-

ing and/e -C, then β*(/)^μ(/) and hence Qsf^fon X.
The following lemma and Corollary 2.2 give an extension of Lemma 1.1 in

[3].

LEMMA 2.1. Let f be an upper P-bounded and upper semicontinuous func-
tion on a determining closed set S. Then for any μ e9JΪP, there exists a measure

p such that μ<v, v(J^-5)=0 and v(/) =

PROOF. We first assume /eHP. Then we have |βμ(/)|< + oo. In fact,
obviously βμ(/)< + oo. Since /eHP, there is ι?eP such that f^-v. Since
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S is determining, we see that βμ(/)^ —μ(v)> — oo. As the mapping: g^>Qs

μ(g)
from HP(S) into R is sublinear, we may find, by the Hahn-Banach extension theo-
rem, a linear functional vf on HP(S) such that vf^Q% on HP(S) and v/(/) = Q£(/).
Obviously, if geHP(S) is non-positive, then Q£(#):gO. Hence we may regard
vf as an element of 9KJ with vf(X - S) = 0. It follows that

v/0)= sup v/Λ)^ sup Qs

μ(h)^μ(g)
h^θonS HZgonS

for any g eC, whence
Next, let / be an upper P-bounded and upper semicontinuous function on

S. We denote by ̂  the lower directed family {g e HP g ̂ / on S}. By the pre-
ceding consideration, we can choose, for any g E &, a measure vg e 9W£ such that

μ<vg, v/X-S) = 0 and v,(0) = QJ(0). Since {Ae9HJ; μ<U} is compact in the
topology σ(9KP, HP) by Proposition 2.1, there is veS0l£ such that a cofinal sub-
family of {vg}g€y converges to ve90ΐ£ with μ-<v. Obviously v(X — S)=0. We
also have

QKf) ^ MQl(g) = inf vg(g) ^ inf inf vg(g')
gey gey g'ey 0e& r

^ infv(g') = v(/) g inf v(v) g inf χ»)
flf'eaf ι?eC t?eC

i ^ / o n S v ^ / o n S

COROLLARY 2.2. Let f and S be as in Lemma 2.1. Then,

Qs

μ(f) = sup{v(/); veSRέ, v(X~S) = 0, μ^<v} .

PROPOSITION 2.3. Let C be a min-stable convex cone such that Pc=C
cHP. Then for any μ, veSRP the relation μ<c

v ϊs equivalent to the relation

PROOF. By the definition of C the relation εx <cμ and the relation
are equivalent for any x e X and μ e SRp". By Corollary 2.2 we have

«?(/) = sup{μ(/); εx<cμ} = sup{μ(/); εx<£μ

for any xeX and any/eHP. Suppose μ-<c

v F°Γ anY

V(D) = sup {v(/) /e Hp, / ̂  t)} ̂  sup {β«(/) /e HP, / ̂  «}

^ sup {QJ (/) /e Hp, / g D} = sup {Mβc/) /e HP, / g t;}

= sup {μ(βa/) /e Hp, / ̂  r} ̂  /i(r) ,

where the last inequality follows from the relation Qcf^v. This implies
On the other hand μ<^£v obviously implies μ^cv. Hence we have the con-
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elusion of Proposition 2.3.

COROLLARY 2.3. If f is an upper P-bounded and upper semicontinuous
function and μ is a measure in SPΪp, then

fiίω = β?ω.
PROOF. By Corollary 2.2 and Proposition 2.3 we have

βj(/) = sup {v(/); μ<c v} = sup {vCO; μ<£ v} = ρj(/) .

COROLLARY 2.4. For μ, ve9ϊl£, i/*μ(/) = v(/) for all /eC, then so is for
Λ >N

any feC. Hence, a C-extremal measure is C-extremal.

PROPOSITION 2.4. Let C be a convex cone of lower P-bounded and lower
semicontinuous functions which contains P, S be a C-determining closed set
in X. Then a measure μeSERJ is C-extremal if and only if

(2.1) e?'c(/) = X/) for any /e -C.

// C is a min-stable convex cone such that PcCcHp and if μ is C-extremal,

then (2.1) holds for any /e -C.

PROOF. Let μ be a C-extremal measure in 9Wp". From Lemma 2.1 it follows
that for each / e — C there exists a measure veSWJ satisfying μ<cv and v(/)

= Qμ(f) Since μ is C-extremal, we have v(/) = μ(/). Hence βμ(/)=μ(/).
Λ,

If C is min-stable and PcCcHP, then μ is C-extremal by Corollary 2.4.
>N

Hence the above arguments hold for /e — C.
Conversely, suppose that a measure μe9W£ satisfies

for each /e — C. Any measure μe9Jΐp with μ<cv satisfies μ(/)^v(/) for all
/e -C. Since μ(/) = Qμ(/)^v(/), we have v(/) = μ(/) for all /e -C. Hence
μ is C-extremal.

PROPOSITION 2.5. Lei C be a linearly separating min-stable convex cone
such that PcCcHp. If S is a C-determining set and μeSJtJ is C-extremal,
thenμ(X-S)=Q.

PROOF. By Lemma 2.1, there exists v e 9K£ such that μ<v and v(X — S) = 0.
Since μ is C-extremal, μ(/) = v(/) for all /eC. From Corollary 1.2, it follows
that μ = v. Hence μ(X-S) = Q.
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§ 2.2. Concave functions and determining sets

In this section P is an adapted convex cone in Ή+(X) and C a min-stable
convex cone such that

PROPOSITION 2.6. Let S be a determining closed set and f be an upper
P-bounded and upper semicontinuous function on S. Then for any concave
function g on a closed set T containing S such that g^fon S we have

g^Qsf on T.

PROOF. Let xeT. By Lemma 2.1 we find a measure μeSWJ such that
βjXμ, μ(X — S) = Q and μ(/) = βχ(/) Then for any concave function g on T
such that g ^.f on S we have

Immediately we derive

COROLLARY 2.5. Let S be a determining closed set and f an upper P-

bounded and upper semicontinuous concave function on S. Then

f=Qsf on S.

COROLLARY 2.6. Let S be a determining closed set and f a P-bounded
affine function on X. Then f is continuous on X if its restriction to S is con-
tinuous,

PROOF. By Proposition 2.6 we have/^Q s/ on X and -/^Q5(-/) on
X. Since S is a determining set, we see that Qsf^-Qs(-f), Hence /=βs/
= — Qs( — /). Therefore / is continuous.

COROLLARY 2.7. Let S be a determining closed set and f be an upper P-
bounded and upper semicontinuous concave function on X. Then f is non *
negative on X if it is non-negative on S.

PROOF. If /is non-negative on S, then βs/is non-negative on X. Since
Qsf^f on X by Proposition 2.6, / is also non-negative on X.

§2.3. Simplexes

Let C be a convex cone satisfying PcCcHp. The pair (X, C) is called a
simplex if, given any x e X and any two C-extremal measures μ, v 6 9JIJ such that
εx<μ and εx<v, we have
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μ(f) = v(/)

for all /eC.
We denote by A=A(C) the set of all upper P-bounded and upper semi-

continuous C-affine functions on X. We have the following theorem (cf. [3,
Theorem 3.1]):

THEOREM 2.1. Let C be a mίn-stable convex cone satisfying PcCcHp
and S a C-determίning closed set. Then the following assertions are equiva-
lent:

a) (X, C) is a simplex,

b) for anyfe -C, Qsf is C-affine,
ys

c) for any extremal measure μ with ex-<Gμ and anyfe — C

d) Qs(f+9)=Qsf+Qsgfor any twof, g e -C,
/s

e) for any /e — C and any C-concave function g on S such that f^g on S
there exists /ιeA(C) satisfying

f^h^g on S.
>s

PROOF. a)=>b): Let /e — C and let xeX and μeSDΪJ satisfying εx<μ
be given. Then we have β£(/)^β*(/) By Lemma 2.1 we find a measure v
satisfying εx^v and β*(/) = v(/). Let v' (resp. μ') be an extremal measure satisfy-
ing v-<v' (resp. μ<μ') Since (X, C) is a simplex, we have v'(g)=μ'(g) for all
geC, and hence v'(/)=μ'(/) by Corollary 2.4. Hence, using Propositions 2.3
and 2.4, we obtain

Thus Qs

x(n = Qs

μ(f)=μ(Qsfi by Proposition 2.2. Hence Qsf is affine.
s<

b)=>c): For each extremal measure μeSfflJ with ε^^μ and each /e — C,
the relation μ(/) = β£(/)=μ(<2s/) holds by Propositions 2.4 and 2.2. Since
Qsf is affine, the equality

μ(Qsn = QKf)

holds and hence μ(/) = β?(/)
/S

c)=>d): For any f,ge—C and an extremal measure μ satisfying εx-<μ,
we have

We define L(/-^)=-0(-/)+ρs(-ί?) for any /,^eC. Then
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L is well-defined on C — C and is a positive linear functional. Hence L may be
extended to a positive linear functional L' on HP by Lemma 1.2. Since P is
adapted, there exists a measure μεWl^ satisfying μ(/) = L'(/) on HP; see §1.2.
Hence

μ(/) = L'(/) = - L( -/) = QKf) for all /e - C.

Since v(/)^β£(/) = μ(/) for an extremal measure v with εx^v, the relation v-<μ
holds and accordingly v(/) = μ(/) for all/e — C. Thus (X, C) is a simplex.

^
b)=>e): For any /e — C and any concave function g on 5 satisfying f^g

on S, the relation f^Qsf^g holds on 5 by Proposition 2.6. Since 6s/ is affine
by assumption, it suffices to put h = Qsf.

Λ.
e)=>b): Let/e — C, xeX and μeSRJ with ε^Xμ. Let v be a measure in

S0Z£ such that v(X — S) = 0 and μ-<v; such a measure exists on account of Lemma
2.1. We observe that Qs

x(f)^Qs

μ(f)^Qs

v(f). By e) and Proposition 2.6 we
have

e C , 0 ^ / o n S}

); he A, h^f on S}

= inf {/*(*); Λ e A , h ^f on S} ^ βf(/),

so that μ(Qsfi = Qs

μ(f) = Qs

x(f\ which shows that Qs/is affine.

Remark that in the proof of d)^>a), we used the equality in d) only for/, g
e — C. Therefore, we immediately obtain

THEOREM 2.Γ. Lei C and S be as in Theorem 2.1. Then the following
assertions are equivalent:

a) (X, C) is a simplex,
b) for any /e — C, Qs/ is α#ϊne,
c) /or any extremal measure μ with εx-<μ and any fε — C,

d) Qs(f+ g) = βs/+ Qsg for anytwof,gε-C.

If C is a linearly separating and min-stable convex cone such that PcC
and (X, C) is a simplex, then an extremal measure μ satisfying εx<μ is

unique for each x eX, since C — C is dense in HP by Corollary 1.2. The unique
extremal measure is denoted by μx. We have the following proposition which is
an extension of Theorem 12 in [6].

PROPOSITION 2.7. Let C be a min-stable and linearly separating convex
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cone satisfying PcCcHp. If(X, C) is a simplex, then the function:
defined on X is Borel measurable for each /eHP.

PROOF. Since (X, C) is a simplex, μx(f) = (Qf)(x) for each /e -C by
Theorem 2.1. Hence the function: x*->μx(f) is upper semicontinuous by Proposi-
tion 2.2. It follows that x*-+μx(f) is Borel measurable for each /eC — C.

Let ge&κ(X). By Proposition 1.2 there exist t eP and a sequence {/„}
c=C-C such that

Since μx is positive, it follows that

Hence limμx(fn) = μx(g) for every x e X. This implies that the function: x*-+μx(g)
w-»oo

is Borel measurable for each g e ΉK(X).
Similarly we can show that the function: x*-*μx(φ) is Borel measurable for

each φeHp because by Proposition 1.1 we find u e P and a sequence {gn}<^
such that

Chapter 3. Dilations and abstract Dirichlet problems

§3.1. The Choquet boundaries

Let P be an adapted convex cone in ^+(X) and C a convex cone satisfying
PcCcHp. A closed subset AaX is said to be C-stable or simply stable
if the assumptions εx -< c μ for x e A and μ e $R£ imply μ(X — A) = 0. Every com-
pact stable set contains a minimal compact stable set. The open set \j {x e X

φe)<0} is denoted by X~(C) = X". Denote by <5(C) the set of all points xeX~
each of which is an element of a minimal compact stable set. We shall call it
the Choquet boundary with respect to C. It is known that if ^~(C) is not empty,
then the Choquet boundary is not empty and its closure is a determining set; see
[9, §4, Proposition 2].

Now suppose that C is linearly separating. Then a minimal compact stable
set consists of only one point (cf. [9, § 4, Lemma 5] and [3, p. 23]). It follows
that xe<5(C) if and only if εx is the unique measure μ satisfying sx~<μ. (Note
that if xφX~, then ε^XO.) Furthermore, <5(C) is the smallest determining set
([9, §4, Proposition 7]). By Proposition 2.5, if μeSPΪp is an extremal measure,
then
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PROPOSITION 3.1. Let C be a linearly separating, min-stable convex
cone such that PcCcHp. Then the following assertions are equivalent:

(a) xe<5(C),

(b) Q*(h) = h(x)foranyheHv,
(c) there exists a subset Cl of — C which is total in HP and satisfies

QS(h)=h(x)foranyheC1.

PROOF. (a)=>(b): Suppose x e <5(C). Since εx is the unique extremal meas-
ure μ satisfying εx^μ, Qχ(h) = h(x) for any /zeHP by Corollary 2.2.

(b)=>(c): It suffices to put C^ = — C by virture of Corollary 1.2.
(c)=>(a): Assume that Q%(h) = h(x) for any heCi. For any geC satisfy-

ing g^h and any μe$R£ satisfying βx-<μ, we have μ(h)^μ(g)^g(x). Hence

μ(h)^Q%(h) = h(x). On the other hand, since fte-C, it follows that μ(h)
^/ι(x), whence μ(h) = h(x) for any fteC^ Since CJL is total in HP, we have
μ = εx. Thus Λ: is an element of <5(C).

LEMMA 3.1. If X has a countable base, then HP is separable.

PROOF. Since X has a countable base, there is a countable subfamily 2

of ^K(X) such that for any φ e ^K(X)9 any relatively compact open set ω con-
taining the support of φ and ε>0, we find ψe& such that Sψc:ω and \φ — φ\<ε
on X. Then ^ is dense in HP by virtue of Proposition 1.1.

PROPOSITION 3.2. // X has a countable base and C is a linearly separat-
ing, min-stable convex cone such that Pc=Cc:HP, then (5(C) is a Gδ-set and

— δ(C)) = Qfor any extremal measure μesJ0ϊP'.

For the proof, see [9, §4, Proposition 10] or [14, p. 360]. Note that if 2
is as in the proof of Lemma 3.1, then Proposition 3.1 implies

<5(C)= r \ { x ε X ; Q x ( f ) = f ( x ) } .
ft®

§3.2. Dilations

In this section, we suppose that X has a countable base and C is a linearly
separating, min-stable convex cone satisfying PcCc:HP.

A mapping D from X into SWp" is called a C-dίlation or simply a dilation
on X if εx<cD(x) for any xe X and the function: x*-+(Df)(x) = D(x)(f) is Borel
measurable for each/e HP. Given a dilation D on X, a point x e X is said to be
D-regular if D(x) = εx. The set of D-regular points is denoted by <5j?(C). Ob-

viously, <5(C)ci(5^(C). A dilation D is said to be weakly affine if there exists a
linearly separating min-stable convex cone G! such that PcCjCiC and for any

VE — Cj, Dv is the limit of a decreasing net of functions in A(C).
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In the case where X is a compact set and C is a linear subspace of
separating points of X and containing constant functions, the above definition is
equivalent to the definition in [8, p. 101] on account of the following Propositions
3.3 and 3.4, which are similar to [8, Theorem 2.5].

PROPOSITION 3.3. Suppose that there is a weakly affine C-dίlatίon D.
Then (X9 C) is a simplex and, for xeX, D(x) is the unique extremal measure μ
satisfying εx<μ. In particular, δ(C) =

PROOF. Let μ and v be extremal measures in 9Jl£ satisfying εx<μ and εx<v.
Since D is a weakly affine dilation, there exists a min-stable and linearly separating
convex cone Cj such that PcCj c=C and for any ve — C1? Dv is the limit of a
decreasing net in A. By Lemma 1.1, we have μ(Dv) = v(Dv). Since μ and v
are carried by δ(C) by Proposition 3.2 and Dv = v on (5(C), we have μ(v) = v(v).
Since C1— Cί is dense in HP by Corollary 1.2, we have μ = v and hence (X, C)
is a simplex.

Let x 6 X and μx be the unique extremal measure μ with εΛ-< μ. Let v e — C^ .
Then we have, by Theorem 2.1 and Corollary 2.2,

μx(v) = Q£(v) = sup {μ(v); μ e 9JΪ+, εx<μ] ^ (Dv)(x) .

To prove the converse inequality, let aeA satisfy Dv^a. Then we have v^a
since v(y)£D(y)(v) for any yeX. Hence Q%(v)^Q%(a) = a(x). Taking the
infimum of such a e A, we see that

Hence we have

for ve — Cj. Since Ct is total in HP, it follows that μx = D(x).

PROPOSITION 3.4. // (X, C) is a simplex, then there exists a weakly affine
C-dilation.

PROOF. For each xeX, let μx be the extremal measure satisfying
and let D(x) = μx. Then D is a dilation since the mapping: x^μx(f) is Borel
measurable by Proposition 2.7 for each/eHP. Further, the relation

μx(v) = Qϊ(v) = inf {/ι(x); h e A, h ^ v}

follows for any ve — C from Theorem 2.1 and the fact that μx(h) = h(x) for any
he A. Suppose that hί9 h2eA satisfy h^υ and h2^v. Then the function

i^ h2} is concave and satisfies min{/i1? h2}^v, whence there exists he A
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satisfying v^h^mm{hί9 h2} by Theorem 2.1. Therefore, Dv is the limit of a
decreasing net of functions in A. Thus D is a weakly affine dilation.

§ 3.3. Bauer's simplex

Let C be a min-stable convex cone satisfying PcCcHp. If (X, C) is a
simplex and <5(C) is closed, then (X, C) is called a Bauer's simplex.

We have the following theorem which is well-known in the case of a com-
pact space X (cf. [1, Satz 13] and [12, Proposition 9.10]).

THEOREM 3.1. Let C be a linearly separating, min-stable convex cone
satisfying PczC<=HP. Suppose X~(C)^φ. Then the following assertions
are equivalent:

(a) (X, C) is a Bauer's simplex,

(b) any P-bounded continuous function on δ(C) is uniquely extended to an
element of A(C) n HP,

(c) (X, C) is a simplex and the function: x*->μx(f) is continuous for any
/eHP, where μx is the extremal measure satisfying

PROOF. (a)=>(b): Put S=<5(C). Then S is a determining set. Let h
be a P-bounded continuous function on S. Choose t eP such that \h\^v on
S. Put f(x) = h(x) forxeS and /(x) = - v(x) forxeX-S. Then / is P-bounded
and upper semicontinuous on X. If x e S, then any measure μ e $RJ satisfying
εx-<μ is equal to εx, so that μ(/)=/(X), i.e., /is affine on S. If xφS, then ε^μ

implies μ(/)^ -μ(v)^ -v(x)=f(x). Therefore -/eC. By Theorem 2.1, Qsf
e A. It is easy to see that Qsf is P-bounded. By Corollary 2.5, Qsf=f= h
on S; and by Corollary 2.6, β5/is continuous on X. Hence βs/is an extension
of h and βs/e A n HP. The uniqueness follows from Corollary 2.7.

(b)=>(c): Put S = (5(C). For each /eHP we denote by hf the unique exten-
sion of/|S to an element of A n HP. If μ and v are extremal measures satisfying
εx<μ and ε^v, then the supports Sμ and Sv are both contained in S by Pro-
position 2.5. Hence

(3.1) μ(f} = μ(hf) = hf(x) = v(hf) = v(/)

for all/e HP. Thus (X, C) is a simplex. By (3.1), we have μx(f) = hf(x) for any
/eHP. Since hfeHP9 the mapping: χι->μx(/) is continuous.

(c)=>(a): If xe<5(C), then μx(/)==/(x) for /eHP. Since the mapping:
x*-*μx(f) is continuous, the equality μx(f)=f(x) also holds for any Λ: e <5(C). Let
xeδ(C) and μ be any measure in 9MP satisfying ε^μ. Then we have
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for geC, since μx is the unique extremal measure satisfying εx<μx. Hence
) = g(x) for any geC. Since C is total in HP, we have μ = εx and hence

Thus δ(C) is closed.

§ 3.4. Lattices of affine functions

PROPOSITION 3.5. Let C be a min-stable convex cone satisfying PcC
<=Hp. Suppose that there is a linear space B of C-affine continuous functions
in Hp which is a lattice in the natural order and is linearly separating. Then
<5(C) is non-empty and if xeX satisfies the equality

for each pair off, g eB, then x is a point of (5(C).

PROOF, Since B is a linear space and linearly separating, there is g e B
such that #(x)<0 for some xeX. Since g is affine, Corollary 2.2 implies Qx(g)
= #(x)<0, and hence there is i eC such that φc)<0. Thus, X~(C)^φ, so that

δ(C)ϊφ. Put S = δ(Cj. Since C=>P, we have |β£(0)|<oo for geHP(S) (cf.
the proof of Lemma 2.1). By Corollary 2.2 again, we see that Qχ(g) = g(x) for
any g eB|5. Evidently the mapping: g-+Qs

x(g) is sublinear on HP(S) and par-
ticularly linear on B|S. By the Hahn-Banach extension theorem, there exists a

linear functional F on HP(S) satisfying F^QS

X and F(g) = g(x) on B|S. If
0<;0, we have Qξ(g)^09 whence F(0)gO. Thus F is positive. Further, B|S
is a lattice and

f (/Λ g) = (/Λ flf) (x) = min {/(x), όf(x)} = min (F(/), F(flf)}

for/, # e B. Hence F satisfies the assumptions of Lemma 1.3 with X = S. Con-
sequently there exist λ > 0 and y e S satisfying

F(f) = λf(y)

for any/eB. Since B is linearly separating, we have x = y and hence xe<5(C).

PROPOSITION 3.6. Let C be a linearly separating, min-stable convex
cone with PczCciHp. Assume that a linear space B of C-affine continuous

functions in HP is α lattice in the natural order. If x is a point of <5(C) and
satisfies

(3.2) <2S(max {/, g}) = inf{h(x); h ^ max {/, g}9 hεB}

for any /, g e B, then

(3.3)
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foranyf,gεB.

PROOF. Let x e <5(C). Since B is a linear space, it suffices to establish the
following relation :

(3.4) (/V0)(x) = max {/(*), 0(x)}

for any /, 0eB. Obviously (/V#)(x)^max{/(x), g(x)} holds. Putting φ

= max {/, #}, we have

by Proposition 3.1 and (3.2). Therefore, for any ε>0 there exists heE satisfy-

ing h^φ and φ(x)H-ε>ft(x). Since /ιΞ>/, h^g and fteB, we have

whence φ(x)^(fV g)(x). Hence (3.4), and so (3.3), holds for xeδ(C). By
continuity, (3.3) holds for x e δ(C).

By Propositions 3.5 and 3.6 we have the following corollary.

COROLLARY 3.1. Let C and B be as in Proposition 3.6. Assume that B
is linearly separating and (3.2) holds for any f , g eB and xeX. Then, xεX

is an element of δ(C) if and only if

for any f , g in B.

Now, let B be an adapted space in &(X). We write

Then C(B) is a min-stable convex cone which contains the adapted cone B+

and which is contained in HB+. For xeX and μe90ϊj|;+ the relation ex-<c(B)^
is equivalent to the relation εx-<Bμ. It follows that <5(C(B)) = <5(B) and, by

Corollary 2.2, Q ?<β>(0) = 6?(0) for 0eHB +.
The following theorem is an extension of Satz 10 in [1].

THEOREM 3.2. Let B be an adapted space which is linearly separating and
closed under the compact convergence topology. Then the following two asser-
tions are equivalent:

(a) B is a lattice in the natural order,

(b) any function in HB+((5(B)) can be extended to an element o/B.

PROOF, (a) => (b) : Since Q£(B)(φ) = βj(φ) = inf (h(x) h e B, h ̂  φ} for
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any φeHB+9 the previous corollary implies

<5(B) = c5(B(Q)

for any f,geB}.

Put S = <5(B) and B1=B|^(B). Then S is a B-determining set and Eί is min-
stable and linearly separating. Let fe<£κ(S). By Proposition 1.2 there exist
t;eB+ and a sequence {<7n}cB such that

on S. Since

\gn -gm\^ ((1/w) + (l/m))f7 on S for any n, m e N,

the same inequality holds also on the whole X. Consequently the sequence
{gn} in B converges uniformly on any compact set and g=\imgn belongs to B
by our assumption. It is obvious that g =f on S. Consequently any function in
ΉK(S) can be extended to an element of B.

Similarly we may show that any function in HB+(S) can be extended to an
element of B by using Proposition 1.1.

(b)=>(a): Since <5(B) is a B-determining set, the extension of / in HB+(<5(B))
to an element of B is unique, which we denote by hf. Let /, g e B and φ =
min{/|<5(B), g\δ(B)}. Evidently we have f / \ g = hφ, and hence infer that B
is a lattice.

Chapter 4. Applications to potential theory

§ 4.1. Adapted cone of potentials

Let Ω be a harmonic space satisfying Bauer's axioms I, II, III and IV in [2,
p. 11]. By definition Ω is a locally compact Hausdorff space with a countable
base. A non-negative superharmonic function s is called a potential if the greatest
subharmonic minorant of s is equal to 0. We call Ω a strong harmonic space
if for any x e Ω there exists a potential / with f(x) > 0.

Hereafter we assume that Ω is a strong harmonic space and use notations
and terminologies in [2]. For a set E in Ω, let dE be the topological boundary
ofE.

Let £ be a subset of Ω and / a non-negative function defined on E. We put

R^ = inf {g; g is non-negative hyperharmonic on Ω9 g ^/on E}

and
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By using the functions of the form RΩ

f, we can show that there exists a continuous
potential p0 such that p0(x)>Q for all xεΩ (cf. [2, Korollar 2.5.10] and [7,
Proposition 2.2.2]).

Let P be the convex cone of all continuous potentials. Then P satisfies
condition (px) in §1.1 by the above consideration. By [7, Proposition 2.2.4],
we see that P also satisfies condition (p2), so that P is an adapted convex cone.
Furthermore, P is min-stable and linearly separating by virtue of [2, Satz 2.5.3
and Satz 2.5.8].

We have the following minimum principle ([2, Korollar 2.4.3]):

PROPOSITION 4.1. Let u be a hyperharmonic function in an open set U
inΩ. If

liminfw(x) ^ 0 for all zedU
x eU

and if u ̂  — v on U for some v E P, then u ̂  0 on U.

Using this proposition and the potential p0 mentioned above, we obtain

PROPOSITION 4.2. Let E be a closed set in Ω and u be a hyperharmonic
function on an open set containing E. If

liminfw(x) ^ 0 for all
jceCE

and if u g: — v on E for some v e P, then u ̂  0 on E.

§4.2. Balayaged measures and harmonic measures

Now, 9W£ is the space of all P-integrable measures on Ω.

PROPOSITION 4.3 (cf. [2, Satz 3.4.1], [7, Prop. 7.1.2]). For each
and each subset E of Ω, there exists a unique measure μE on E such that

for any veP.

PROOF. Since P\E is a min-stable, linearly separating adapted convex
cone in #+(E), Λ° = P\E-P\E is dense in HP(£) by Corollary 1.2. Since the
mapping u\-+Rξ on P|E is additive ([2, Satz 3.2.3]) and R% is P-integrable for
any u eP|£, L(d) = μ(Rξ — Rξ) is well-defined for d = u — ve<Λr. It is easy to see
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that L is a positive linear functional on ./Γ. Hence L is uniquely extended to a
positive linear functional on HP(£) by Lemma 1.2. Hence there exists a measure
μE on E such that μ£(/) = L(/) for any /eHP. In particular we have μE(υ)
= μ(RE)forveP.

The measure μE is called the balayaged measure of μ on E.
Let U be an open set in Ω. For x e 17 we call (εx)

ct/ the harmonic measure
with respect to c and U, and denote it by μ%. Since Λ£i/ = /Jaι/on (7 for any v

eP as is easily seen (see [16, Lemma 1]), μ^ is supported by dU (cf. [2, Satz
3.4.3]).

§ 4.3. Dirichlet problem for an open set U

We consider the Dirichlet problem for an open set U in Ω with dU^φ. Let
/be an extended real-valued function on dU. We denote by |>/ the family of all
hyperharmonic functions v in U satisfying the following conditions:

1) lim inf v(x) ̂ /(z) for any zedU,
1/3JC->Z

2) v^ — p for some peP.
The constant + oo belongs to §/ and hence fyy^φ. We define

and Hu

f= -H*ίf. By Proposition 4.1, Hu

f^Hu

f. If Hu

f = Hu

f and it is harmonic
in 17, then we say that /is resolutive and we write

The following proposition is easily proved (see the proof of [2, Satz 4.1.5]
and [7, p. 18, Theorem 2.4.1 and Proposition 5.3.3]):

PROPOSITION 4.4. (a) // / and g are resolutive functions on dU, thenf+g
(when it has a meaning everywhere on dU) and λf (λ: real) are resolutive and

(b) Iff^gondU, then Ήυ

f^Ήυ

g and Hυ

f^Hυ

β;
(c) For any veP, its restriction to dU is resolutive and

on u

By Propositions 1.1, 1.2, 4.3 and 4.4, we obtain (cf. [2, Satz 4.1.7])

PROPOSITION 4.5. Any feHP(dU) is resolutive and satisfies

for any xeU.
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A point x0 e dU is said to be regular for U if

(4.1) lim #£(*) = φ(x0)
ί/3*->JCθ

for any φ e HP(dU), or equivalently

lim μ" = εxo in the topology σ(SKP(dl/), HP(dl/)).
U3X-+XQ

LEMMA 4.1. Let U be an open set in Ω with dU^φ. A point x0εdU is
regular if and only if

holds for any veP.

PROOF. The "only if" part is obvious. Assume that
^for any ι?eP. Since H^(y) = R^v(y)^v(y) for any yeU9 li

ί/3

Consequently we have

lim Hu

g(y) = g(xQ) for any geP-P.

Let φeHP(dU). By Propositions 1.1, 1.2 and 4.4, we can find a sequence {gn}
in P — P such that H^n converges to Eυ

φ uniformly on a neighborhood of x0.
Hence we have (4.1) for φ eHP(3ί/).

LEMMA 4.2. Let U be an open set in Ω with dU^φ and zedU. Assume
that Vis a neighborhood of z. Then z is a regular point of U if and only if z is
a regular point of U n V.

PROOF. Let veP. Then H^H^v^v on U n V. Hence by Lemma
4.1, if z is regular for (7, then so is for U n V. Conversely, assume that z is a
regular point of U n V. For any v e P, we define

f v(y) if yedUnV,

000 = [ Hv

v(y) if yedVftU.

It is easy to see that g is resolutive for U n Fand Hυ

g^
v = Hυ

υ\U n V(cf. [2, Lemma
4.2.4]). Since g is equal to v on a neighborhood of z and Og# ^v9 we can easily
show that limH£nκ(x) = 0(z), and hence \\mHυ

υ(x) = υ(z). Thus by Lemma 4.1,
jc-*z x-*z

z is a regular point of 17.

A set EC: Ω is said to be thin at a point x e E, if

inf
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where 93X is the set of all neighborhoods of x ([2, p. 107]). It is easy to see that
E is thin at x e E if and only if there are v e P and Ve 93X such that Rξnv(x) < v(x).

PROPOSITION 4.6. Let U be an open set in Ω with SU^φ and x0edU.
Then the following assertions are equivalent:

( i ) x0 is a regular point of U,
(ii) CU is not thin at x0,
(iii) (εxo)^=εxo.

The proof of this proposition is similar to that of [2, Satz 4.3.1]. In fact,
(i)=>(ii) follows from Lemma 4.2 and Proposition 4.4, (c); (ii)=>(iii) is immediate;
and (iii)=>(i) follows from Proposition 4.4, (c) and Lemma 4.1.

The following lemma is proved in the same way as [8, Lemma 3.1] by using
Propositions 1.1 and 1.2, Lemma 3.1 and the previous proposition:

LEMMA 4.3. IfzedU, there exists a sequence {xn} in U converging to z for
which the measure μ^n = (εXt)

cu converges to μx = (εz)
cu in the topology σ(9JΪP(ϊ7),

Hp(E7)).

COROLLARY 4.1 (cf. [2, Satz 3.4.3] and [7, Proposition 7.1.3]). For each
zeU, the balayaged measure (εz)

cu is supported by dU.

§4.4. The dilation given by balayaged measures

Let U be an open set in Ω with dU^φ and C be the set of all P-bounded
continuous functions on U which are superharmonic in U. We know that C
is a min-stable and linearly separating convex cone and P|ϊ7c=Cc:Hp(E7).
By Proposition 4.1, dU is a C-determining set. Hence the Choquet boundary
<5(C) of U is contained in dU (see §3.1). We write B(x)=(εx)

cu for any xe U.

PROPOSITION 4.7. The mapping: x*-+B(x) from U into 9Jlp"((7) is a C-
dilation and the set of all regular boundary points of U is just the set of all B-
regular points.

PROOF. For each ueP, the function: x*-*B(x)(v) = Rcu(x) is lower semi-
continuous and hence Borel measurable. From Propositions 1.1 and 1.2, it
follows that the mapping: x*-+B(x)(f) is Borel measurable for each /eHP(ϊ7)
(cf. [7, Proposition 7.1.4]). Since g\U is an upper function of g\dU for each g
eC,

for any xeU.

Hence εx<cB(x) for xeU. If zedU, then there exists a sequence {xn} in U
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such that B(xn) converges to B(z) in the topology σ(9JlP(E7), HP(Ϊ7)) by Lemma

4.3. Hence

B(z) (g) = lim B(xn) (g) ^ g(z) for each g e C.

Thus the mapping: z*-+B(z) is a C-dilation. The last assertion of the proposition
follows from Proposition 4.6.

By definition, the support of a superharmonic function s on Ω is the com-
plement of the largest open set on which s is harmonic. We say that Ω satisfies
Axiom D if for any locally bounded superharmonic function, the continuity of its
restriction to its support implies the continuity on the whole Ω.

THEOREM 4.1 (cf. [9, Theorem 3.3]). Suppose that Ω satisfies Axiom D.
Then the balayage mapping: x«->β(x) is a weakly affine C-dilation.

PROOF. Let v e P. Then

Since R%υ is a potential dominated by u, it follows from [7, Theorem 8.2.2] and
Axiom D that there exists an increasing net {VΛ} in P such that R^u = sup VΛ and

each VΛ is specifically smaller than R %V

9 i. e., there is a potential wα satisfying R.$u

= ι>α + wβ for each α. Since R%u is harmonic on 17, each VΛ is harmonic on U.
Hence vΛ\U is C-affine for each α. Since P|Ϊ7 is min-stable and linearly separat-
ing, it follows that x*-+B(x) is a weakly affine C-dilation.

COROLLARY 4.2. Suppose that Ω satisfies Axiom D. Then the set of all
regular boundary points is equal to the Choquet boundary <5(C) and (U9 C)

is a simplex. Further for each x e U9 the balayaged measure (Sx)cv is the unique
extremal measure μ with

PROOF. This follows from Proposition 3.3, Proposition 4.7 and the above
theorem.

THEOREM 4.2. Suppose that Ω satisfies Axiom D. If the set S of all
regular points of U is closed, then any P-bounded continuous function on S is
uniquely extended to a continuous function on U which is harmonic in U.

PROOF. Since ((7, C) is a Bauer's simplex and S = <5(C), any P-bounded
continuous function/ on S is uniquely extended to a C-affine continuous function
g on U by Theorem 3.1. By Corollary 2.2, we see that Qg=g and Q(— g) = —g.
It follows that g and —g are superharmonic in 17, and hence g is harmonic in U.
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§4.5. The Dirichlet problem for the exterior of an open set

Let £ be a closed set in Ω with dE^φ and/ an extended real-valued function
on dE. We denote by Rj the set of all hyperharmonic functions υ on an open
set containing E which satisfy the following properties:

(i) lim inf v(x) ̂ /(y) for any y e dE,
xeCE

(ii) υ^ —p on E for some peP.
We define

^E ' f f I 17 « Ϊ5UΊ

and KE

f=-KE

f. By Proposition 4.2, we see that KE

f^KE

f. If KE

f = KE

f, we
say that/is resolutive and write KE

f = KE

f = KE

f.

PROPOSITION 4.8. (a) /// and g are resolutive functions on dE, then f+g
(when it has a meaning everywhere on dE) and λf(λ: real) are resolutive and

(b) Iff^g on dE, then KE

f^KE and KE

f^KE.
(c) For any veP, its restriction to dE is resolutive and

KE = Rc£= RζE = sup {#£>; ω: open => E} on E.

PROOF (cf. [13, p. 386]). In general, Kf+e£K$ + K* and KE

λf = λKE

f for
Λ^O, from which (a) follows, (b) is immediate. To prove (c), let veP. By
[2, Satz 2.2.1 and Satz 3.2.7],

(4.2) A™ = RCE = sup {RCω. ω. open .3 £}

Since p = R$E is a potential and p = v on CE, pe&E and hence p^KE on E.
On the other hand, for any open set ω^E, H™ = R<~ω\ωE -^E

v, since H%<Zυ
on ω. Hence

(4.3) H» = Rΐ»£K*£K*£&ζ* onE.

By (4.2) and (4.3), we obtain (c).

PROPOSITION 4.9 (cf. [13, Theoreme 2]). Let E be a closed set with
Then any φeΉ.P(dE) is resolutive and for any decreasing net {ωj^j of open sets
satisfying E= Π ωt and a P-bounded continuous extension Φ of φ,

ie/

(4.4) JKf = limJΪ$<.
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PROOF. By Proposition 4.8, if /eP —P, then f\dE is resolutive and KE

f

= limie/H^1. Hence by using Propositions 1.1 and 1.2, we see that for ΦeHP,

φ = Φ\dE is resolutive and (4.4) holds.

A point x0edE is called a stable point of E if KE

f(xo)=f(x0) h°lds for any

/eHP(δ£).
By Proposition 4.8, (c), we can easily show

PROPOSITION 4.10. x0edE is a stable point of E if and only if (εXQ)CE

For each xeE, the mapping: f\-+KE

f(x) on HP(δ£) defines a measure K(x)

E 9J?£ on dE. We denote by C the set of all P-bounded continuous functions on

E each of which is the restriction of a superharmonic function in an open set

containing E. Then we have the following theorem.

THEOREM 4.3 (cf. [8, Theorem 4.1]). The mapping: x*-+K(x) is a weakly

affine C dilation on E and the set of K-regular points on dE coincides with the

set of stable points of E.

PROOF. Since KE,(x) = R%E(x) for ueP, the function: x^K^x) is lower

semicontinuous and hence Borel measurable for any v e P. Using Propositions

1.1 and 1.2, we can see that the function: x\-^KE

r(x) = K(x)(f) is Borel measurable

for each/e HP(E). Since every g e C is the restriction of a function belonging to

, we have

whence εx^cK(x) for any xeΩ. Therefore K is a C-dilation. Let υeP.

Since H%\E is C-affine for any open set ω=>£, we see that K is a weakly affine

C-dilation by Proposition 4.8, (c). By definition, x0 e dE is a K-regular point

if and only if it is a stable point of E.

COROLLARY 4.3 (cf. [8, Corollary 4.2]). The pair (E, C) is a simplex and

(5(C) is the set of all stable points of E.

PROOF. Since the mapping: x*-+K(x) is a weakly affine C-dilation, (E, C)

is a simplex and δ(C) coincides with the set of all K-regular points by Proposition

3.3. By Proposition 4.2, dE is a C-determining set and hence <5(C)cdE. From

the above theorem it follows that <5(C) is the set of all stable points of E.
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