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Introduction

Let £ be a bounded open set in a euclidean space and f a continuous function
defined on the boundary d2. The classical Dirichlet problem asks for a con-
tinuous function u on the closure Q of € which is harmonic in £ and equal to
fon dQ.  H. Bauer [1] considered an analogous abstract Dirichlet problem for
a compact Hausdorff space X and a vector space B of real-valued, continuous
functions on X which contains constant functions and separates points of X.
He investigated conditions with which a continuous function / defined on the clo-
sure of the Choquet boundary §(E) with respect to B can be extended to X as a
function of B or a B-affine function. In the special case where X is a convex
compact set in a locally convex real vector space and B is the vector space of the
restrictions to X of all functions of the form /+ a with a linear functional /and a
constant function o, Bauer proved that €(6(B))=B|é(B) if and only if B is a sim-
plex and &(B) is closed ([1, Satz 13]). Thus the abstract Dirichlet problem is
deeply connected with the theory of simplexes (see [5] and [6]). Similar abstract
Dirichlet problems on a compact set and their relations with the theory of sim-
plexes have been discussed by many authors; e.g., [3] and [8].

In the case where X is a locally compact and o-compact Hausdorff space,
G. Mokobodzki and D. Sibony ([9], [10]) showed that the Choquet boundary
with respect to a certain convex cone C of lower semicontinuous functions on
X is not empty, using the notion of adapted cones due to G. Choquet [5].

Let P be an adapted convex cone consisting of non-negative continuous
functions on X and C be a convex cone consisting of P-bounded continuous
functions on X. We shall show that many results in [1], [3], [8] concerning sim-
plexes and abstract Dirichlet problems, which are obtained for a compact space
X, are also valid with respect to such a cone C in the case where X is a locally
compact and o-compact space. We shall then apply these results to Dirichlet
problems for arbitrary open or closed sets in Bauer's axiomatic potential theory
2D.

Most of the results in this paper were announced in [15] and [16]. Since
the proofs in those papers are sketchy, we shall give details in the present paper.

Here we remark that recently J. Bliedtner and W. Hansen (Inventions math.
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29(1975), 83-110) showed that Corollary 4.2 in this paper is valid without Axiom
D.

The author wishes to express her cordial thanks to Professor Seizé It6 for his
kind remarks and suggestions to this research.

Chapter 1. The space Hp

Throughout this paper X is a locally compact and e-compact Hausdorff
space. We denote by €(X)the set of all continuous real-valued functions on
X, and by €*(X)the set of all non-negative functions in #(X). Let Zx(X)
={fe%(X; fhas a compact support} and FEX)F €x(X)n #'(X).

The following lemma, which will be used later, is an immediate consequence
of [4, Chap. IV, § 1, Théoréme 1]:

LEMMA 1. Let u be a positive Radon measure on X and {f,} a lower
directed family of upper semi-continuous u integrable functions.  Suppose that
there exist an index [3 and a continuous p-integrablefunction g such that fy<g.

Then
(=0 =) u(ilsza) = igf u(fe) -

§ 1.1. Adapted convex cone and the space H,

Let / and g be non-negative functions on X. We say that g dominates f
at infinity, if for each £>0 the set {x € X f(x) > eg(x)} is relatively compact.

We say that a convex cone P in € (X)is adapted if it satisfies the following
conditions:

(p,) for any x e X there exists u e P satisfying u(x)>0,

(p,) for any u E P there exists v e P such that v dominates « at infinity.

A linear subspace B of #(X)is said to be adapted if B=B*— B*, where
B*=Bn%*(X), and B* is an adapted cone.

Obviously, if P is an adapted convex cone and Y is a closed subset of X,
then P| Y={f; fe P} is an adapted convex cone on Y.

Let P be an adapted convex cone in €*(X). For u e P we denote by H,
the Banach space of continuous functions / on X such that |f|<Aufor some
A20 with the norm | f]|,=inf{A; |f|<Au}and consider Hp= \UH, with the

ueP
topology of the inductive limit of Banach spaces {H,},.p. By (p;), we see that
€x(X)=Hp.

PROPOSITION 1.1. Let P be an adapted convex cone in €*(X). Then for
each fe Hy we can find ueP such that for each €>0, there exists he €x(X)
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satisfying || f—h|.<e.

PROOF. Assume that feH, for veP. Since P is adapted, there exists
u ¢ P dominating v at infinity and u =v; accordingly fe H,. For any £>0, there
exists a compact set K such that v<eu on X— K. We may find g e €x(X)
satisfying |f|<gon X. Put h=max{—g, min{f, g/.. Then we have he & (X)

and || f—hll, =1l

§ 1.2. Positive linear functionals on H,

Let P be an adapted convex cone in €*(X). A positive Radon measure u
on X is said to be P-integrableif u(f)<co for any feP. The space of all P-
integrable positive measures on X is denoted by M. Since P is adapted, any
positive linear functional on Hp is represented by a measure in 9MF and M,
=IMF —M} is the dual of Hyp (cf. [9, §3, Proposition 117).

LEMMA 1.2. Let B be a subspace of Hp containing P. Any positive linear
Sfunctional L on B may be extended to a positive linear functional on Hp. //
B 1s dense in Hp, the extension is unique.

PROOF. For any feH, we put p( f)— 1nf L(g). Then we have |p(f)|
eB

<oo. Since the mapping: fp(f)is a subhnear functional on Hp and p(f)
=L(f)on B, we may find a linear functional L’ on Hp satisfying L'(f)< p(f)
for all fe Hp and L'(f) = L(f) for each fe B by the Hahn-Banach extension theo-
rem. Iff=<0, then p(f)=<0, and accordingly L'(f)<0. If B is dense in Hp,
then the above extension L’ is unique, since any positive linear functional on Hp
is continuous.

The following lemma is an extension of Hilfssatz 4 in [1].

LEMMA 1.3. Let P be an adapted cone in €*(X),E be a subspace of Hyp
which is a lattice in the natural order, and F be a positive linear functional on
H, which satisfies

(%) F(f A g) = min {F(f), F(9)}

Jor any /, g € B and which is not identically zero on B.  Suppose that for every
X there exists fe B such that f(x)#0. Then there exist xe X and 2.>0 such that

F(f) = M(x) for all feB.
PROOF. First we shall show that there exists a point x e X satisfying

(1.1) F~1(0)nB = {feB; f(x) = 0}.
Assume that for each x e X, there exists f,e F~1(0) n B satisfying f(x)#0. By
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condition (*), if fe F~1(0) n B, then max {f, 0} and min{f, 0} both belong to
F~'(0)nB. Hence we may assume f,=0. For any feB*=B n ¢*(X),
there exists g eP such that the closure K of {ze X; f(z)>eg(x)}s compact for
any ¢>0, since P is adapted. By the continuity of f, and the compactness of

K, we may find a finite number of points z;e K (i=1,..., n) such that f,= ff,,

i=1
>0 on K. Then f,e F~1(0). For sufficiently large >0 we have f<af, on K,
whence f<afyteg on X. Thus we have O0ZF(f)ZaF(f,)+eF(g9)=¢F(g).
Hence F(/)=0. Since B is a lattice, F is identically zero on B, which is contrary
to the assumption. Thus there exists x e X satisfying

F=1(0)nB={feB; f(x) = 0}.

We note that {feB f(x) =0} does not coincide with B by the assumption. Since
the linear space F~1(0) n B is maximal in B, we have the relation (1.1). Further,
taking h € Bt with F(h)#0, we have (F(f)/F(h))h—feF~1(0)nfBr any feB,
whence (F(f)/F(h))h(x)—f(x)=0 from (1.1) and h(x)#0. Putting A=F(h)/h(x)
>0, we have F(/) =Af(x) for any feB.

§ 1.3. Totality of a convex cone in Hp

A convex cone C in #(X)is said to be linearly separating if for any different
two elements x, y of X and any A=0, there exists fe C such that f(x)#Af(y). A
convex cone Cc #(X)is said to be min-stable if /, g e C implies min {/, g} ¢ C.

PROPOSITION 1.2. Let P fee an adapted convex cone in €*(X). Assume
that a linear subspace B of Hyp containing P is linearly separating and min-
stable.  Then for each fe €x(X) we can find veP such that for each £€>0,
there exists g € €x(X)n B satisfying || f—gl,<e.

PROOF (cf. the proof of [11, 2éme partie, Théoréeme 12]). (I) We prove
first that for each x e X there exists @ £ B* such that its support is compact and
@(x) >0. Suppose there exists x ¢ X such that every @ e Bt with compact support
is zero at x. Let V be an arbitrary relatively compact open set containing x.
Then, since B is min-stable, by considering ¢ =v—min {u, v} we see that u=v
on CF implies u(x)=v(x) for u, 1 €B. Put B, =B|CV. Then B,oP|CV
and the mapping F: u—u(x)is a positive linear functional on B; which is not iden-
tically equal to zero. Hence F may be extended to a positive linear functional @
on Hp(CV) by Lemma 1.2, where in general

Hp(Y) = {fe %(Y); |/| £ Av on Y for some A=0 and ve P}

for YcX. Further B, is a lattice on which the relation
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@d(min {u, v}) = min {u(x), v(x)} = min {S(u), P(v)}

holds. Hence by Lemma 1.3, there exist ye CVand 2>0 such that u(x)=®(u)
=Au(y) for any ueB. Since x#y, this contradicts the assumption that B is
linearly separating.

(II) Let fe #x(X). From the consideration in (I) it follows that there exists
@ € (XN B* satisfying ¢=|f| on the support S;of f. Choose 1 €P satisfy-
ing1=1on S, Let >0 be given. By the Stone-Weierstrass theorem we find
heE such that \f(—h\<e on S,. Put g=max{min{h, ¢}, —¢}. Then we
have [lf-gl,<e.

By Propositions 1.1 and 1.2 we have the following corollaries.

COROLLARY 1.1 ([cf. 11, 2éme partie, Théoréme 12]). Let B be an adapted
linear subspace of €(X). If it is min-stable and linearly separating, then B
1sdense in Hg+.

COROLLARY 1.2 ([14, Proposition 91). // P is an adapted cone in €*(X)
and C is a min-stable and linearly separating convex cone such that P<C
cHp, then C is total in Hp, 1. e., the linear space C — C 1s dense in Hp.

Chapter 2. Simplexes

§2.1. Extremal measures

Let P be an adapted convex cone in €*(X)and S be a subset of X.  An ex-
tended real-valued function /on S is said to be upper (resp. lower) P-bounded
if there exists u e P satisfying f<u (resp. —u<f)on S.

Let C be a convex cone of lower P-bounded and lower semicontinuous
functions on X satisfying CoP. For two measures u, ve I3, we write

n<cv orsimply 4 <v

ifw(f)Su(f) for any feC. A measure ueIME is said to be C-extremal (or sim-
ply extremal) if any measure v e E with pu< v satisfies

v(f) = u(f)

for all feC, i.e., ifveI$ and u<¢v, then v<¢ p.
We obtain the following proposition and corollary, the proofs of which are

the same as those in the case where X is compact (cf. [5, 12.6 Theorem] and [6,
Théoréme 3]).

PROPOSITION 2.1. Let C be a convex cone of lower P-bounded and lower
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semicontinuous functions on X satisfying CoP.  Then for peMg, M,={v
e My; u<cv} is compact in the weak topology o(Mp, Hp) on Mp.

COROLLARY 2.1. For any peWf, there exists a C-extremal measure v
e M} satisfying u <cv.

An upper or lower P-bounded semicontinuous function /on a closed set .§
is said to be C-concave or simply concave on 5 if for any x € § and any measure
neM¢ such that u(X—S)=0 and ¢,<cu, the relation u(f)=f(xholds, where
&, is the unit measure at x. The set of all lower P-bounded and lower semi-
continuous C-concave functions on X is denoted by C. This is a min-stable
convex cone containing C. A function / on S is said to be C-affineor simply
affineon S if fand —fare both C-concave on 5.

Let u be a measure in MF and S a closed subset of X.  For an upper P-
bounded function / defined on a set containing S the extended real number

inf {u(g); geC, g = f on S}
is denoted by
Q3 (f) = Q5(f) = Qi(f) = Q).

We write Q,(f)for Q,(f). The function: x—Q.(f)is denoted by Qf. The
mapping f+Q,(f)is sublinear. u<<vimplies Q,(f)=Q,(f). Obviously, Q5f=f
on 5. IffeC, then Q5f<¢n X, and hence Q5f=pn S.

PROPOSITION 2.2. // C is a min-stable convex cone such that PcCcHp,
then Qf is an upper P-bounded, upper semicontinuous C-concave function on

X and Q,(f)=w(@f) for any peMp.

PROOF. 1t is easy to see that Ofis upper P-bounded, upper semicontinuous
and C-concave. The equality Q,(f) =u(Qf) follows from Lemma 1.1.

A closed subset § of X is said to be C-determining or simply determining
ifany function in C non-negative on S is non-negative on X. If.Sis C-determin-
ing and fe -C, then Q3(f)=u(f) and hence Q5f = f onX.

The following lemma and Corollary 2.2 give an extension of Lemma 1.1 in

[31.

LEMMA 2.1. Letf be an upper P-bounded and upper semicontinuous func-
tion on a determining closed set S.  Then for any u € W%, there exists a measure
veMp such that p<v, (X —8)=0 and v(/) = Q3(f).

PROOF. We first assume feHp. Then we have [Q5(f)I< +oo. In fact,
obviously Q5(f)< +co. Since feHp, there is veP such that f=—v.  Since
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S is determining, we see that Q3(f)= —pu(v)>—o0. As the mapping: g—Q3(g)
from Hp(S) into R is sublinear, we may find, by the Hahn-Banach extension theo-
rem, a linear functional vyon Hp(S) such that v, Q3 on He(S) and v(f) = Q3(f).
Obviously, if g€ Hp(S)is non-positive, then Q3(g)<0. Hence we may regard
vyas an element of ME with v(X-5)=0. It follows that

vi(g)= sup vih)= sup Qu(h) =< u(g)
h<gonS h=gonS

heHp heHp

for any g e C, whence p<vy.
Next, let /be an upper P-bounded and upper semicontinuous function on
S.  We denote by ¢ the lower directed family {ge Hp g=fon S}. By the pre-
ceding consideration, we can choose, for any g £ ¢, a measure v,e MM$ such that
U<V, V(X —=8)=0 and v,(9) =0Q3(g9). Since {AeM; u<A1} is compact in the
topology o(Mp, Hyp) by Proposition 2.1, there is ve I} such that a cofinal sub-
family of {v,},es CONverges to ve Mg with u<v. Obviously WX — S)=0. We
also have
Qi(f)= inf Qji(g)= infvy(g) < inf inf vy(g')
gey geg g’'ey gggg,
sinfw(g)=w(f) g inf v(©) = inf u()=0if).
ffeaf . gufeo(:n s vgvfeg:n s

COROLLARY 2.2. Letfand S be as in Lemma 2.1. Then,
Q3(f)= sup {v(f); veME, W(X—S) =0, u<v}.

PROPOSITION 2.3. Let C be a min-stable convex cone such that P<C
cHp. Then for any u, ve M the relation p< ¢ v 1sequivalent to the relation
u<gv.

PROOF. By the definition of C the relation &, <¢ p and the relation e, <g u
are equivalent for any xe X and e M. By Corollary 2.2 we have

S(f) = sup {u(f); &.<cu} = sup {u(f); &<z it = Q&(f)
for any xeX and any feHg. Suppose u<¢v For any veC
¥(v) = sup {Wf) feHy,/ < v} < sup {QS(f) feHy, /< v}
<sup{QS(f) fe Hp, /< v} = sup {1(Q°) feHg, /< v}
—sup {u(Q¢f) fe Hp, /< v} < u(v),

where the last inequality follows from the relation QE f=v. This implies u<gv.
On the other hand pu<gv obviously implies u<¢v. Hence we have the con-
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elusion of Proposition 2.3.

COROLLARY 2.3. Iffis an upper P-bounded and upper semicontinuous
Sfunction and u is a measure in I3, then

filw = ot.
PROOF. By Corollary 2.2 and Proposition 2.3 we have
£() = sup ((f); u=<cv) = sup (W(); u<av) = QS().-

COROLLARY 24. For p, veMg, if u(f)=v(f) for all feC, then so is for
any f eC. Hence, a C-extremal measure is C-extremal.

PROPOSITION 24. Let C be a convex cone of lower P-bounded and lower
semicontinuous functions which contains P, § be a C-determining closed set
in X. Then a measure ue My is C-extremal if and only if

2.1 03C(fN) =uf) forany fe-C.

// C 1s a min-stable convex cone such that PcCcHp and if u is C-extremal,
then (2.1) holds for any fe -C.

PROOF. Let u be a C-extremal measure in M. From Lemma 2.1 it follows
that for each /e — C there exists a measure ve I satisfying u<<cv and v(f)
=Q,(f) Since u is C-extremal, we have v(/)=u(f). Hence Q,(f)=u(f).
If C is min-stable and PcCcHyp, then u is C-extremal by Corollary 2.4.

Hence the above arguments hold for fe — C.
Conversely, suppose that a measure u e MM} satisfies

Q.(f) = u(f)

for each fe — C. Any measure ue M with u<cv satisfies u(f)<v(f) for all
fe -C.  Since w(/)=Q.(f)=v(f), we have v(/)=pu(f) for all fe -C. Hence
u is C-extremal.

PROPOSITION 2.5.  Let C be a linearly separating min-stable convex cone
such that PcCcHp. IfS is a C-determining set and peMy is C-extremal,
then (X —S)=0.

PROOF. By Lemma 2.1, there exists ve 3 such that u<vand v(X— S)=0.
Since w is C-extremal, w(/)=v(f) for all feC. From Corollary 1.2, it follows
that u=v. Hence u(X—Sy=0.
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§2.2. Concave functions and determining sets

In this section P is an adapted convex cone in #*(X)and C a min-stable
convex cone such that PcCcHp.

PROPOSITION 2.6. Let S be a determining closed set and f be an upper
P-bounded and upper semicontinuous function on S.  Then for any concave
function g on a closed set T containing S such that g=f onS we have

g=205f on T.

PROOF. Let xeT. By Lemma 2.1 we find a measure ue I such that

&<, y(X—S)=0 and w(/)=Q3(f) Then for any concave function g on T
such that g =fon S we have

03(f) = u(f) = u(g) < g(x).
Immediately we derive

COROLLARY 2.5. Let S be a determining closed set and f an upper P-

bounded and upper semicontinuous concave function on S. Then

f=05f on S.

COROLLARY 2.6. Let S be a determining closed set and f a P-bounded
affindunction on X. Then f is continuous on X if its restriction to S is con-
tinuous.

PROOF. By Proposition 2.6 we have f=Q5f on X and —f20Q5(—f) on
X. Since S is a determining set, we see that Q5f 2> —QS(—f). Hence f=Q5f
= — Q%(— f). Therefore / is continuous.

COROLLARY 2.7. Let S be a determining closed set and f be an upper P-
bounded and upper semicontinuous concave function on X. Then f is non-
negative on X if it is non-negative on S.

PROOF. Iff is non-negative on S, then Q5f is non-negative on X. Since
Q5f< én X by Proposition 2.6, /is also non-negative on X.

§2.3. Simplexes

Let C be a convex cone satisfying PcCcHp. The pair (X,C) is called a
simplex if, given any x € X and any two C-extremal measures yu, v 6 M3 such that
g,<uand g,<v, we have
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uf)= vf)

for all fe C.

We denote by A=A(C) the set of all upper P-bounded and upper semi-
continuous C-affine functions on X. We have the following theorem (cf. [3,
Theorem 3.1]):

THEOREM 2.1. Let C be a min-stable convex cone satisfying PcCcHp
and S a C-determining closed set.  Then the following assertions are equiva-
lent:

a) (X, C) s a simplex,

b) for anyfe—AC, Q5 fis C-affine,

c) for any extremal measure u with ¢,<¢p and any fe— C

03(f) = u(f),

d)  Q%(f+9)=05f+0Q% fany twof,g e -C,
e) for any fe — C and any C-concavefunction g on S such thatf<g on S
there exists he A(C) satisfying

f£h=sg on S.

PROOF. a)=b): Let fe —'C and let xe X and neMg satisfying e, <u
be given. Then we have Q3(f)<Q3%(f) By Lemma 2.1 we find a measure v
satisfying e,<vand Q3(f)=v(f). Let V' (resp. u’) be an extremal measure satisfy-
ing v<v' (resp. u<<p') Since (X, C) is a simplex, we have v'(g)=u'(g¥or all
ge€C, and hence v'(f)=p'(f) by Corollary 2.4. Hence, using Propositions 2.3
and 2.4, we obtain

BN =vN =V =w() =2 = 2.

Thus Q3(f) = Q3(f)=u(Q5 Dy Proposition 2.2. Hence QSfis affine.

b)=>c): For each extremal measure ue My with e, <p and each fe —é,
the relation (/)= Q3(f)=m(@5f) holds by Propositions 2.4 and 2.2. Since
Q5fis affine, the equality

M@f) = Qif)

holds and hence u(/) = 03(f)
c)=d): For any f, ge —C and an extremal measure u satisfying e&.<pu,
we have

QX(f+9) = u(f+9) = u(fN)+ug) = QN +039).
d)=>a): We define L(f—g)=—03(—f)+03(—g) for any f,geC. Then
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L is well-defined on C—C and is a positive linear functional. Hence L may be
extended to a positive linear functional L' on Hp by Lemma 1.2. Since P is
adapted, there exists a measure pu € M satisfying w(/)=L'(f) on Hp; see §1.2.
Hence

wf)=L(f)=-L(-/) =Qif) forall fe-C.

Since v(f) L Q3(f) = u(f) for an extremal measure v with &,<v, the relation v<pu
holds and accordingly v(/) = u(f) for all fe —C. Thus (X, C) is a simplex.

b)=-¢): For any fe — C and any concave function g on 5 satisfyingf<g
on S, the relationf<Q%f<gholds on 5 by Proposition 2.6. Since Q5f is affine
by assumption, it suffices to put h = QSf.

e)=b): Let fe —AC, xe X and peM with e,<u. Let v be a measure in
M such that X — S)=0and u<v; such a measure exists on account of Lemma
2.1.  We observe that Q(f)=Q3(f)=0Q3(f)By e) and Proposition 2.6 we
have

03(f) =inf{v(g); g €C, g = f on S}
= inf{v(h); heA, h=fon S}
=inf{h(x); he A, h = fon S} = 03(f),

so that u(Q5f)= Q3(f)= Q3(f),which shows that Q5fis affine.

Remark that in the proof of d)=-a), we used the equality in d) only for f, g
e — C. Therefore, we immediately obtain

THEOREM 2.1'. Let C and S be as in Theorem 2.1. Then the following
assertions are equivalent:

a) (X,QC) is a simplex,

b) for any fe —C, Q5f is affine,

c) for any extremal measure u with e,<p and any fe — C,

() = u(f),
d) Q%(f+g) = 05f+ QSgfor any two f, ge —C.

If C is a linearly separating and min-stable convex cone such that P=C
cH, and (X,C) is a simplex, then an extremal measure W satisfying e, <pu is
unique for each x € X, since C — C is dense in Hp by Corollary 1.2. The unique
extremal measure is denoted by u,. We have the following proposition which is
an extension of Theorem 12 in [6].

PROPOSITION 2.7. Let C be a min-stable and linearly separating convex
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cone satisfying PcCcHp. If(XC) is a simplex, then the function: x—p(f)
defined on X is Borel measurable for each feHp.

PROOF. Since (X,C) is a simplex, pf>=(Qf)(x)for each fe —C by
Theorem 2.1. Hence the function: x— u (f)is upper semicontinuous by Proposi-
tion 2.2. It follows that x~—pu,(f)is Borel measurable for each fe C —C.

Let g e €x(X). By Proposition 1.2 there exist 1 e P and a sequence {f,}
< C—C such that

lg_fnl é(l/n)l) (n= 1’ 29)
Since u, is positive, it follows that

qu(g) - ”x(fn)l é (l/n)#x(u) .

Hence lim p (f,F u.(g9)for every x € X. This implies that the function: x— u,(g)
is Bore'i_’ri.;easurable for each ge Zx(X).

Similarly we can show that the function: x—pu.(¢) is Borel measurable for
each @ e Hp because by Proposition 1.1 we find ueP and a sequence {g,}<
% x(X) such that

]gn_(pl < (I/n)u (n =1, 2,)

Chapter 3. Dilations and abstract Dirichlet problems

§3.1. The Choquet boundaries

Let P be an adapted convex cone in #*(X)and C a convex cone satisfying
PcCcHp. A closed subset AcX is said to be C-stable or simply stable
if the assumptions &, < cu for x e A and ue MEimply u(X—A)=0. Every com-
pact stable set contains a minimal compact stable set. The open set \U{xe X
v(x)<0} is denoted by X~(C) =X~. Denote by 6(C) the set of all poi'l)qet(; xeX~
each of which is an element of a minimal compact stable set. We shall call it
the Choquet boundary with respect to C. It is known that if X~(C) is not empty,
then the Choquet boundary is not empty and its closure is a determining set; see
[9, §4, Proposition 2].

Now suppose that C is linearly separating. Then a minimal compact stable
set consists of only one point (cf. [9, § 4, Lemma 5] and [3, p. 23]). It follows
that x € 8(C) if and only if e, is the unique measure u satisfying e, <u. (Note
that if x¢ X, then &,<0.) Furthermore, 8(C) is the smallest determining set
([9, §4, Proposition 7]). By Proposition 2.5, if g€ 9 is an extremal measure,
then u(X —6(C))=0.
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PROPOSITION 3.1. Let C be a linearly separating, min-stable convex
cone such that PcCcHyp. Then the following assertions are equivalent:

@ xed(C),

(b)  QS(h)=h(x) for any heH,,

(c) there exists a subset C, of —C which is total in Hp and satisfies
QC(h)=h(x) for any heC,.

PROOF. (a)=(b): Supposexe é(C). Since &, is the unique extremal meas-
ure u satisfying e, <u, QS$(h)=h(x) for any he Hp by Corollary 2.2.

(b)=(c): It suffices to put C;= — C by virture of Corollary 1.2.

(©)=>(a): Assume that QS(h)=h(x)for any heC,. For any g e C satisfy-
ing g=h and any peMf satisfying e, <u, we have u(h)=<u(g)=<g(x). Hence
u(h)ZQS(h)=h(x). On the other hand, since fte-C, it follows that wu(h)
= h(x), whence u(h)=h(x) for any fteC* Since C, is total in Hp, we have
u==g. Thus x is an element of §(C).

LEMMA 3.1. IfX has a countable base, then Hyp is separable.

PROOF. Since X has a countable base, there is a countable subfamily 2
of €x(X)such that for any ¢ € €x(X),any relatively compact open set @ con-
taining the support of ¢ and e>0, we find ¥ € 2 such that S,cw and \p — Y| <e
on X. Then 2 is dense in Hp by virtue of Proposition 1.1.

PROPOSITION 3.2. // X has a countable base and C is a linearly separat-
ing, min-stable convex cone such that PcCcH,p, then 6(C) is a Ggset and
WX — 6(C))=0 for any extremal measure peINS.

For the proof, see [9, §4, Proposition 10] or [14, p. 360]. Note that if 2
is as in the proof of Lemma 3.1, then Proposition 3.1 implies

MO = N {xeX; 0N =1}

§3.2. Dilations

In this section, we suppose that X has a countable base and C is a linearly
separating, min-stable convex cone satisfying PcCcHp.

A mapping D from X into M is called a C-dilation or simply a dilation
on X if ¢,<¢ D(x) for any xe€ X and the function: x—(Df)(x} D(x)(f)s Borel
measurable for each fe Hp. Given a dilation D on X, a point x e X is said to be
D-regular if D(x)=¢,. The set of D-regular points is denoted by 8P(C). Ob-
viously, 8(C)<=dP(C). A dilation D is said to be weakly affineif there exists a
linearly separating min-stable convex cone C; such that P<C,=C and for any
ve— C,, Dv is the limit of a decreasing net of functions in A(C).
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In the case where X is a compact set and C is a linear subspace of #(X)
separating points of X and containing constant functions, the above definition is
equivalent to the definition in [8, p. 101] on account of the following Propositions
3.3 and 3.4, which are similar to [8, Theorem 2.5].

PROPOSITION 3.3. Suppose that there is a weakly affineC-dilation D.
Then (X,C) is a simplex and, for x € X, D(x) is the unique extremal measure u
satisfying e,<u. In particular, 6(C)=3P(C).

PROOF. Let 4 and v be extremal measures in 9 satisfying e, <u and e, <v.
Since D is a weakly affine dilation, there exists a min-stable and linearly separating
convex cone C; such that PcC,<C and for any ve — C,, Dv is the limit of a
decreasing net in A. By Lemma 1.1, we have u(Dv)=v(Dv). Since x4 and v
are carried by 6(C) by Proposition 3.2 and Dv=v on §(C), we have u(v)=v(v).
Since C;—C; is dense in Hp by Corollary 1.2, we have u=v and hence (X, C)
is a simplex.

Let x 6 X and u, be the unique extremal measure y with e, <u. Letve —C;.
Then we have, by Theorem 2.1 and Corollary 2.2,

p(v) = QS(v) = sup {u(v);u € M3, e, <u} = (Dv)(x).

To prove the converse inequality, let a € A satisfy Dv<a. Then we have v=<a
since v(y)<D(y)(v)for any yeX. Hence QS(v)<Q%(a)=a(x). Taking the
infimum of such a e A, we see that

1x(v) = Q5(v) = (Do) (x).
Hence we have
Hx(v) = (Dv)(x) = D(x)(v)
for ve — C,. Since C; is total in Hp, it follows that u, =D(x).

PROPOSITION 3.4. //(X,C) is a simplex, then there exists a weakly affine
C-dilation.

PROOF. For each xe X, let u, be the extremal measure satisfying &.<p,
and let D(x)=pu,. Then D is a dilation since the mapping: x+—u.(f)is Borel
measurable by Proposition 2.7 for each fe Hp. Further, the relation

ux(v) = QZ(v)= inf{h(x); heA, h 2 v}

follows for any ve — C from Theorem 2.1 and the fact that p.(h)=~h(x) for any
heA. Suppose that hy, h, € A satisfy hy=v and h,=v. Then the function
min {h,, h,} is concave and satisfies min {h,, h,} =v, whence there exists he A
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satisfying v<h<min {h,,h,} by Theorem 2.1. Therefore, Dv is the limit of a
decreasing net of functions in A. Thus D is a weakly affine dilation.

§3.3. Bauer’s simplex

Let C be a min-stable convex cone satisfying PcCcH,. If(X,C) is a
simplex and 6(C) is closed, then (X, C) is called a Bauer’s simplex.

We have the following theorem which is well-known in the case of a com-
pact space X (cf. [I, Satz 13] and [12, Proposition 9.10]).

THEOREM 3.1. Let C be a linearly separating, min-stable convex cone
satisfying PcCcHp.  Suppose X~ (C)#¢. Then the following assertions
are equivalent:

(@) (X, C) is a Bauer’ssimplex,

(b) any P-bounded continuous function on 5(C) is uniquely extended to an
element of A(C) n Hp,

© (X,C) is a simplex and the function: x—u(f)is continuous for any
feHp, where p, is the extremal measure satisfying e,<[,.

PROOF. (a)=(b): Put S=6(C). Then S is a determining set. Let &
be a P-bounded continuous function on S. Choose t € P such that |h|<v on
S. Putf(x)=h(x)for xe Sand f(x) = — v(x)for xe X—S. Then / is P-bounded
and upper semicontinuous on X. If xe S, then any measure u e M3 satisfying
&,<u is equal to &, so that u(f)=f(x), i.e., fis affine on S. Ifx¢S, then e, <pu
implies u(f)= —p(v)=—ov(x)=f(x). Therefore —f eC. By Theorem 2.1, QSf
eA. It is easy to see that QSfis P-bounded. By Corollary 2.5, QSf=f=h
on S; and by Corollary 2.6, Q5f is continuous on X. Hence QS f is an extension
of h and Q5fe An Hp. The uniqueness follows from Corollary 2.7.

(b)=>(c): Put S=6(C). Foreach feHp we denote by h rthe unique exten-
sion of f|Sto an element of A n Hp. If 4 and v are extremal measures satisfying
e,<u and g,<v, then the supports S, and S, are both contained in § by Pro-
position 2.5. Hence

(.1 u(f)= uChp)= h(x)= v(h)= v(f)

for all fe Hp. Thus (X, C) is a simplex. By (3.1), we have u,(f¥ h(x)for any
feHyp. Since h;eHp,the mapping: x—pu,(f) is continuous.

(©)=(a): If xed(C), then p(f)=f(x) for feHp. Since the mapping:
x> (f)is continuous, the equality p(f)=f(:also holds for any x € 8(C). Let
x€&(C) and p be any measure in My satisfying e,<u. Then we have

g(x) = p(g) = p(g) < g9(x)
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for geC, since u, is the unique extremal measure satisfying ¢,<pu,. Hence
u(g) =g(x) for any geC. Since C is total in Hp, we have u=¢, and hence
0(C)<=dé(C). Thus §(C) is closed.

§ 3.4. Lattices of affine functions

PROPOSITION 3.5. Let C be a min-stable convex cone satisfying PcC
cHp. Suppose that there is a linear space B of C-affinecontinuous functions
in Hp which is a lattice in the natural order and is linearly separating. Then
0(C) is non-empty and if x € X satisfies the equality

(f A 9)(x) = min {f(x), g(x)}
for each pair of fg €B, then x is a point of &(C).

PROOF, Since B is a linear space and linearly separating, there is g€ B
such that g(x)<O0 for some xe€ X. Since g is affine, Corollary 2.2 implies Q.(9)
=g(x)<0, and hence there is t € C such that v(x)<0. Thus, X~(C)# ¢, so that
d(C)#¢. Put S=6(C). Since CoP, we have |Q5(g)|<oo for geHp(S) (cf.
the proof of Lemma 2.1). By Corollary 2.2 again, we see that Q3(g)=g(x) for
any g eB|5.  Evidently the mapping: g—Q3(g) is sublinear on Hp(S) and par-
ticularly linear on B|S. By the Hahn-Banach extension theorem, there exists a
linear functional F on Hp(S) satisfying F=Q$ and F(g)=g(x) on BS. If
g<0, we have Q%(g)<0,whence F(g)<0. Thus F is positive. Further, B|S
is a lattice and

F(/Ag) = (/AAIf) (x) = min {{(x), g(x)} = min {F(f), F(g)}

for f, g ¢ B. Hence F satisfies the assumptions of Lemma 1.3 with X=S. Con-
sequently there exist A >0 and y e S satisfying

F(f) = M)
for any fe B. Since B is linearly separating, we have x =y and hence x €(C).

PROPOSITION 3.6. Let C be a linearly separating, min-stable convex
cone with PcCcHp.  Assume that a linear space B of C-affine continuous
functions in Hp 1s a lattice in the natural order. If x is a point of 8(C) and
satisfies

(32 ¢(max {f, g}) = inf{h(x);» = max{f, g}, heB}
for any /, g e B, then
(33) (fAg)(x) = min {f(x), g(x)}
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for any f, geB.

PROOF. Let xe &(C). Since B is a linear space, it suffices to establish the
following relation:

G4 (fV9)(x) = max {f(x), g(x)}

for any /, geB. Obviously (fV g)(x)=max{f(x),g(x)} holds. Putting ¢
=max {/, g}, we have

@(x) = Q3(p) = inf{h(x); h = ¢, he B}

by Proposition 3.1 and (3.2). Therefore, for any €>0 there exists heB satisfy-
ing h=¢ and @(x)+&e>h(x). Since h=f, h=gand fteB, we have

o(x)+&>h(x) 2 (fV 9)(x),

whence @(x)=(fg)(x). Hence (34), and so (3.3), holds for x€d(C). By
continuity, (3.3) holds for x e 8(C).

By Propositions 3.5 and 3.6 we have the following corollary.

COROLLARY 3.1. Let C and B be as in Proposition 3.6. Assume that B

is linearly separating and (3.2) holds for any f, g eB and xe X. Then,xeX
is an element of 6(C) if and only if

(fA9)(x) = min {f(x), g(x)}
for any f, g in B.
Now, let B be an adapted space in €(X). We write
CB) = {min{f,,..., fi}; fie B, n 2 2}.

Then C(B) is a min-stable convex cone which contains the adapted cone B*
and which is contained in Hg+. For xe X and pue Mg+ the relation &, <cmyu
is equivalent to the relation e,<gu. It follows that &6(C(B))=46(B) and, by
Corollary 2.2, Q €B)(g)=Q%8(g) for g e Hy-.

The following theorem is an extension of Satz 10 in [1].

THEOREM 3.2. Let B be an adapted space which is linearly separating and

closed under the compact convergence topology. Then the following two asser-
tions are equivalent:

(@) B s a lattice in the natural order,
() any function in Hg+(6(B)) can be extended to an element of B.

Proor. (a)=>(b): Since QS®BX )= QB(p)=inf{h(x) heB, h=¢} for
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any ¢ € Hg+,the previous corollary implies
4(B) = 6(B(C))
={xeX; (fAg)(x) =min{f(x), g(x)} foranyf, geB}.

Put S=4&(B) and B,=B[36(B). Then S is a B-determining set and B, is min-
stable and linearly separating. Let fe €x(S). By Proposition 1.2 there exist
veB* and a sequence {g,} =B such that

If_gnl é(lln)v (n= 1, 2"")
on §. Since
19n— 9l E(@/n)+(A/m))v on S forany n, meN,

the same inequality holds also on the whole X. Consequently the sequence
{g,}in B converges uniformly on any compact set and g=Ilimg, belongs to B
by our assumption. It is obvious that g =fon §. Consequently any function in
€ x(S)can be extended to an element of B.

Similarly we may show that any function in Hgz+(S) can be extended to an
element of B by using Proposition 1.1.

(b)=>(a): Since 8(B) is a B-determining set, the extension of / in Hg+(3(B))
to an element of B is unique, which we denote by h;. Let/, geB and =
min {f|6(B), g|6(B)}. Evidently we have fAg=h,, and hence infer that B
is a lattice.

Chapter 4. Applications to potential theory

§4.1. Adapted cone of potentials

Let ©Q be a harmonic space satisfying Bauer's axioms I, II, III and IV in [2,
p. 11]. By definition Q is a locally compact Hausdorff space with a countable
base. A non-negative superharmonic function s is called a potential if the greatest
subharmonic minorant of s is equal to 0. We call &2 a strong harmonic space
if for any x e £ there exists a potential / with f(x) > 0.

Hereafter we assume that 2 is a strong harmonic space and use notations
and terminologies in [2]. For a set F in £, let dE be the topological boundary

of E.
Let £ be a subset of £ and /a non-negative function defined on E. We put

RE = inf{g;g is non-negative hyperharmonic on @, ¢ = f on E}

and
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E(x) = liminf RE(y).
yox

By using the functions of the form R%, we can show that there exists a continuous
potential p, such that py(x)>0 for all xe Q (cf. [2, Korollar 2.5.10] and [7,
Proposition2.2.2]).

Let P be the convex cone of all continuous potentials. Then P satisfies
condition (p,) in §1.1 by the above consideration. By [7, Proposition 2.2.4],
we see that P also satisfies condition (p,), so that P is an adapted convex cone.
Furthermore, P is min-stable and linearly separating by virtue of [2, Satz 2.5.3
and Satz 2.5.8].

We have the following minimum principle ([2, Korollar 2.4.3]):

PROPOSITION 4.1. Let u be a hyperharmonic function in an open set U
inQ. If

liminfu(x) =2 0 forall zedU
it

and ifuz —von Uforsome vEP, then u=0 on U.
Using this proposition and the potential p, mentioned above, we obtain

PROPOSITION 4.2. Let E be a closed set in 2 and u be a hyperharmonic
function on an open set containing E. If

liminfu(x) = 0 for all zedE
3eCE

and ifu= —v on E for some ve P, then u=0 on E.

§4.2. Balayaged measures and harmonic measures

Now, I is the space of all P-integrable measures on £.

PROPOSITION 4.3 (cf. [2, Satz 3.4.1], [7, Prop. 7.1.2]). For each peM$
and each subset E of Q, there exists a unique measure uE on E such that

HE(v) = u(RE)
for any veP.

PROOF. Since P|E is a min-stable, linearly separating adapted convex
cone in ¢*(E), #=P|E—P|E is dense in Hp(E) by Corollary 1.2. Since the
mapping u—RE on P|E is additive ([2, Satz 3.2.3]) and RE is P-integrable for
any u € P|E, I(d)=u(RE— RE)is well-defined for d=u—ve#". It is easy to see
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that L is a positive linear functional on . Hence L is uniquely extended to a
positive linear functional on Hp(E) by Lemma 1.2. Hence there exists a measure
uE on E such that uE(f)= L(f) for any feHp. In particular we have uE(v)
= u(RE) for veP.

The measure uF is called the balayaged measure of u on F.

Let Ube an open set in Q. For xe U we call (¢,)V the harmonic measure
with respect to ¢ and U, and denote it by u¥. Since RSV = Réon (7 for any v
eP as is easily seen (see [16, Lemma 1]), u¥Y is supported by dU (cf. [2, Satz
3.4.3]).

§4.3. Dirichlet problem for an open set U

We consider the Dirichlet problem for an open set U in Q with 0U #¢. Let
f be an extended real-valued function on oU. We denote by 5’} the family of all
hyperharmonic functions v in U satisfying the following conditions:

1) liminfv(x)= f(z) for any z e dU,

2) gagx:zp for some p e P.
The constant + o belongs to $% and hence fyy"p. We define

HY = inf{u; u e HY}

and HY=—HY,. By Proposition 4.1, HY<HY. If HY=HYand it is harmonic
in U, then we say that f is resolutive and we write

HY=HY=HY,

The following proposition is easily proved (see the proof of [2, Satz 4.1.5]
and [7, p. 18, Theorem 2.4.1 and Proposition 5.3.3]):

PROPOSITION 4.4. (a) // / and g are resolutive functions on dU, then f+g
(when it has a meaning everywhere on dU) and Af (A: real) are resolutive and

(b) Iff<gon dUthen HY<HYand HY<HY;
(c) For any veP, its restriction to dU is resolutive and

HY=RSY=RSU on U.
By Propositions 1.1, 1.2, 4.3 and 4.4, we obtain (cf. [2, Satz 4.1.7])

PROPOSITION 4.5.  Any feHp(0U)is resolutive and satisfies

HY(x) = pY(f) for any xeU.
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A point xqe 0U is said to be regular for U if

“4.1) lim HY(x) = ¢(xo)

U3x—xo

for any ¢ e Hp(0U),or equivalently

lim p¥ =¢,, in the topology o(Mp(0U), Hp(0U)).

U3x-xo

LEMMA 4.1. Let U be an open set in 2 with 0U#¢. A point xq€0U is
regular if and only if

liminf HY(y) = v(x,)
U3y—-xo
holds for any veP.

PROOF. The "only if" part is obvious. Assume that hm 1nf HY(y)=0(x,)
for any veP. Since HY(y)=RSU(y)<v(y)for any ye U, hm sup H"(y) <v(xo).

Consequently we have

liin HY(y)=g(xo) forany geP-—P.

Usy-xo

Let ¢ e Hp(0U). By Propositions 1.1, 1.2 and 4.4, we can find a sequence {g,}
in P—P such that HY converges to HY uniformly on a neighborhood of x,.
Hence we have (4.1) for ¢ e Hp(0U).

LEMMA 4.2. Let U be an open set in  with OU# ¢ and ze dU. Assume
that Vis a neighborhood of z. Then z is a regular point of U ifand only if 7 is
a regular point of Un V.

PROOF. Let veP. Then HYZHY"V<v» on Un V. Hence by Lemma
4.1, if z is regular for (7, then so is for Un V. Conversely, assume that z is a
regular point of Un V. For any ve P, we define

[ v(y) if yeoUnV,
g(y) =1
/ HY() if yedVnU.

It is easy to see that g is resolutive for Un Vand HY"V=HY|Un V (cf.[2, Lemma
4.2.47). Since g is equal to v on a neighborhood of z and 0=g <v,we can easily
show that hm HY"(x) =g(z), and hence hm HY(x)=v(z). Thus by Lemma 4.1,
Zis a regular pomt of U.

A set Ec Q is said to be thin at a point x e E, if

inf REMV(x) < 1,
VEB
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where B, is the set of all neighborhoods of x ([2, p. 107]). It is easy to see that
Eis thin at x e E ifand only if there are ve P and Ve®B, such that REV(x)< v(x)."

PROPOSITION 4.6. Let U be an open set in Q with dU#¢ and x,€dU.
Then the following assertions are equivalent:

(i) xo is a regular point of U,

(ii) CU is not thin at x,,

(i) (ee)U=tspe

The proof of this proposition is similar to that of [2, Satz 4.3.1]. In fact,
(i)=>(ii) follows from Lemma 4.2 and Proposition 4.4, (c); (ii)=>(iii) is immediate;
and (iii)=-(i) follows from Proposition 4.4, (c) and Lemma 4.1.

The following lemma is proved in the same way as [§8, Lemma 3.1] by using
Propositions 1.1 and 1.2, Lemma 3.1 and the previous proposition:

LEMMA 4.3. If ze dU there exists a sequence {x,} in U converging fo z for
which the measure p¥, = (g, )Vconverges to ., =(g,)°V in the topology a(Mp(U),
Hy(0)).

COROLLARY 4.1 (cf. [2, Satz 3.4.3] and [7, Proposition 7.1.3]). For each
ze U, the balayaged measure (g,)°U is supported by dU.

§4.4. The dilation given by balayaged measures

Let U be an open set in Q2 with dU#¢ and C be the set of all P-bounded
continuous functions on U which are superharmonic in U. We know that C
is a min-stable and linearly separating convex cone and P|UcCcHg(D).
By Proposition 4.1, dU is a C-determining set. Hence the Choquet boundary
8(C) of U is contained in dU (see §3.1). We write B(x)=(e,) Ufor any xe U.

PROPOSITION 4.7.  The mapping: x—B(x) from U into MU) is a C-
dilation and the set of all regular boundary points of U is just the set of all B-
regular points.

PROOF. For each veP, the function: x—B(x)(v)=RSY(x)is lower semi-
continuous and hence Borel measurable. From Propositions 1.1 and 1.2, it
follows that the mapping: x—B(x)(f)is Borel measurable for each feHy(U)
(cf. [7, Proposition 7.1.4]). Since g\U is an upper function of g\dU for each g

eC,
B(x)(g9) = HY(x) = g(x) forany xeU.

Hence &,<cB(x)for xeU. If zedU, then there exists a sequence {x,}in U
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such that B(x,) converges to B(z) in the topology a(Mp(U), Hp(U)) by Lemma
4.3. Hence

B(z)(g) = lim B(x,)(g) <g(z) foreach geC.

Thus the mapping: z+—B(z) is a C-dilation. The last assertion of the proposition
follows from Proposition 4.6.

By definition, the support of a superharmonic function s on £ is the com-
plement of the largest open set on which s is harmonic. We say that £ satisfies
Axiom D if for any locally bounded superharmonic function, the continuity of its
restriction to its support implies the continuity on the whole Q.

THEOREM 4.1 (cf. [9, Theorem 3.3]). Suppose that Q satisfies Axiom D.
Then the balayage mapping: x—B(x) is a weakly affineC-dilation.

PROOF. LletveP. Then
B(x)v = RSY(x).

Since Rﬁ” is a potential dominated by v, it follows from [7, Theorem 8.2.2] and
Axiom D that there exists an increasing net {v,}in P such that RSY=sup v,and
each v, is specifically smaller than RSY, i. e., there is a potential w, satisfgling RSV
=v,+w, for each a. Since RSV is harmonic on U, each v, is harmonic on U.
Hence v,|U is C-affinefor each a. Since P|U is min-stable and linearly separat-
ing, it follows that x—B(x) is a weakly affine C-dilation.

COROLLARY 4.2. Suppose that Q satisfies Axiom D. Then the set of all
regular boundary points is equal to the Choquet boundary 8(C) and (U, C)
is a simplex.  Furtherfor each x e U, the balayaged measure (e)CVis the unique
extremal measure u with e, <u.

PROOF. This follows from Proposition 3.3, Proposition 4.7 and the above
theorem.

THEOREM 4.2.  Suppose that $2 satisfies Axiom D. If the set S of all
regular points of U is closed, then any P-bounded continuous function on S is
uniquely extended to a continuous function on U which is harmonic in U.

PROOF. Since (U, C) is a Bauer's simplex and S=6(C), any P-bounded
continuous function f on § is uniquely extended to a C-affine continuous function
g on Uby Theorem 3.1. By Corollary 2.2, we see that Qg =gand Q(—g)= —g.
It follows that g and —g are superharmonic in U, and hence g is harmonic in U.
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§4.5. The Dirichlet problem for the exterior of an open set

Let £ be a closed set in 2 with 0E# ¢ and f an extended real-valued function
on dE. We denote by W} the set of all hyperharmonic functions v on an open
set containing E which satisfy the following properties:

(i) lim yinfv(x); f(y) for any y e dE,

X~
xeCE
(iiy v=—p on E for some peP.

We define

K? = ud{AE; ucﬁ‘}}
and K%=—KE,. By Proposition 4.2, we _see that KE<SKE. If KE=KE, we
say that fis resolutive and write K= K%=KE.

PROPOSITION 4.8. (a) /// and g are resolutive functions on dE, then f+g
(when it has a meaning everywhere on dE) and Af (A:real) are resolutive and

KE,, = KE+KE,  KE = KE.

(b) IffSen OE, then KE<KEand KE<KE.
(c) For any veP, its restriction to dE is resolutive and

KE= RCE= RCE=sup {H®; w: open o E} on E.

PROOF (cf. [13, p. 386]). In general, K%, ,<K% K% and K%~=AKZ% for
A=0, from which (a) follows. (b) is immediate. To prove (c), let veP. By
[2, Satz 2.2.1 and Satz 3.2.7],

@2) RSE — RCE = sup {RS®; w: open > E}.

Since p=RCSE is a potential and p=v on CE, pe RE and hence p=KE on E.
On the other hand, for any open set w>E, H>=RS®|we —KE,, since H?<v
on . Hence

4.3) He=RS*<KE<KE<RSE onE.

By (4.2) and (4.3), we obtain (c).

PROPOSITION 4.9 (cf. [13, Théoréme 2]). Let E be a closed set with OE# ¢.
Then any ¢ € Hp(OE)is resolutive and for any decreasing net {w;};; of open sets
satisfying E= f\l w; and a P-bounded continuous extension @ of @,

i€

(44) KE = lim Hge.

iel
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PROOF. By Proposition 4.8, if /eP —P, then f\dE is resolutive and KZE
=lim;; H¢*. Hence by using Propositions 1.1 and 1.2, we see that for @ € Hp,
@ = ®|0E is resolutive and (4.4) holds.

A point xo€0E is called a stable point of E if K&(xo)=f(xcholds for any
feHp(OE).
By Proposition 4.8, (c), we can easily show

PROPOSITION 4.10. xo€0E is a stable point of E if and only if (€x,)CE

=8y,

For each x€E, the mapping: f>K%(x)on Hp(0E) defines a measure K(x)
EMS on dE. We denote by C the set of all P-bounded continuous functions on
FE each of which is the restriction of a superharmonic function in an open set
containing £. Then we have the following theorem.

THEOREM 4.3 (cf. [8, Theorem 4.1]). The mapping: x—K(x) is a weakly
affineC dilation on E and the set of K-regular points on dE coincides with the
set of stable points of E.

PROOF. Since KE(x)=RSE(x) for veP, the function: x—KE(x) is lower
semicontinuous and hence Borel measurable for any ve P.  Using Propositions
1.1 and 1.2, we can see that the function: x—K¥%(x)=K(x)(f} Borel measurable
for each fe Hp(E). Since every g e C is the restriction of a function belonging to
RE ok, we have

K(x)(9) = K§(x) £ 9(x),

whence &,<¢K(x)for any xe Q. Therefore K is a C-dilation. Let veP.
Since H?|E is C-affine for any open set w> E, we see that K is a weakly affine
C-dilation by Proposition 4.8, (c). By definition, x,e dE is a K-regular point
if and only if it is a stable point of E.

COROLLARY 4.3 (cf. [8, Corollary 4.2]). The pair (E, C) is a simplex and
0(C) is the set of all stable points of E.

PROOF. Since the mapping: x—K(x) is a weakly affine C-dilation, (E, C)
is a simplex and 6(C)coincides with the set of all K-regular points by Proposition
3.3. By Proposition 4.2, dFE is a C-determining set and hence 6(C)cdE. From
the above theorem it follows that 6(C) is the set of all stable points of E,
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